
Online Identification of Dwell Regions for Moving
Objects

M Reaz Uddin, Chinya V. Ravishankar, Vassilis J. Tsotras

University of California, Riverside, CA, USA
{uddinm,ravi,tsotras}@cs.ucr.edu

Abstract— A region R is a dwell region for a moving object O
if, given a threshold distance d and duration t, every point of
R remains within distance d of O for at least time t. Clearly,
points within R are likely to be of interest to O, so identification
of O and R has applications in areas such as monitoring and
surveillance, as well as to trajectory simplification. We propose an
online algorithm to solve this problem, which can handle dynamic
addition and deletion of data in logarithmic time. We assume an
incoming stream of object positions, and maintain the upper and
lower bounds for the radius of the smallest circle enclosing these
positions, as points are added and deleted. These bounds allow
us to greatly reduce the number of trajectory points we need
to consider in the query, as well as to defer query evaluation.
Our method can approximate the radius of the smallest circle
enclosing a given subtrajectory within an arbitrarily small user-
defined factor. Our experiments show that the proposed method
can scale up to hundreds of thousands of trajectories.

I. INTRODUCTION

The widespread deployment of GPS devices has made real-

time position data from millions of moving objects readily

available. Many applications, especially those involving mon-

itoring and control, require on-line analysis of such data.

We need real-time responses to spatiotemporal queries, since

positions change rapidly, and queries quickly lose their value.

It is essential to keep pace with high incoming data rates.

We consider the problem of online identification of dwell
regions. A regionR is a dwell region for a moving object O if,

given a radius rq and duration t, if O remains within distance

rq from every point in R for at least time t. We also consider

the case where t is not specified. Incoming position updates for

O are grouped into a subtrajectory S , ensuring that O remains

within rq distance from all points in some region. The problem

reduces to computing the smallest enclosing circle SECS of

the points in S . Computing R is hard for streaming data. We

propose approximate methods to compute dwell regions R.

This problem has many real life applications. In surveillance

and security applications, the object O may represent a threat,

and the region R may contain potential targets for O. For

example, O might be collecting information about the region

R or maintaining communication with objects in R which is

only possible within a certain distance from R. Fast detection

of R might be of critical importance. Identifying dwell regions

is also important in animal behavior tracking, and may reveal

animal territories. Wolf packs are known to stalk prey before

attacking it. Identifying such behaviors reveals many interest-

ing facts and is very important to ecosystem researchers [1].

The behaviors we consider in this paper include both going

(a) (b)

Fig. 1. Behaviors considered in this paper.

around a region, as in Figure 1(a), or random movement in a

certain enclosed region, as in Figure 1(b).

Our work also has applications in real time trajectory simpli-

fication based on spatio-temporal criteria. One such criterion

[2] is the “disk criterion”, which collapses into one segment all

contiguous trajectory segments that can be enclosed by a fixed

size disk. Our data structures and algorithms can be used to

maintain a subtrajectory as long as it satisfies the disk criterion.

For streaming scenario it is desirable to do this simplification

in real time, without storing the data in a physical medium.

We assume that every moving object sends regular position

updates to a central system. For every moving object we will

have a streaming window (or just window) of recent position

records. We are to identify dwell regions as records are being

added to and deleted from this window in real time.

Given a window S , our approach approximates the smallest

enclosing circle SECS of the points S as a polygon with a

user-specified number, k, of sides. We maintain data structures

which are used to compute upper and lower bounds on the

radius of SECS . We show that the actual radius is within a

factor of (1+O(1
k2)) of the lower bound. The data structures

can be updated for addition/deletion in O(k log n) time, n is

the window size |S|. We can compute the upper and lower

bounds in time O(k).

Most of the time, we can decide whether SECS has radius

rq or less from just the upper and lower bounds. When these

bounds are insufficient to evaluate the query, we propose a

method which allows us to consider only a few points in the

window to compute SECS . Computing SECS only gives the

center of the circle, not the complete region R. We hence

propose a method for quickly approximating the region R.

Our contributions are:

• We maintain an approximation of SECS in logarithmic

update time.

2012 13th International Conference on Mobile Data Management

978-0-7695-4713-8/12 $26.00 © 2012 IEEE

DOI 10.1109/MDM.2012.41

248

2012 13th International Conference on Mobile Data Management

978-0-7695-4713-8/12 $26.00 © 2012 IEEE

DOI 10.1109/MDM.2012.41

248

2012 IEEE 13th International Conference on Mobile Data Management

978-0-7695-4713-8/12 $26.00 © 2012 IEEE

DOI 10.1109/MDM.2012.41

248

a

magnitude

direction

B end

�
b

B�end�
point

|a|�cos �A initial�
point

(a)��(b)��(c)

Fig. 2. (a) A Euclidean vector (b) The scalar projection of �a onto �b (c) Eight
uniformly spaced vectors around a circle.

• We propose upper and lower bounds of the radius of

SECS , greatly reducing computation time.

• We show that the radius of SECS is within a factor of

(1 +O(1
k2)) of the lower bound, for a user defined k.

• We devise a method for selecting a few points using our

data structures to compute SECS exactly.

• We discuss how to compute a fairly good approximation

of the dwell region R.

The rest of the paper is organized as follows: Section II

provides the definitions and background while Section III

describes some related works. Our proposed methods and

data structures are described in Section IV while Section V

describes the query evaluation algorithms. Section VI presents

the experimental results and Section VII concludes the paper.

II. BACKGROUND

Every moving object has a unique object ID and sends

its position updates at certain regular intervals. A position

update record contains object ID, spatial coordinate, and a

timestamp. A trajectory, with a particular id, is a finite

sequence of (xi, yi, ti) triples. The xi, yi ∈ R
2 are spatial

coordinates, and the ti ∈ R
+, are timestamps, with ti < ti+1

for i = 0, 1, . . . , n− 1. A trajectory segment is a straight line

between two consecutive tuples (xi, yi, ti), (xi+1, yi+1, ti+1)
of the same trajectory, where i ∈ N0. A subtrajectory of

length m of a trajectory T = (x0, y0, t0), . . . , (xn, yn, tn),
is a subsequence T ′ = (xi, yi, ti), . . . , (xm+i, ym+i, tm+i),
of m contiguous trajectory segments, where i ≥ 0,m < n. A

single trajectory segment is a subtrajectory of length one.

For each moving object we maintain a streaming window.

A streaming window of size n is the time-ordered sequence

of the latest n positions of the moving object. The length of

the window depends on the duration t specified by the query

and the frequency of position updates from a moving object.

A streaming window is updated by adding the most recent

position when a new update record arrives and deleting the

least recent point when necessary. For example, in applications

like trajectory simplification, records can be added (without

any deletion) as long as they satisfy the query condition.

We consider two types of queries. A region query (rq, t)
requests the dwell region R, each point of which is within a

distance rq from the trajectory for time at least t. A decision
query rq asks whether the positions of a given object in the

streaming window fall within distance rq from any point in

R
2. This query returns a Boolean value and the center of the

smallest enclosing circle. Decision queries are important for

applications like trajectory simplification [2].

Consider circles of radius rq centered at each point in a

window S. The intersection of these circles is precisely the

dwell region R, since all points of in streaming window

are within rq from any point in R. We hence consider two

approaches. The first maintains the overlap region of a set

of circles centered at the object positions in S . The other

computes SECS . Finding SECS suffices to answer decision

queries, but not region queries.

A naive approach to maintaining the overlap between circles

is to re-compute their intersections whenever a point is inserted

into or deleted from the window. However, to the best of

our knowledge, there exists no efficient on-line algorithm to

maintain intersection of circles. Additions can be made fast,

but a deletion is always O(n) making the update time O(n).
Our proposed method is based on approximating the SEC with

a polygon of k sides, and calculating the upper and lower

bounds of the radius to answer decision queries. We allow the

user to make the lower bound arbitrarily close to the actual

radius of the SEC by tuning the value of k.

Computing SECS gives only the center of SECS , not the

entire dwell region R. To answer region queries, we use

efficient pruning to avoid unnecessary computation. First, no

dwell region R can exist if the lower bound for the radius

of SECS exceeds rq . In this case, we do not compute the

intersecting region. When the upper bound is less than rq , we

compute an overestimate R+ and an underestimate R− for the

actual region R. We also identify critical points that are more

likely to affect the shape of the region. We can efficiently

maintain approximations by considering only critical points.

Details are described in Section V. We start with some basic

definitions.

An n dimensional vector is an n-tuple, (v1, v2, . . . , vn),
where vi is its component along the ith axis. We use an

overhead arrow to distinguish a vector, as in �a. The magnitude
|v| of a vector �v is denoted as |v| =

√
v21 + v22 + . . .+ v2n.

The dot product of two vectors �a and �b is defined as �a ·�b =
|a||b| cos θ =

∑n
i=1 aibi. If �b, is a unit vector then the dot

product |a| cos θ is the length of �a in the direction of �b, also

called the scalar projection of a onto b.
If k vectors are uniformly spaced around a circle, the angle

between any two adjacent vectors is 2π
k . Figure 2 shows (a)

a Euclidean vector, (b) scalar projection of �a onto �b and (c)

eight uniformly spaced vectors around a circle. In a Euclidean

space each side of a straight line is called a half space. Given

the straight line ax0 + by0 = c, (x0, y0) ∈ R
2, one half space

is H = {(x, y) : ax+ by ≤ c}.
III. RELATED WORK

Trajectories have received much attention recently. The

work in [3] considers pattern queries on trajectories, while

[4] considers similarity queries for trajecotries. There has

also been recent work on finding semantic information from

trajectory data [5][6][7]. These works focus on identifying

249249249

bbc

yy

dd d2

�x x
d1

d4

d3

�y

d4

d ad

bbc

yy

dd d2

�x x
d1

d4

d3

�y

d4

d ad

(a) (b) (c)

Fig. 3. (a) MBR of a set of points (b) inner and outer circles (c) better estimation with higher number of directions.

Algorithm 1 MinDisk(S , B)

1: S : a set of points, {p1, p2, . . . , pn}.
2: B : may contain at most 3 points, T ⊂ S .

3: P = B (P : set of points seen so far.)

4: T = B (T : current basis of P .)

5: D = SECB
6: for each pi ∈ S −B do
7: P = P ∪ {pi}
8: if pi is not inside D then
9: T = MinDisk(P , basis(T ∪ {pi}))

10: D = SECT
11: end if
12: end for
13: return T ;

regions where objects have remained for a while, but none

of these consider identifying dwell regions. These works also

do not consider streaming environments. Their approaches are

not readily adaptible to our context.

There has also been work on identifying group behaviors,

such as flock patterns [8], convoy detection [9], identifying

density of moving objects [10], etc. However, in this paper

we consider individual trajectories instead of group behavior.

The first deterministic linear time algorithm for the smallest

enclosing circle appeared in [11]. Several improvements were

presented in [12][13][14]. These methods are based on linear

programming techniques and involve expensive computations,

such as solving systems of polynomials. None of these meth-

ods was designed for streaming environments, and require

repeating the computation for every addition/deletion. Welzl

proposed a simple-to-implement randomized algorithm [15]

with expected linear run-time. It recursively finds three points

on the boundary of the circle. The algorithm can handle

addition in constant time but deletion has expected linear

time. However, the worst case runtime of Welzl’s algorithm

is quadratic. We will adapt Welzl’s algorithm for computing

SECS for a small set of points S .

Algorithm 1 describes the pseudo code of Welzl’s algorithm.

Given a set of points S = {p1, p2, . . . , pn} there is a set, B,

of at most three points that determines SECS , e.g., SECB =
SECS . B is called the basis of S . Computation of basis

of a set of at most 4 points can be done in constant time.

The algorithm is started with the call MinDisk(S , B) where

B = basis(p1, p2, p3) and the initial circle D = SECB. The

remaining points in S are tested one by one whether they are

inside D. If the next point pi is inside D then D is the smallest

enclosing circle of the set of points seen so far, P . Otherwise,

a recursive call (line 8) is made to compute SECP . This time

the basis is basis(B ∪ {pi}). When this recursive call returns

we have the basis and the smallest enclosing circle of points

seen so far.

Several heuristics were proposed in [16] for computing

circle intersections. However, these heuristics are not useful

in environments where points are being added/deleted dynam-

ically. This approach maintains an R-tree [17] for all the static
sites and computes intersection of circles only when a moving

object is out of the safe zone. The computation requires

traversing the R-tree and making a heap of R-tree entries.

With streaming data, the R-tree must be updated and traversed,

building the heap for every addition/deletion. Moreover, we

will show that our proposed data structures render three of

the heuristics in [16] unnecessary.

IV. DATA STRUCTURES & ALGORITHMS

We present our algorithms and data structures for approxi-

mating the smallest enclosing circle SECS . We also show how

to bound the radius of SECS above and below using circles

constructed from the minimum bounding polygon for S . Some

symbols used in this paper are listed in table I.

A. Minimum Bounding Polygons

Figure 3(a) shows a set of points and their minimum bound-

ing rectangle (MBR). MBRs indicate the maximum extents of

a set of objects or points S . In the 2-D case, we can construct

an MBR for S as follows. We take four vectors �d1, �d2, �d3, �d4,

spaced 90◦ apart, and four lines ei ⊥ �di, 1 ≤ i ≤ 4. Now we

sweep each ei in the direction of �di, in from infinity towards

S . We stop when each ei touches a point pi ∈ S . The lines

ei form the edges of the MBR. We denote the set of vertices

of the MBR as V .

We can generalize this idea to get tighter upper

and lower bounds by using k uniformly spaced vectors
�d1, �d2, . . . , �dk, k > 4. Figure 3(c) shows eight uniformly

250250250

d3

d2

d1

2�

�
 f

o

h

h1 f1

h2
f2

Fig. 4. Computing S′. Although f is a frontier point in the direction of �d1,
it may not lie on the convex hull. Point h is farther from the center of SECS
than f . We include all points whose projections exceed |Of1| cos

(
π
k

)
.

spaced vectors and the corresponding bounding convex oc-

tagon. As before, the lines ei will be swept inwards from

infinity until they touch points pi ∈ S .

Definition 1: The set F = {pi ∈ S} which the lines ei
touch is the set of the frontier points of S in the directions �di.

We denote the k-polygon bounding the set S by MBP(S).
Clearly, if V is the set of vertices of MBP(S), then V �⊂ S .

However, F ⊂ S by definition.

B. Queries Using SECS and MBP(S)
Let rSECS be the radius of SECS . We can now get up-

per and lower bounds for rSECS as follows. The smallest

circle SECV enclosing the set V of vertices of MBP(S)
is guaranteed to contain all the points of S , and yields an

overestimate for SECS (see Figure 3(b)). Similarly, SECF ,

the smallest circle enclosing all the frontier points of S yields

an underestimate for SECS .

Definition 2: Let the bounding k-polygon MBP(S) for a

set of points S , have vertex set V and frontier F . We define

the under-circle for S as 	SECS
 Δ
= SECF and the over-circle

for S as �SECS� Δ
= SECV . (See Figure 3.)

Let r�SECS� and r�SECS� of 	SECS
, and �SECS�, respec-

tively. Clearly, r�SECS� ≤ rSECS ≤ r�SECS�. We will show

that the distance from the center of 	SECS
 to any point in

S will be at most (1 +O(1
k2))rin.

r�SECS� and r�SECS� are useful in optimizing decision

queries. The query response can be YES or NO whenever

rq > r�SECS� or rq < r�SECS� respectively.

C. Constructing SECS

If neither rq > r�SECS� nor rq < r�SECS� holds, we must

construct SECS explicitly. We now show how to construct this

with minimal overhead.

Definition 3: The convex hull C(S) of a given set S is the

minimal convex region enclosing S . H(S) is the set of points

defining the boundary of C(S).
In our case, we know that the convex hull of S is a convex

polygon whose vertices, H(S), are all in S .

Lemma 1: If C(S) is the convex hull for a set S , then

SECH(S) = SECS .

Proof: By definition, SECH(S) is the minimal circle enclosing

C(S), which is the minimal convex region enclosing S . �
We proceed as follows. Clearly, C(S) ⊆ MBP(S), since

MBP(S) may include dead space beyond C(S). We identify

a subset S ′ ⊆ S such that H(S) ⊆ S ′. We will find SECS′ ,
which will give us SECH(S), and consequently SECS . This

approach is efficient, since we expect S ′ to be much smaller

than S .

D. The Algorithm

The quality of the algorithm depends on k, the number of

uniformly spaced vectors used. The algorithm maintains the

frontier point corresponding to each vector. We now show how

to identify frontier points, and how to update them dynamically

as points are added to and deleted from the window S .

Each point p ∈ S defines a vector. To identify a frontier

point lying on an edge of MBP(S), we identify a point whose

projection onto the corresponding unit vector has maximum

length. We calculate the dot product of each of the k vectors

with each point of S , and use the point with maximum

projection length for each of the edges. The algorithm works

as follows.

Select k unit vectors �d1, �d2, . . . , �dk uniformly spaced around

a circle. For each �di, maintain the point p in the current set that

maximizes �di ·�p, which will be the point p furthest in direction

of �di. This requires computing n dot products and building a

max heap with the values of these dot products. There is one

max heap for each vector. The point at the root of a heap is the

one that has maximum scalar projection on the corresponding

vector. Calculating the dot products is O(n) for each vector

and is performed only once, the first time a moving object

reaches the required window size. Heap building is also done

at the same time and its complexity is O(n log n). Addition

(deletion) of a point from the streaming window requires one

addition (deletion) from the heap. This can be done in O(logn)
time per unit vector i.e. O(k log n) time for k vectors. The

set F consists of the points at the heap roots. The set V is

computed from the intersection of adjacent edges of MBP(S).
Algorithm 2 describes the initial processing. The dot product

between each vector and each point is calculated in line 7.

One heap is built with the values of dot products for each

vector. The heapify operation at line 9 builds the heap, which

takes O(n log n). The dot product calculation for each vector

in lines 6—8 is O(n). As a result, the complexity of this pre-

processing for k vectors is O(kn+ kn log n) = O(kn log n).
Note that a particular point will be at different locations in

different heaps because of different dot product values with

different vectors. If we want to access a particular point pj
and/or its dot product �di · �pj of with the vector �di we need to

251251251

S A set of 2D points (possibly from the streaming window).
SECS Smallest Enclosing Circle of a set S of points
MBP(S) Minimum k-polygon bounding SECS
F Frontier points S on the edges of MBP(S).
r Radius of SECS .
rin Radius of �SECS�, the inner circle.
rout Radius of �SECS�, the outer circle.
H Half space.
r(S) Radius of the SECS .
hi Heap corresponding to unit vector di

TABLE I

SYMBOLS USED IN THIS PAPER.

Algorithm 2 buildHeaps(S, H , d)

1: S : streaming window, {p1, p2, . . . , pn}.
2: H : k heaps, {h1, h2, . . . , hk}. One for each direction

being tracked.

3: d : k directions, {d1, d2, . . . , dk}.
4:

5: for each di in d do
6: for each point pj in S do
7: hi[j] = di.pj
8: end for
9: heapify(hi)

10: end for

know where is this value in the heap hi. For example we need

to access a point when if it is to be deleted. To achieve this we

also build a Lookup Table (LT) while building these heaps.

The lookup table contains the location of a point in every heap.

For example LT [�di][�pj] contains a pointer to �di · �pj in hi.

Algorithm 3 update(S, H , d, p)

1: S : streaming window, {p1, p2, . . . , pn}.
2: H : k heaps, {h1, h2, . . . , hk}. One for each direction

being tracked.

3: d : k directions, {d1, d2, . . . , dk}.
4: p : next point to be added in S.

5:

6: for each di in d do
7: delete LT[di][p1] from hi

8: val = di.p
9: insert val into hi

10: end for
11: delete p1 from S
12: add p to the end of S

After building the heaps we must update them when insert-

ing and deleting points from the S , Algorithm 3 describes the

update step. At each update step, a point p is added to the

window S as the most recent point, and the least recent point,

p1, is deleted from S . This requires deleting the record for to

p1 from each heap (LT is used). Next, the dot product between

p and each vector �di is calculated and the result inserted in

the corresponding heap. Insertion and deletion in a heap being

O(log n), update is a O(k log n) operation.

o
 x1 x2

rq

a

b

c1
rSEC

Fig. 5. The shaded region is R−.

p1

p4

Cp4

p4

p5
a

Cp5

a

p2

p3

p1

p5

Cp5p5

a

Cp

p2
p3

p4

Cp4

p2

(a) (b)

Fig. 6. Showing the importance of points near the boundary to compute the
dwell region R when the are at (a) the same angular position (b) a different
angular position.

V. QUERY EVALUATION

We have described the data structures used to maintain

the upper and lower bounds and to approximate the radius

of SECS . We now show how to evaluate queries. We first

consider decision queries, which ask whether or not the current

window satisfies the query condition.

As we have seen, we maintain k heaps hi corresponding

to the k vectors �di. The root of heap hi is a frontier point,

since it maximizes the extent of MBP(S) in �di’s direction.

Let the bounding k-polygon MBP(S) for S have vertices V
and frontier points F .

To get r�SECS� and r�SECS�, we use Welzl’s algorithm

to compute SECV and SECF (see Definition 2). As already

noted, r�SECS� and r�SECS� can be used to answer decision

queries without actually computing SECS . However, when

r�SECS� and r�SECS� are insufficient for this purpose (when

rq < r�SECS� and rq > r�SECS�) we must compute SECS .

A. Efficient Computation of SECS
We now show how to compute SECS using only a small

subset S′ ⊂ S of points. Our central idea is to identify a set

of points S ′ that includes all points on the convex hull C(S).
In Figure 4, let O be the center of SECS , and consider the

angular sector between vectors �d1 and �d2. Let f be the point

in this sector with the maximal projection on to �d1, so f is

the frontier point in the direction of �d1.

252252252

0 5 10 15 20
1

1.1

1.2

1.3

1.4

k

R
+
/R

−

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

f(x) = cos(x)

f(x) = 1−x2/2

(a) (b)

Fig. 7. Trigonometric functions. (a) The ratio R+

R− = k tan θ
π

as k changes

(b)Approximation of cosx with 1− x2

2!
.

However, f need not be the furthest point in this sector from

O. As Figure 4 shows, there could be a non-frontier point h
in this sector such that |Oh| > |Of |, but if we consider their

projections h1, f1 on �d1, we have |Oh1| < |Of1|. It is quite

likely that h lies on the convex hull C(S), but we would miss

it if we only looked at projections on the vectors �di.
Our challenge is to include all such points h in S ′. We first

note that this situation arises because the angular distance of f
from �d1 is less than that of h. (If we consider their projections

h2, f2 on to �d2, we find |Oh2| > |Of2|.) We first observe that

the projection of f on �d1 will be largest when f lies on �d1.

Let the line Oh bisect the sector between �d1 and �d2. (We

make this choice since it also minimizes the projection of h
on both �d1 and �d2, and maximizes the likelihood that point h
will not be a frontier point.) Let f lie on �d1 and rotate the line

Of so that it coincides with the bisector Oh. The projection

of f on �d1 will now be λf = |Of | cos (π
k

)
. By selecting all

points whose projections on �d1 are of length at least λf , we

are sure to get all points in the half-sector that are at least as

far from the center as f is, and remain candidates for C(S).
To get S ′, we proceed as follows:

1) Place all frontier points fi ∈ F into S ′.
2) Let fi be the frontier point in the direction of vector �di,

and let its projection on �di be λfi Place into S ′ all points

in the half-sector between �di and �di+1 whose projections

on �di are larger than λfi cos
(
π
k

)
.

We can now state the following result.

Theorem 1: SECS = SECS′ .
Proof: Since the convex hull C(S) is the maximal convex

region enclosing S , all frontier points fi ∈ F are in C(S). Step

1) above places F into S ′. However, not all points in C(S)
are in F . Convexity of C(S) ensures that such points must be

farther from the center of SECS than the frontier points. Step

2) above places all such points into S ′. �
By Theorem 1, we need consider only points in S ′, which

is much smaller than S . Queries now run much faster.

B. Dwell Region Queries

As we have seen, the dwell region R is the intersection of

all the circles of radius rq centered at each point of S . When

rSECS = rq , the circles centered at the points on the perimeter

A

C
D �

A

CD �
D �

B
B

() (b)(a) (b)

Fig. 8. Replacing the bounding arcs of the dwell region with straight lines.
(a) actual region (b) bounding arcs replaced with straight lines.

of SECS will share only its center. In that case, R will consist

of only one point, namely, the center of SECS .

Next, consider the case when rq ≥ rSECS . Let Cx be a

circle of radius rq centered at a point x on the circumference

of SECS . Consider the region R− =
⋂

x Cx. (See shaded

region in Figure 5.) If we move the center of Cx along

the circumference of SECS , the intersection of the resulting

circles will be a disk R− of radius δ = rq − rSECS centered

at the center of SECS .

We can also calculate a region, R+, that contains R. The

intuition behind our method is as follows. Suppose we have

a partially computed region Rm, which is the intersection of

some m circles. To get R, we must compute the intersection

of remaining |S| −m circles with Rm. Now, if any of these

circles fully contains Rm, then it will not affect Rm at all.

Our goal is to use those points first that are more likely to

intersect Rm, since the remaining circles are less likely to

have an effect on Rm.

Intuitively, points closer to the boundary of SECS are more

likely to affect the region Rm, as we will illustrate through

an example. Our reasoning is similar to that used to prove

Lemma 3 of [16].

Figure 6(a) shows SECS for som set of points S . Assume

that points p1, p2, p3 are on the boundary and c is the center

of the SECS . The partial region Rm appears near the center

as the intersection of three circles of radius rq centered at

p1, p2, p3, repectively. Consider two other points p4, p5 inside

SECS lying on the same radial vector �a. Let p5 be closer to

the center of SECS than p4, and let Cp4
and Cp5

be circles

of radius rq centered at p4, p5 respectively. The minimum

distances from the center c to any point on Cp4
and Cp5

are

δ1 = rq−|cp4| and δ2 = rq−|cp5| respectively. Since δ1 < δ2,

Cp5 is more likely to fully include Rm than Cp4 .

This illustration shows the importance of points closer to

the boundary that are at a same angular position in the circle.

However, if p4 and p5 had different angular position then p5
might have trimmed R′ more than p4, Figure 6(b). Neverthe-

less, if the points are uniformly distributed, considering them

in order from the boundary towards the center will still give

us a better chance to get points which are more likely to affect

the shape of R. Our experimental evaluation shows that when

253253253

O

B

D

C

A
�

rSEC
�

�

Fig. 9. Approximating R+.

C B

di-1

di+1

di
O ��k

��k

H

G F

E

D A

2��k

2��k
��k

��k

X

Y

f1

f2 f3

Fig. 10. Proving Theorem 2. MBP(S) = ABCDEFGH.

the answer to the decision query is “yes”, points are fairly

uniformly distributed around the circle and thus the above

heuristic applies in practice.

To calculate a region R+ ⊇ R, it suffices to consider points

in a subset of S . Our goal is to make this subset as small as

possible, and make R+ as close to R as possible. Towards

this goal, we select points closer to the boundary of SECS
first. The heap data structures we maintain can be used to

select points that are closer to the boundary of the circle. If we

consider only the k points that make up the frontier points (the

heap roots), we will get an intersecting region that contains

R. If a tighter approximation is required (at the cost of more

CPU time) points in the set S ′ (figure 4) can be considered.

[16] describes five heuristics to discard circles which are not

going to affect the intersecting region. Heuristics 2, 3, 5, are

used to discard circles that do not have a common intersecting

region. For our case since we want to find the intersection

only when every circle shares the intersecting region we do

not need to consider heuristics 2, 3, 5. Heuristics 1, 4, are

used to discard circles that fully contain the intersecting region

computed so far and so are not going to affect the region. By

considering points in the above mentioned order and applying

heuristics 1 and 4 from [16] we can further avoid computing

unnecessary circle intersections.

The correctness of the algorithm for the decision query

follows from 1) the fact that we actually compute the SEC

when upper/lower bounds cannot decide the query answer and

2) theorem 1.

C. Goodness of the Approximation
To measure the goodness of the region approximations, we

will attempt to derive the ratio R+/R−. The area of the

circular region R− is πδ2, where δ = (rq − rSECS). We

calculate the area of R+ in the following ideal scenario. We

assume R+ is calculated using k frontier points at the heap

roots, so that there are k circular arcs defining the boundary of

R+. We further assume that the arc lengths are equal. Figure

8(a) shows R+ with eight bounding arcs. Each of the sectors

in this figure is equivalent to the sector ABDC in Figure 9.

We obtain the area of this sector as follows.
We begin by noting that |BC| = 2δ sin(θ), and further that

α = arcsin

(|BC|
2rSECS

)
= arcsin

(
δ sin(θ)

rSECS

)
. (1)

Standard formulas yield the area of the circular segment

BCDB =
r2SECS

2
(2α− sin(2α)) .

Now, applying elementary trigonometry and simplifying,

ABDC = ABCA+ BCDB

=
1

4
δ2 sin(2θ) +

r2SECS
2

(2α− sin(2α)) .

The combined area of all sectors in Figure 8 is k times the

above area. Hence,

R+

R− =

k

(
1
4δ

2 sin(2θ) +
r2SECS

2 (2α− sin(2α))

)

πδ2

=
k

π

(
1

4
sin(2θ) +

(rSECS

δ

)2
(
α− 1

2
sin(2α)

))

We can now use the value of α in Equation 1.
While the above analysis gives the exact equation of the

ratio, we do the following estimation to better understand how

it changes with k. Consider the area CADB where C is the

center of the SECS . Recall that the centers of the bounding

arcs are on the boundary of SECS . The closest point from

C on arc AB is D, with |CD| = δ. The bounding arcs

are expected to be very small and hence these arcs can be

replaced with straight lines at distance δ from C. The result

is a polygon with k boundary lines. Figure 8(b) shows the

polygon with eight lines which replaces the area of figure

8(a). The computation of R+/R− is given below-

∠ACD =
1

2
∠ACB = π/k = θ

AD = δ tan θ

� CAD =
1

2
AD × CD =

1

2
δ2 tan θ

⇒� CAB = δ2 tan θ

∴ R
+

R− =
kδ2 tan θ

πδ2

=
k tan θ

π

254254254

Location Time of collection Number of
trajectories

Number of spatial
points

Sampling
frequency

Description

Beijing, China Apr 2007 to Aug 2009 165 24778552 2-5 sec GeoLife Data:
Starkey, Oregon, USA April to August of 1993-1996 253 >287,000 1hr DeerElk Data:

TABLE II

DESCRIPTION OF REAL DATA SET.

4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

3.5

4x 10
−5

vectors, k

av
g

tim
e(

se
c)

 fo
r

ea
ch

 u
pd

at
e n=4k, r

q
=1.0mi

n=4k, r
q
=0.8mi

n=4k, r
q
=0.6mi

4 6 8 10 12 14
0

1

2

3

4

5

6x 10
−5

vectors, k

av
g

tim
e(

se
c)

 fo
r

ea
ch

 u
pd

at
e n=1k, r

q
=1.5mi

n=1k, r
q
=1.0mi

n=1k, r
q
=0.5mi

(a)GeoLife Data (b)ElkDeer Data

Fig. 11. Average time required for each update of the data structures and evaluating the query for a moving object.

We want this ratio to be as close to 1.0 as possible. Figure

7(a) shows how this ratio decreases towards 1.0 as k increases.

As we increase k linearly, tan θ decreases at a faster rate than

the rate of increase of k. This results in decreasing the ratio

with the increase of k.

Finally, we prove that rSECS ≈ (1 +O(1/k2))rSECF . This

means that we can get an arbitrarily good approximation of

the radius by maintaining just a constant number k of direction

vectors, in O(log n) time per update.

Theorem 2: Let S be the current set of points in the

streaming window, and F be the set of frontier points. Then,

rSECS ≤ rSECF (1 +O(1/k2)).

Proof: Figure 10 shows a set of points S , their minimum

bounding k-polygon MBP(S) = ABCDEFGH, the set F of

frontier points in the directions of vectors �d1, �d2, . . ., as well as

the frontier circle SECF defined by the frontier points f1, f2,

and f3. Let O be the center of SECF . Clearly, |Of1| = rSECF .

Let OX bisect the angle between �di and �di+1, and OY bisect

the angle between �di and �di−1.

The sector between the bisectors OX and OY is fully con-

tained in the isosceles triangle defined by the lines OX , OY ,

and AH (extended as needed). From elementary trigonometry,

all points in this isosceles triangle, and hence all points in the

sector of MBP(S) defined by OX and OY lie within distance

|Of1|/ cos
(
π
k

)
= rSECF / cos

(
π
k

)
of the point O.

Since all points in S lie within the polygon MBP(S), all

points pi ∈ S in this sector are within distance rSECF / cos
(
π
k

)
of the point O. Clearly, this means that we can include all of

S in a circle of this radius.

Hence, rSECS ≤ rSECF / cos
(
π
k

)
. We can now use a Taylor

series expansion to obtain cos
(
π
k

)
= 1 − π2

2k2 + O
(

π4

k4

)
, so

that cos
(
π
k

)
= 1−O

(
1
k2

)
as

(
π
k

)→ 0, that is, as k increases.

We now have rSECS ≤ rSECF
(
1 +O

(
1
k2

))
. �

VI. EXPERIMENTS

All the experiments were run in an Intel Xeon 3.0GHz pro-

cessor running Linux 2.6.18 with 8GB of main memory. In our

experiments we use two real datasets. The GeoLife dataset [18]

contains public activity data (i.e. shopping, dining, sightseeing,

hiking, cycling etc.) in Beijing, China. The DeerElk data

contains the trajectories of deer, elk and cattle in the Starkey

Experimental Forest and Range in Oregon, USA [19]. Table

II provides the description of the real datasets. Different set of

parameter (window size, query radius, and number of vectors)

values were considered for different datasets as indicated in

the plots.

First, we examine the average time required to update

the data structure as the number of vectors changes. The

experimental results appear in figure 11. As expected, with

the increase of the number vectors the time required for each

update increases. However the rate of increase is very slow,

e.g., using up to 10 vectors the update process is efficient

enough to handle orders of hundreds of thousands of moving

objects. Since the approximated radius is a factor of 1+O(1
k2),

using k = 10 can approximate the radius within order of 1%
of the actual radius.

To depict the pruning power of our data structures, next, we

compute the fraction of points used by our method to evaluate

the query when the upper and lower bounds are not enough

to answer the query. As seen in figure 12, while the number

of vectors increases, the fraction of points considered falls

sharply. For example with 10 vectors we need to consider

only 10% of the window size.

255255255

4 6 8 10 12 14
5

10

15

20

25

30

35

vectors, k

%
 p

oi
nt

s
le

ft
af

te
r

fil
te

rin
g

n=4k, r
q
=1.0mi

n=4k, r
q
=0.8mi

n=4k, r
q
=0.6mi

4 6 8 10 12 14
0

2

4

6

8

vectors, k

%
 p

oi
nt

s
le

ft
af

te
r f

ilt
er

in
g

n=1k, r
q
=1.5mi

n=1k, r
q
=1.0mi

n=1k, r
q
=0.5mi

(a)GeoLife Data (b)ElkDeer Data

Fig. 12. Fraction of points selected to calculate actual SEC.

4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

vectors, k

%
 u

nc
on

fir
m

ed
 r

es
ul

ts

n=4k, r
q
=1.0mi

n=4k, r
q
=0.8mi

n=4k, r
q
=0.6mi

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

vectors, k

%
 u

nc
on

fir
m

ed
 r

es
ul

ts

n=1k, r
q
=1.5mi

n=1k, r
q
=1.0mi

n=1k, r
q
=0.5mi

(a)GeoLife Data (b)ElkDeer Data

Fig. 13. Fraction of results where actual SEC has to be computed (e.g., heuristics do not answer the query).

4k, 1.0mi 0.525011 0.514656 0.495247 0.475605
4k, 0.8mi 0.523428 0.516502 0.486613 0.470082
4k, 0.6mi 0.522052 0.498885 0.479042 0.461957

TABLE III

RESULTS OF CHI-SQUARE TEST.

Figure 13 shows the percent of unconfirmed results as

the number of vectors changes. The fraction of unconfirmed

results decreases as the number of vectors increases. As a

matter of fact, the query is actually evaluated less than 2%
of the times, while in the rest it is answered through the

heuristics.

Figure 14 depicts the percentage of difference between the

actual radius of the SEC and the upper and lower bounds.

While the lower bound is always very close to the actual radius

the upper bound might be higher.

Finally, we examined the distribution of points around

the circle when there is a circle of desired radius. We do

Chi-square test of the angular position of the points near

the perimeter of the circle. These are the points in the set

S ′. The null hypothesis for the Chi-square test is “Points

are uniformly distributed around the circle”. Table III shows

the p-values of Chi-square test. A p-value of 0.05 or less

would mean that there is a significant difference between the

observed distribution and the theoretical (uniform) distribution.

Its equivalent to say that with 95% confidence interval a

significant difference is observed. In that case we could reject

the null hypothesis. As the experimental results show, p-values

are around 0.5−0.6, i.e., we cannot reject the null hypothesis

with 95% confidence interval.

VII. CONCLUSIONS

This paper considers a novel problem for moving objects:

real time identification of moving objects that are staying

within a certain distance from a (unspecified) dwell region,

for at least a certain duration. The main contribution of our

work is to propose online method to evaluate the decision

query in logarithmic time. Our proposed methods lend to

approximating the radius of the smallest enclosing circle of

a given subtrajectory within user defined arbitrary factor and

efficient approximation of the dwell region. Our experimental

evaluation shows that our algorithm is capable of evaluating

the query condition on hundreds of thousands of moving

objects per second on average.

256256256

7
n=4k r =1 0mi

6

r ou
t)

n=4k, rq=1.0mi
n=4k, rq=0.8mi

4

5

%
 d

iff
(r

, n=4k, rq=0.6mi

% diff(r r)

3

4

n
),

% %��diff(r,�rin)
%�diff(r,�rout)

2
di

ff(
r,

r i

0

1%

4 6 8 10 12 140
vectors, k

15
n 1k r 1 5mi

r ou
t)

n=1k, rq=1.5mi
n=1k, rq=1.0mi

10

%
 d

iff
(r

, q
n=1k, rq=0.5mi

% diff(r r)

n
),

% %��diff(r,�rin)
%�diff(r,�rout)

5

di
ff(

r,
r i

0

%

4 6 8 10 12 140
vectors, k

(a)GeoLife Data (b)ElkDeer Data

Fig. 14. Comparison between rq(= r), r�SECS�(= rin) and r�SECS�(= rout).

VIII. ACKNOWLEDGMENTS

We would like to thank Neal E. Young and Claire Mathieu

for their useful suggestion and comments.

REFERENCES

[1] D. Fortin, H. L. Beyer, M. S. Boyce, D. W. Smith, T. Duchesne, and
J. S. Mao, “Wolves influence elk movements: behavior shapes a trophic
cascade in yellowstone national park,” in Ecological Society of America,
vol. 86, 2005, pp. 1320–1330.

[2] M. Buchin, A. Driemel, M. van Kreveldz, and V. Sacristn, “An algo-
rithmic framework for segmenting trajectories based on spatio-temporal
criteria,” in SIGSPATIAL, November 2010.

[3] M. R. Vieira, P. Bakalov, and V. Tsotras, “Querying trajectories using
flexible patterns,” in EDBT, 2010, pp. 406–417.

[4] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: A partition-
and-group framework,” in ACM SIGMOD, 2007, pp. 593–604.

[5] X. Cao, G. Cong, and C. S. Jensen, “Mining significant semantic
locations from gps trajectory,” in VLDB, 2010, pp. 1009–1020.

[6] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” in WWW, 2009.

[7] M. R. Uddin, C. V. Ravishankar, and V. J. Tsotras, “Finding regions of
interest from trajectory data,” in MDM, 2011.

[8] M. R. Vieira, P. Bakalov, and V. Tsotras, “On-line discovery of flock
patterns in spatio-temporal data,” in ACM GIS, 2009, pp. 286–295.

[9] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery
of convoys in trajectory databases,” in PVLDB, vol. 1, no. 1, 2008, pp.
1068–1080.

[10] J. Ni and C. V. Ravishankar, “Pointwise-dense region queries in spatio-
temporal databases,” in IEEE ICDE, 2007, pp. 1066–1075.

[11] N. Megiddo, “Linear-time algorithms for linear programming in R
3 and

related problems,” in FOCS, Nov 1982, pp. 329 – 338.
[12] K. L. Clarkson, “Las vegas algorithms for linear and integer program-

ming when the dimension is small.” in JACM, vol. 42, no. 2, March
1995.

[13] M. E. Dyer and A. M. Frieze, “A randomized algorithm for fixed-
dimensional linear programming.” in Mathematical Programming,
vol. 44, no. 1-3, May 1989.

[14] R. Seidel, “Linear programming and convex hulls made easy.” in sixth
annual Symposium on Computational Geometry, 1990.

[15] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in New Re-
sults and New Trends in Computer Science, Lecture Notes in Computer
Science, vol. 555, 1991, pp. 359–370.

[16] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Multi-
guarded safe zone: An effective technique to monitor moving circular
range queries,” in ICDE, March 2010, pp. 189 – 200.

[17] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in ACM SIGMOD, 1984, pp. 47–57.

[18] http://research.microsoft.com/en-us/projects/geolife/.
[19] http://www.fs.fed.us/pnw/starkey/.

257257257

