
The Skyline Operator∗

Stephan B¨orzsönyi1 Donald Kossmann2 Konrad Stocker1

1Universität Passau 2Technische Universit¨at München
D-94030 Passau, Germany D-81667 M¨unchen, Germany

〈lastname〉@db.fmi.uni-passau.de kossmann@in.tum.de

Paper #235

Abstract

We propose to extend database systems by aSkylineoperation. This operation filters out a set of
interestingpoints from a potentially large set of data points. A point is interesting if it is not dominated
by any other point. For example, a hotel might be interesting for somebody traveling to Nassau if no
other hotel is both cheaper and closer to the beach. We show how SQL can be extended to pose Skyline
queries, present and evaluate alternative algorithms to implement theSkylineoperation, and show how
this operation can be combined with other database operations (e.g.,join andTopN).

1 Introduction

Suppose you are going on holiday to Nassau (Bahamas) and you are looking for a hotel that is cheap and
close to the beach. Unfortunately, these two goals are complementary as the hotels near the beach tend to
be more expensive. The database system at your travel agents’ is unable to decide which hotel is best for
you, but it can at least present you allinterestinghotels. Interesting are all hotels that are not worse than
any other hotel in both dimensions. We call this set of interesting hotels theSkyline. From the Skyline, you
can now make your final decision, thereby weighing your personal preferences for price and distance to the
beach.

Computing the Skyline is known as the maximum vector problem [KLP75, PS85]. We use the term
Skyline because of its graphical representation (see below). More formally, the Skyline is defined as those
points which are not dominated by any other point. A point dominates another point if it is as good or better
in all dimensions and better in at least one dimension. For example, a hotel withprice = $50 anddistance
= 0.8 miles dominates a hotel withprice = $100 anddistance= 1.0 miles.

Figure 1 shows the Skyline of cheap hotels near the beach for a sample set of hotels. A travel agency
is one application for which a Skyline operation would be useful. Clearly, many other applications in the
area of decision support can be found; e.g., finding good salespersons which have low salary. A Skyline
operation can also be very useful for database visualization. The Skyline of Manhattan, for instance, can be
computed as the set of buildings which are high and close to the Hudson river. In other words, a building
dominates another building if it is higher, closer to the river, and has the samex position (buildings next to
each other can both be seen). This is shown in Figure 2.

One of the nice properties of the Skyline of a setM is that for any monotone scoring functionM → R,
if p ∈ M maximizes that scoring function, thenp is in the Skyline. In other words, no matter how you
weigh your personal preferences towards price and distance of hotels, you will find your favorite hotel in
the Skyline. In addition, for every pointp in the Skyline, there exists a monotone scoring function such
thatp maximizes that scoring function. In other words, the Skyline does not contain any hotels which are
nobody’s favorite.

As mentioned earlier, the Skyline operation has been studied in previous work [KLP75, PS85]. That
work, however, assumes that the whole set of points fits into memory and that this set is not the result of
a query (e.g., a join). In this work, we show how the Skyline operation can be integrated into a database

∗This research is supported by the German National Research Foundation under contract DFG Ke 401/7-1

Administrator
铅笔

Administrator
铅笔

0.1

0.5

1

1.5

2

50 100 150 200

di
st

an
ce

 to
 b

ea
ch

 [m
ile

s]

price [$]

Figure 1: Skyline of Hotels Figure 2: Skyline of Manhattan

system. We will first describe possible SQL extensions in order to specify Skyline queries. Then, we will
present and evaluate alternative algorithms to compute the Skyline; it will become clear that the original
algorithm of [KLP75, PS85] has terrible performance in the database context. We will also briefly discuss
how standard index structures such as B-trees and R-trees can be exploited to evaluate Skyline queries.
In addition, we will show how the Skyline operation can interact with other query operations; e.g., joins,
group-by, and TopN . At the end, we will discuss related work, give conclusions, and make suggestions for
future work.

2 SQL Extensions

In order to specify Skyline queries, we propose to extend SQL’sSELECTstatement by an optionalSKY-
LINE OF clause as follows:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
SKYLINE OF [DISTINCT] d1 [MIN | MAX | DIFF], ..., dm [MIN | MAX | DIFF]
ORDER BY ...

d1, ..., dm denote the dimensions of the Skyline; e.g.,price, distance to the beach, or rating. MIN, MAX,
and DIFF specify whether the value in that dimension should be minimized, maximized, or simply be
different. For example, thepriceof a hotel should be minimized (MIN annotation) whereas the rating should
be maximized (MAXannotation). In our Skyline of Manhattan example, two buildings that have differentx
coordinates can both be seen and therefore both may be part of the skyline; as a result, thex dimension is
listed in theSKYLINE OFclause of that query with aDIFF annotation. The optionalDISTINCT specifies
how to deal with duplicates (described below).

The semantics of theSKYLINE OF clause are straightforward. TheSKYLINE OF clause is exe-
cuted after theSELECT ... FROM ... WHERE ... GROUP BY ... HAVING... part of
the query, but before theORDER BYclause and possibly other clauses that follow (e.g.,STOP AFTERfor
TopN [CK97]). TheSKYLINE OFclause selects allinterestingtuples; i.e., tuples which are not dominated
by any other tuple. Extending our definition from the introduction tuplep = (p1, . . . , pk, pk+1, . . . , pl, pl+1,
. . . , pm, pm+1, . . . , pn) dominates tupleq = (q1, . . . , qk, qk+1, . . . , ql, ql+1, . . . , qm, qm+1, . . . , qn) for a
Skyline query

SKYLINE OFd1 MIN, . . . ,dk MIN, dk+1 MAX, . . . ,dl MAX, dl+1 DIFF , . . . ,dm DIFF

if the following three conditions hold:

pi ≤ qi for all i = 1, . . . , k
pi ≥ qi for all i = (k + 1), . . . , l
pi = qi for all i = (l + 1), . . . ,m

2

Administrator
铅笔

SELECT *
FROM Hotels
WHERE city = ’Nassau’
SKYLINE OF price MIN, distance MIN;

SELECT e.name, e.salary, sum(s.volume) as volume
FROM Emp e, Sales s
WHERE e.id = s.repr AND s.year = 1999
GROUP BY e.name, e.salary
SKYLINE OF e.salary MIN, volume MAX;

Query 1 Query 3

SELECT *
FROM Buildings
WHERE city = ’New York’
SKYLINE OF distance MIN, height MAX,

x DIFF;

SELECT name, distance,
(CASE WHEN price ≤ 50 THEN ’cheap’

WHEN price > 50 THEN ’exp’) AS pcat
FROM Hotels
WHERE city = ’Nassau’
SKYLINE OF pcat MIN, distance MIN;

Query 2 Query 4

Figure 3: Example Skyline Queries

If pi = qi for all i = 1, . . . ,m, thenp andq are incomparable and may both be part of the Skyline if no
DISTINCT is specified. WithDISTINCT , eitherp or q are retained (the choice of which is unspecified).
The values of the attributesdm+1, . . . , dn are irrelevant for the Skyline computation, but these attributes are
of course part of the tuples of the Skyline (i.e., there is no implicit projection). Note that it does not matter in
which order the dimensions are specified in theSKYLINE OFclause; for ease of presentation, we put the
MIN dimensions first and theDIFF dimensions last. In addition, a one-dimensional Skyline is equivalent to
a min, max,or distinct SQL query without aSKYLINE OFclause. Furthermore, note thatdominanceis a
transitive relation; ifp dominatesq andq dominatesr, thenp also dominatesr. Transitivity is an important
property to implement the Skyline operation (Section 3).

Figure 3 contains four example Skyline queries. The first two queries are our example queries from the
introduction; i.e., cheap hotels near the beach in Nassau and the Skyline of Manhattan. The third query asks
for salespersons who were very successful in 1999 and have low salary; these people might be eligible for a
raise. Like the first query, the fourth query asks for cheap hotels near the beach in Nassau – this time, how-
ever, at most two hotels are returned because the query specifiesprice categories; within eachprice category
the user is only interested for the hotel with the smallest distance to the beach. Naturally, attributes which
are specified in theSKYLINE OFclause may also be used in any other clause. To eliminate outrageously
expensive hotels, for example, theWHEREclause of the first query of Figure 3 could be extended by aprice
< 250 predicate.

3 Implementation of the Skyline Operator

Our approach to implement Skyline queries is to extend an existing (relational, object-oriented or object-
relational) database system with a new logical operator that we refer to as the Skyline operator. The Skyline
operator encapsulates the implementation of theSKYLINE OFclause. The implementation of other oper-
ators (e.g.,join) need not be changed. According to the semantics of Skyline queries, the Skyline operator
is typically executed afterscan, join, andgroup-byoperators and before a finalsort operator, if the query
has anORDER BYclause. (In Section 4, we will discuss exceptions to this rule.) As a result, only sim-
ple modifications to the parser and query optimizer are required and integrating the Skyline operator into a
traditional SQL query processor is extremely simple.

Just like join and most other logical operators, there are several different (physical) ways to imple-
ment the Skyline operator. In this section, we will describe seven variants: three variants based on a
block-nested-loops algorithm; three variants based on divide-and-conquer; and one special variant for two-
dimensional Skylines. Furthermore, we will show how Skyline queries can be implementedon top of a
relational database system, without changing the database system at all; it will become clear, however, that
this approach performs very poorly.

3.1 Translating a Skyline Query into a Nested SQL Query

We will begin and show how Skyline queries can be implemented on top of a relational database system
by translating the Skyline query into a nested SQL query. We will demonstrate this using our hotel Skyline
query from Figure 3. This query is equivalent to the following standard SQL query:

3

〈h1, $50, 3.0 miles〉
〈h2, $51, 5.0 miles〉
〈h3, $52, 4.0 miles〉
〈h4, $53, 2.0 miles〉

Figure 4: 2-d Skyline: Sorting Works

〈h1, $50, 3.0 miles, ∗ ∗ ∗〉
〈h2, $51, 5.0 miles, ∗ ∗ ∗∗〉
〈h3, $52, 4.0 miles, ∗ ∗ ∗〉
〈h4, $53, 2.0 miles, ∗ ∗ ∗〉
Figure 5: 3-d Skyline: Sorting Does Not Work

SELECT *
FROM Hotels h
WHERE h.city = ’Nassau’ AND NOT EXISTS(

SELECT *
FROM Hotels h1
WHERE h1.city = ’Nassau’ AND h1.distance <= h.distance AND

h1.price <= h.price AND
(h1.distance < h.distance OR h1.price < h.price));

Thus, we can very well express in SQL that we are interested in hotels that are not dominated by other
hotels. However, this approach shows very poor performance for a number of reasons:

• Essentially, this approach corresponds to the naive “nested-loops” way to compute the Skyline because
this query cannot be unnested [GKG+97, BCK98]; as we will see in the following subsections, we
can do much better.

• If the Skyline query involves a join or group-by (e.g., the third query of Figure 3), this join or group-by
would have to be executed as part of the outer query and as part of the subquery.

• As we will see in Section 4 the Skyline operation can be combined with other operations (e.g.,join or
TopN) in certain cases, resulting in little additional cost to compute the Skyline.

As a result, we propose to extend the database system and integrate a Skyline operator into the system. We
focus on such an approach in the remainder of this paper.

3.2 Two-dimensional Skyline Operator

As mentioned in Section 2, a one-dimensional Skyline is trivial because it is equivalent to computing the
min, max,or distinct. Computing the Skyline is also very easy if theSKYLINE OFclause involves only two
dimensions. A two-dimensional Skyline can be computed by sorting the data. If the data is topologically
sorted according to the two attributes of theSKYLINE OFclause, the test of whether a tuple is part of the
Skyline is very cheap: you simply need to compare a tuple with its predecessor. More precisely, you need to
compare a tuple with the last previous tuple which is part of the Skyline. Figure 4 illustrates this approach.
h2 can be eliminated because it is dominated byh1, its predecessor. Likewise,h3 can be eliminated because
it is dominated byh1, its predecessor afterh2 has been eliminated.

If sorting needs to be carried out in two (or more passes) because the data does not fit into main memory,
then tuples can be eliminated while generating each run and in themergephase of the sort. Eliminating
tuples during the run generation (i.e., as part of replacement selection or quicksort) makes the runs smaller
and therefore possibly saves a great deal of disk I/O. Doing such an early elimination of tuples is analogous
to “early aggregation” which is used to improve the performance of group-by operations [BD83, Lar97].

Figure 5 shows why sorting does not work if the Skyline involves more than two dimensions. In this
example, we are interested in hotels with a low price, a short distance to the beach, and a high rating (many
stars). The only hotel which can be eliminated ish3: h3 is dominated byh1, but h1 is not h3’s direct
predecessor. In this example, there is just one hotel betweenh1 andh3; in general, however, there might
be many hotels so that sorting does not help. There are special algorithms to deal with three-dimensional
Skylines [KLP75], but for brevity we will not discuss such algorithms in this work.

3.3 Block-nested-loops Algorithm

The naive way to compute the Skyline is to apply a nested-loops algorithm and compare every tuple with
every other tuple. This is essentially what happens if a Skyline query is implemented on top of a database

4

system as described in Section 3.1.1 The naive nested-loops algorithm can be applied to any Skyline query
(not just two dimensional), but it obviously is very inefficient. In this section, we present an algorithm that
is significantly faster; rather than considering a tuple at a time, this algorithm produces a block of Skyline
tuples in every iteration.

3.3.1 Basic Block-nested-loops Algorithm

Like the naive nested-loops algorithm, the block-nested-loops algorithm repeatedly reads the set of tuples.
The idea of this algorithm is to keep awindowof incomparable tuples in main memory. When a tuplep is
read from the input,p is compared to all tuples of the window and, based on this comparison,p is either
eliminated, placed into the window or into a temporary file which will be considered in the next iteration of
the algorithm. Three cases can occur:

1. p is dominated by a tuple within the window. In this case,p is eliminated and will not be considered
in future iterations. Of course,p need not be compared to all tuples of the window in this case.

2. p dominates one or more tuples in the window. In this case, these tuples are eliminated; that is, these
tuples are removed from the window and will not be considered in future iterations.p is inserted into
the window.

3. p is incomparable with all tuples in the window. If there is enough room in the window,p is inserted
into the window. Otherwise,p is written to a temporary file on disk. The tuples of the temporary file
will be further processed in the next iteration of the algorithm. When the algorithm starts, the first
tuple will naturally be put into the window because the window is empty.

At the end of each iteration, we can output tuples of the window which have been compared to all tuples
that have been written to the temporary file; these tuples are not dominated by other tuples (i.e., they are
part of the Skyline) and they do not dominate any tuples which are still under consideration. Specifically,
we can output and ignore for further processing those tuples which were inserted into the window when the
temporary file was empty; i.e., at the beginning of the iteration. The other tuples of the window can be output
(if they are not eliminated)during the next iteration. The earlier a tuple has been inserted into the window,
the earlier the tuple can be output during the next iteration. In order to keep track when a tuple of the window
may be output, we assign atimestampto each tuple in the window and to each tuple in the temporary file.
This timestamp is a simple counter that records in which order tuples were inserted into the window and
temporary file. If we read a tuple from the temporary file with timestampt, we can output all tuples from the
window with timestamp smaller thant. (This timestamping also guarantees that the algorithm terminates
and that two tuples are never compared twice.) The full algorithm is given in Appendix A.

Obviously this algorithm works particularly well if the Skyline is small. In the best case, the Skyline
(i.e., the result) fits into the window and the algorithm terminates in one or two iterations; thus, the best
case complexity is of the order ofO(n); n being the number of tuples in the input. In the worst case, the
complexity is of the order ofO(n2). The asymptotic complexity is the same as for the naive nested-loops
algorithm, but the block-nested-loops algorithm shows much better I/O behavior than the naive nested-
loops algorithm in a similar way as the block-nested-loops join algorithm is better than a naive nested-loops
join [HCLS97].

3.3.2 Variants of the Basic Algorithm

Maintaining the Window as a Self-organizing List A great deal of time in the basic algorithm is spent
for comparing a tuple with the tuples in the window. To speed up these comparisons, we propose to organize
the window as aself-organizing list. When tuplew of the window is found to dominate (i.e., eliminate)
another tuple, thenw is moved to the beginning of the window. As a result, the next tuple from the input
will be compared tow first. This variant is particularly attractive if the data is skewed; i.e., if there are a
couple ofkiller tuples which dominate many other tuples and a significant number ofneutral tuples which
are part of the Skyline, but do not dominate other tuples.

1In fact, the nested SQL query approach is even worse than the naive nested-loops algorithm because a tuple cannot be eliminated
in the “inner loop.”

5

Replacing Tuples in the Window As another variant, we propose to try to keep themost dominantset of
tuples in the window. As an example, assume that the window contains the following two hotels:

〈h1, $50, 1.0 mile〉 〈h2, $59, 0.9 mile〉

Also assume that the next hotel to be considered is

〈h3, $60, 0.1 mile〉

h3 is incomparable to bothh1 andh2. If the window has a capacity of two hotels, the basic algorithm would
write h3 into the temporary file, leaving the window unchanged. In this example, however, it is easy to see
that a window containingh1 andh3 is likely to eliminate more hotels than the old window ofh1 andh2

becauseh3 is only slightly more expensive but significantly closer to the beach thanh2. In other words,h3

shouldreplaceh2 in the window andh2 should be written to the temporary file.
There are many conceivable replacement policies. One option is to extend ourself-organizing listvariant

and implement an LRU replacement policy. In this work, we use a replacement policy that is based on the
areacovered by a tuple in order to decide which tuples should be kept in the window. For instance,h3 is
much better in terms ofprice ∗ distancethanh2.

Implementing such a replacement policy does not come for free. First, there are additional CPU costs
to determine the replacement victim. Second, a tuple which is replaced from the window is written to the
end of the temporary file and needs to be compared to other tuples placed before it in the temporary file
again; as a result, with tuple replacement is it possible that two tuples are compared twice. We will study
the tradeoffs of the replacement variant in more detail in Section 5.

3.4 Divide and Conquer Algorithm

We will now turn to the divide-and-conquer algorithm of [KLP75, PS85] and our proposed extensions to
make that algorithm more efficient in the database context (i.e., limited main memory). This algorithm is
theoretically the best known algorithm for the worst case. In the worst case, its asymptotic complexity is
of the order ofO(n ∗ (log n)d−2) + O(n ∗ log n); n is the number of input tuples andd is the number of
dimensions in the Skyline. Unfortunately, this is also the complexity of the algorithm in the best case; so,
we expect this algorithm to outperform our block-nested-loops algorithm in bad cases and to be worse in
good cases.

3.4.1 Basic Divide and Conquer Algorithm

The basic divide-and-conquer algorithm of [KLP75, PS85] works as follows:

1. Compute the medianmp (or some approximate median) of the input for some dimensiondp (e.g.,
price). Divide the input into two partitions.P1 contains all tuples whose value of attributedp is better
(e.g., less) thanmp. P2 contains all other tuples.

2. Compute the SkylinesS1 of P1 andS2 of P2. This is done by recursively applying the whole algorithm
to P1 andP2; i.e., P1 andP2 are again partitioned. The recursive partitioning stops if a partition
contains only one (or very few) tuples. In this case, computing the Skyline is trivial.

3. Compute the overall Skyline as the result ofmergingS1 andS2. That is, eliminate those tuples ofS2

which are dominated by a tuple inS1. (None of the tuples inS1 can be dominated by a tuple inS2

because a tuple inS1 is better in dimensiondp than every tuple ofS2.)

Most challenging is Step 3. The main trick of this step is shown in Figure 6. The idea is to partition both
S1 andS2 using an (approximate) medianmg for some other dimensiondg, with dg 6= dp. As a result, we
obtain four partitions:S1,1, S1,2, S2,1, S2,2. S1,i is better thanS2,i in dimensiondp andSi,1 is better than
Si,2 in dimensiondg (i = 1, 2). Now, we need to mergeS1,1 andS2,1, S1,1 andS2,2, andS1,2 andS2,2.
The beauty is that we need not mergeS1,2 andS2,1 because the tuples of these two sets are guaranteed to
be incomparable. MergingS1,1 andS2,1 (and the other pairs) is done by recursively applying themerge
function. That is,S1,1 andS2,1 are again partitioned. The recursion of themergefunction terminates if all

6

d p

dg

S1,2

S1,1 S2,1

S2,2

mg

pm

Figure 6: Basic Merge

d p

dg

S2,2S1,2

S1,1
S2,1

pm

S 2,3S1,3

m

m

g,1

g,2

Figure 7:3-way Merge

merge

merge

merge

S1

�
�
� B

B
B
S2

 J

J
J
merge

S3

�
�
� B

B
B
S4

�
�

�� Z
Z

ZZ
merge

merge

S5

�
�
� B

B
B
S6

 J

J
J
merge

S7

�
�
� B

B
B
S8

Figure 8: Bushy Merge Tree

dimensions have been considered or if one of the partitions is empty or contains only one tuple; in all these
cases themergefunction is trivial. A full definition of this algorithm can be found in Appendix B. The
algorithm has also been described in great detail in [PS85].

3.4.2 Extensions to the Basic Algorithm

M-way Partitioning If the input does not fit into main memory, the basic algorithm shows terrible perfor-
mance. The reason is that the input is read, partitioned, written to disk, reread to be partitioned again, and so
on several times until a partition fits into main memory. One may argue that main memories are becoming
larger and larger; at the same time, however, databases are becoming larger and larger and more and more
concurrent queries must be executed by a database server so that the available main memory per query is
limited. As a result, no database vendor today will be willing to implement an algorithm that relies on the
fact that all the data fit into memory.

Fortunately, the I/O behavior of the basic algorithm can be improved quite easily. The idea is to divide
into m partitions in such a way that every partition is expected to fit into memory. Instead of the median,
α-quantiles are computed in order to determine the partition boundaries. If a partition does not fit into
memory, it needs to be partitioned again; this is analogous to recursive partitioning as needed, e.g., for hash
join processing [Gra93].

m-way partitioning can be used in the first step of the basic algorithm as well as in the third step. In the
first step,m-way partitioning is used to producem partitionsP1, . . . , Pm so that eachPi fits into memory
and Si, the Skyline ofPi, can be computed in memory using the basic algorithm. The final answer is
produced in the third step by merging theSi pairwise. Within themergefunction, m-way partitioning is
applied so that all sub-partitions can be merged in main memory; i.e., all sub-partitions should occupy at
most half the available main memory. Figure 7 shows which sub-partitions need to be merged if a three-way
sub-partitioning has been applied in themergefunction.

As shown in Figure 8, we propose to apply themergefunction to the initial partitions in abushyway.
As a result, the volume of data that must be read and rewritten to disk between different merge steps is
minimized. For instance, in Figure 8 the tuples ofS1 are only involved inlog m merge steps; these tuples
would be involved inm− 1 merge steps if all the merging were carried out in aleft-deepway. Like all other
algorithms, we define the full divide-and-conquer algorithm withm-way partitioning in Appendix C.

Early Skyline We propose another very simple extension to the divide-and-conquer algorithm in situations
in which the available main memory is limited. This extension concerns the first step in which the data is
partitioned intom partitions. We propose to carry out this step as follows:

1. Load a large block of tuples from the input; more precisely, load as many tuples as fit into the available
main-memory buffers.

2. Apply the basic divide-and-conquer algorithm to this block of tuples in order to immediately eliminate
tuples which are dominated by others. We refer to this as an “Early Skyline;” it is essentially the same
kind of prefiltering that is applied in the sorting-based algorithm of Section 3.2.

7

hotel price

h1 $25
h3 $27
h25 $30
h2 $35
h35 $40
h17 $70

. . .

hotel distance

h17 0.1 miles
h2 0.2 miles
h35 0.3 miles
h25 0.3 miles
h1 0.7 miles
h3 1.0 miles

. . .

Figure 9: Ordered Indices (B-trees) for the Hotel Query

3. Partition the remaining tuples intom partitions.

The tradeoffs of this approach are quite simple. Clearly, applying an Early Skyline incurs additional CPU
cost, but it also saves I/O because less tuples need to be written and reread in the partitioning steps. In general
an Early Skyline is attractive if the Skyline isselective; i.e., if the result of the whole Skyline operation is
small.

4 Other Skyline Algorithms

4.1 Using B-trees

To compute the Skyline, it is also possible to use an ordered index; e.g., a B-tree. One way to use an ordered
index for a two-dimensional Skyline is to scan through the whole index, get the tuples in sorted order and
filter out the tuples of the Skyline as described in Section 3.2. In the following, we will describe how ordered
indices can be used without scanning through the whole index.

Let us go back to our favorite query that asks for cheap hotels that are close to the beach. Let us also
assume that we have two ordered indices: one onhotel.priceand one onhotel.distance, as shown in Figure 9.
We can use these indices in order to find a superset of the Skyline. We do so by adapting the first step of
Fagin’sA0 algorithm used for merging scores from multi-media databases [Fag96]. In other words, we scan
simultaneously through both indices and stop as soon as we have found the first match. In the example of
Figure 9,h2 is the first match.

Now, we can draw the following conclusions:

• h2 is definitely part of the Skyline.

• Any hotel which has not yet been inspected (i.e., belowh2 in both indices) is definitely not part of the
Skyline because it is dominated byh2. One example ish35.

• All other hotels may or may not be part of the Skyline. To determine which of these hotels are part of
the Skyline, we need to execute one of the algorithms of Section 3. In Figure 9, for instance,h1, h17,
andh25 are part of the Skyline whereash3 is not because it is dominated byh1.

This algorithm can also be applied if the query has predicates in itsWHEREclause. In this case, we need
to search through the indices until we find the first match that qualifies these predicates. In the presence
of predicates, the algorithm becomes less attractive because it takes longer to find a match. In general, this
algorithm is attractive if the result of the Skyline is very small and a first match (likeh2) can be found very
quickly. This algorithm can also be generalized to Skylines with more than two dimensions. In this case, a
match forall indices is needed; again, the algorithm becomes less effective because typically the match is
found later. Furthermore, the applicability of this algorithm is limited if the Skyline of the result of a join or
group-by must be computed.

4.2 Using an R-tree

To use an R-tree to compute the Skyline of cheap hotels near the beach, we exploit the following fact:

8

Given a hotelh, we need not search in any branches of the R-tree which are guaranteed to
contain only hotels that are dominated byh.

For example, if we know that there is a hotel that costs $30 and is located 1.0 miles from the beach, then we
need not consider any branches in the R-tree which include, for instance, hotels in the price range of ($40,
$60) and distance range of (2.0 miles, 3.5 miles). As a consequence, the idea is to traverse the R-tree in a
depth first way andprunebranches of the R-tree with every new hotel found. A related branch-and-bound
approach to traverse an R-tree has also been proposed for nearest-neighbor search (e.g., [RKV95]). We plan
to investigate different heuristics to select branches of the R-tree for the depth-first search in future work.

Obviously, an R-tree can only be used if the R-tree involves all dimensions specified in theSKYLINE
OFclause of the query; in addition, the R-tree may involve other attributes which are not part of theSKY-
LINE OF clause. Like B-trees, the use of R-trees is particularly attractive if the Skyline is small and
becomes less attractive in the presence of predicates and with a growing number of dimensions in the Sky-
line. Also, the applicability of R-trees is limited for join and group-by queries. (Essentially, these limitations
hold for any application of indices.)

4.3 Skyline and Joins

4.3.1 Pushing the Skyline OperatorThrougha Join

As mentioned in Section 2, the Skyline operator is logically applied after joins and group-bys. However, if
a join (or group-by) isnon-reductive(as defined in [CK97]), then the Skyline operator may also be applied
beforethe join. Applying a Skyline operator before a join is attractive because the Skyline operator reduces
the size of the result and, therefore, a Skyline operator before a join makes the join cheaper. Also, non-
reductive joins tend to increase the size of the result (the tuples get wider) so that the Skyline operator itself
becomes cheaper if it is pushed through the join. Furthermore, pushing the Skyline operator through a join
might make it possible to use an index to compute the Skyline, as described in Sections 4.1 and 4.2.

As an example, consider the following query which asks for young employees with high salary and their
department information:

SELECT *
FROM Emp e, Dept d
WHERE e.dno = d.dno
SKYLINE OF e.age MIN, e.salary MAX;

Assuming that every employee works in a deptartment, every employee qualifies for the join. (This is what
non-reductiveness means.) In this example, it is easy to see why the Skyline of employees can be computed
before the join and why doing so is beneficial. Extending the query optimizer to consider such a Skyline
push-down is also fairly easy; essentially, the same measures as described in [CK97] for TopN queries can
be applied.

4.3.2 Pushing the Skyline OperatorInto a Join

Let us now consider the following query which asks for Emps with high salary that work in a Dept with low
budget:

SELECT *
FROM Emp e, Dept d
WHERE e.dno = d.dno
SKYLINE OF d.budget MIN, e.salary MAX;

Now assume that we have three Emps that work in Dept 23: Roger with 200K salary, Mary with 400K
salary, and Phil with 100K salary. Without knowing the budget of Dept 23, we can immediately eliminate
Roger and Phil. That is we can compute the

salary MAX, dno DIFF

Skyline directly on the Emps before the join, then compute the join and the overall Skyline. This observation
leads to the following approach:

9

1. Sort theEmptable bydno, salary DESC , thereby eliminatingEmps that have a lower salary
than anotherEmpwith the samedno .

2. Sort theDept table bydno .

3. Apply a merge join.

4. Compute the Skyline using any approach of Section 3.

In effect, we apply an “Early Skyline” with almost no additional overhead as part of a sort-merge join.
Therefore, carrying out this approach is a no-loss situation if a sort-merge join is attractive.

4.4 Skyline and TopN

As mentioned in Section 2,ORDER BYand Top N are applied logically after the Skyline operator in a
query. However, if the TopN operation is based on the same or a subset of the columns used in the Skyline
operation, then the computation of the Skyline and TopN operations can be combined. For instance, to
compute theN cheapest hotels which are interesting in terms ofprice, distance, and maybe some other
criteria, we could proceed as follows:

1. Sort all hotels by price (i.e., by the criterion of the TopN operation).

2. Scan through the sorted list of hotels. For each hotel, test whether it is interesting by comparing that
hotel to all hotels that have the same or lower price.

3. Stop as soon asN hotels have been produced.

This algorithm can be applied independently of the number of dimensions used in the TopN and Skyline
operations. The only restriction is that the TopN dimensions must be a subset of the dimensions of the
Skyline operation. The reason why this approach is attractive is that in Step 2, a hotel need only be compared
to hotels which have a lower price and are part of the Skyline or to hotels that have the same price; in other
words,O(N) comparisons are sufficient for each hotel in Step 2. IfN is small andN hotels fit into memory
(this is the typical situation for TopN queries), Step 2 can be carried out with a single scan through the
sorted list of hotels and the cost of the combined Skyline and TopN operation is dominated by Step 1. If
there is an ordered index onhotels.price, Step 1 might become very cheap, too, so that the whole combined
Skyline and TopN operation can be executed much faster than any of the Skyline algorithms presented
in Section 3. If no such ordered index exists or using such an index is expensive because the index is not
clustered, then range partitioning instead of sorting can be applied, as proposed in [CK98]. In other words,
the combined Skyline and TopN algorithm is first applied to, say, all hotels which cost less than $100. If
N or more hotels have been produced, we are done; otherwise, we also need to apply the combined Skyline
and TopN algorithm to hotels in the price range of ($100, $120), and so on. As described in [CK98], such
an approach helps significantly to avoid wasted work for sorting.

5 Performance Experiments and Results

In this section, we study the performance of the alternative Skyline algorithms presented in Section 3. For
our experiments, we use different kinds of synthetic databases (correlated and uncorrelated). Furthermore,
we vary the number of dimensions in a Skyline query and the available main memory buffers.

5.1 Experimental Environment

All our experiments are carried out on a Sun Ultra Workstation with a 333 MHz processor and 128 MB of
main memory. The operating system is Solaris 7. The benchmark databases and intermediate query results
are stored on a 9GB Seagate disk drive with 7200 rpm and 512K disk cache. For our experiments, we
implemented all algorithms of Section 3 in C++. Specifically, we implemented the following variants:

10

Administrator
铅笔

Sort: two-phase sorting with an “Early Skyline,” as described in Section 3.2. Runs are generated using
quicksort. As mentioned in Section 3.2, this approach is only applicable for two-dimensional Sky-
lines;

BNL-basic: the basic block-nested-loops algorithm (Section 3.3.1);

BNL-sol: block-nested-loops; the window is organized as a self-organizing list (Section 3.3.2);

BNL-solrep: block-nested-loops; the windows is organized as a self-organizing list and tuples in the win-
dow are replaced (Section 3.3.2);

D&C-basic: Kung et al.’s basic divide-and-conquer algorithm (Section 3.4.1);

D&C-mpt: divide-and-conquer withm-way partitioning (Section 3.4.2);

D&C-mptesk: divide-and-conquer withm-way partitioning and “Early Skyline” (Section 3.4.2).

Furthermore, we run Skyline queries using a commercial relational database systems using the approach
described in Section 3.1. The RDBMS is installed on the same machine. The results of the RDBMS are
not directly comparable to the other results because the RDBMS is a significantly more complex system
which, among others, involves transaction processing. Nevertheless, we present these results because they
demonstrate the need to integrate Skyline processing into a database system, rather than implementing it on
top of it.

In none of our experiments reported here we make use of indices. We did experiment with different
kinds of indices for the RDBMS, but in most cases the presence of indices increased the running time of the
RDBMS for our Skyline benchmark queries. Only in very simple cases did indices help the RDBMS, but
in such cases our approaches to use indices (Sections 4.1 and 4.2) would have done much better than the
RDBMS in exploiting these indices.

If not stated otherwise, each benchmark database contains 100,000 tuples (10MB). A tuple hasd at-
tributes of typedoubleand onebulk attribute with “garbage” characters to ensure that each tuple is 100
bytes long. The values of thed doublesof a tuple are generated randomly in the range of [0,1). In all
experiments, we ask Skyline queries that look for tuples that have low values in alld dimensions. We study
three different kinds of databases that differ in the way the values are generated:

indep: for this type of database, all attribute values are generated independently using a uniform distribu-
tion. Figure 10 shows such an independent database with 1000 points andd = 2. Points which are
part of the Skyline are marked as bold circles. In Figure 10, twelve points are part of the Skyline.

corr: a correlated database represents an environment in which points which are good in one dimension
are also good in the other dimensions. For instance, students which have a good publication record
typically also do well in their preliminaries. We generate a random point in the correlated database as
follows. First we select a plane perpendicular to the line from (0, . . . , 0) to (1, . . . , 1) using a normal
distribution; the new point will be in that plane. We use a normal distribution to select the plane so
that more points are in the middle than at the ends. Within the plane, the individual attribute values
are again generated using a normal distribution; this makes sure that most points are located close to
the line from (0, . . . 0) to (1, . . . 1). Figure 11 shows a correlated database with1000 points ford = 2.
The Skyline of this database contains four points.

anti: an anti-correlated database represents an environment in which points which are good in one dimen-
sion are bad in one or all of the other dimensions; hotels seem to fall into this category. As for a
correlated database, we generate a point by first selecting a plane perpendicular to the line from (0,
. . . , 0) to (1, . . . , 1) using a normal distribution. We use a normal distribution with very small variance
so that all points are placed into planes which arecloseto the plane through the point (0.5,. . . , 0.5).
Within the plane, the individual attribute values are generated using a uniform distribution. Figure 12
shows an anti-correlated database with 1000 points ford = 2. The Skyline of this database contains
36 points.

11

Figure 10: Independent DB Figure 11: Correlated DB Figure 12: Anti-Correlated DB

d corr indep anti
2 1 12 49
3 3 69 632
4 11 267 4239
5 17 1032 12615
6 21 1986 26843
7 43 5560 41484
8 121 9662 55691
9 243 16847 67101
10 378 26047 75028 0

10000

20000

30000

40000

50000

60000

70000

80000

2 3 4 5 6 7 8 9 10

S

ky
lin

e
P

oi
nt

s

Dimensions d

indep
corr
anti

Figure 13: Skyline Sizes

Figure 13 shows the size of the Skyline for each type of database with a growing number of dimensions.
These are the databases that we actually used for our experiments; i.e., they all had 100,000 points. While
the Skyline is fairly small for all correlated databases, the size of the Skyline increases sharply for the
anti-correlated databases. The size of the Skyline of the independent databases is somewhere in between.

5.2 2-d Skylines

Table 1 shows the running times (in seconds) and amount of disk I/O (in MB) for the individual algorithms
to compute two-dimensional Skylines for each type of database. We allocated 1 MB of main memory for
each of our algorithms; the RDBMS required significantly more. We only show the results for the basic
BNL variant here because all three BNL variants have virtually identical performance in this experiment.
Furthermore, we could not determine the amount of disk I/O carried out by the RDBMS.

corr indep anti
Time I/O Time I/O Time I/O

BNL-basic 1.1 10 1.1 10 1.3 10
D&C-basic 88.0 90 87.0 90 89.0 90
D&C-mpt 25.0 30 27.0 30 26.0 30
D&C-mptesk 2.6 10 2.7 10 3.1 10
Sort 2.0 10 1.9 10 2.0 10
RDBMS 28.0 – 37.0 – 92.0 –

Table 1: Running Time (secs) and Disk I/O (MB) of 2-d Skyline Algorithms

12

0

50

100

150

200

250

300

2 5 8 10

T
im

e
[s

ec
s]

Dimensions d

BNL-basic
BNL-sol

BNL-solrep
D&C-basic

D&C-mpt
D&C-mptesk

RDMBS

Figure 14: Time (secs), Corr, 1MB Buff.

0

50

100

150

200

250

300

2 5 8 10

T
im

e
[s

ec
s]

Dimensions d

BNL-basic
BNL-sol

BNL-solrep
D&C-basic

D&C-mpt
D&C-mptesk

RDMBS

Figure 15: Time (secs), Indep, 1MB Buff.

0

500

1000

1500

2000

2 5 8 10

T
im

e
[s

ec
s]

Dimensions d

BNL-basic
BNL-sol

BNL-solrep
D&C-basic

D&C-mpt
D&C-mptesk

RDMBS

Figure 16: Time (secs), Anti, 1MB Buff.

0

100

200

300

400

500

600

2 5 8 10

I/O
 [M

B
]

Dimensions d

BNL-basic
BNL-sol

BNL-solrep
D&C-basic

D&C-mpt
D&C-mptesk

Figure 17: I/O (MB), Anti, 1MB Buff.

The clear winner in this experiment is the BNL algorithm. For all three databases, the window is large
enough so that the BNL algorithm terminates after one iteration. The BNL algorithm even outperforms the
special Sort algorithm which is only applicable ford = 2. The Sort algorithm, however, is also quite fast
because an “Early Skyline” is applied before a run is written to disk so that the runs are extremely short. In a
different experiment (not shown), we also found a database in which the Sort algorithm actually outperforms
the BNL algorithms. In that experiment, we generated a synthetic two-dimensional database with a Skyline
of more than 3000 tuples.

“Early Skyline” is also very effective for the D&C algorithm so that the D&C-mptesk is the clear winner
of the three D&C variants; after applying an “Early Skyline” the partitions are very small and the rest of
the algorithm can be completed very quickly. Applying an “Early Skyline” using Kung et al.’s algorithm,
however, is more expensive than sorting or carrying out nested loops in this experiment so that D&C-mptesk
is outperformed by the BNL algorithms and Sort. The other D&C variants which do not apply an “Early
Skyline” show very poor performance in this experiment because of their high I/O demands; as expected is
the basic D&C variant particularly bad.

The RDBMS which carries out a naive nested-loops computation also shows poor performance in this
experiment. The RDBMS shows particularly bad performance for the anti-correlated database because in
that database on an average more tuples must be probed in the inner loop before a tuple can be eliminated.

5.3 Multi-dimensional Skylines

Figures 14 to 16 show the running times of the alternative algorithms, varying the number of dimensions
considered in the Skyline query. The buffer is again limited to 1 MB for our implementation of the algo-
rithms and more for the RDBMS. Turning to Figure 14, we see that the BNL variants are the clear winner
for correlated databases. The situation is different for the other databases. For an independent database
(Figure 15), the BNL algorithms are good up to five dimensions, after that they are outperformed by the
D&C-mpt and D&C-mptesk algorithms. For an anti-correlated database, the break-even point is earlier.

13

Administrator
铅笔

0

50

100

150

200

250

300

350

400

0.1 0.3 1 3 10

T
im

e
[s

ec
s]

Buffer Size [MB]

BNL-basic
BNL-sol

BNL-solrep
D&C-basic

D&C-mpt
D&C-mptesk

Figure 18: Time (secs), Anti,d = 5

0

50

100

150

200

250

300

350

0.1 0.3 1 3 10

I/O
 [M

B
]

Buffer Size [MB]

BNL-basic
BNL-sol

BNL-solrep
D&C-basic

D&C-mpt
D&C-mptesk

Figure 19: I/O (MB), Anti,d = 5

Altogether, we can draw the following conclusions:

• The BNL variants are good if the size of the Skyline is small. As a result, the performance of the BNL
algorithms is very sensitive to the number of dimensions and to correlations in the data. Between the
three variants, BNL-sol is the overall winner, but the differences are not great. Replacement is clearly
a bad idea if the Skyline is very large; in this case, replacement incurs additional overhead without
any benefits.

• The D&C variants are less sensitive than the BNL variants to the number of dimensions and correla-
tions in the database. D&C-mptesk is the clear winner among the D&C variants.

• Like the BNL algorithms, the RDBMS is very sensitive to the number of dimensions and correlations
in the database. Overall, these experiments confirm that a standard, off-the-shelf database system
is not appropriate to carry out Skyline queries. Except for the correlated database, the RDBMS has
an unacceptable running time ford > 2. It takes, for instance, more than 7.5 hours to compute a
ten-dimensional Skyline with an anti-correlated database (mostly CPU time).

In summary, we propose that a system should implement the D&C-mptesk and BNL-sol algorithms.
Figure 17 shows the amount of disk I/O carried out by the alternative algorithms for the anti-correlated

database, varying the number of dimensions and with 1 MB of main memory. The trends are the same
for the correlated and independent databases. Again, we could not determine the I/O cost of the RDBMS.
We see that the BNL algorithms have the lowest I/O cost in all cases; even for ten-dimensional Skylines
when their running time is high because of their high CPU overhead. Otherwise, the results are as expected:
D&C-mptesk is better than D&C-mpt which in turn is better than D&C-basic. The gap between D&C-mpt
and D&C-mptesk narrows with a growing number of dimensions as an “Early Skyline” becomes less and
less effective. (The differences are bigger for the other databases.)

5.4 Varying the Size of the Buffer

Figures 18 and 19 show the running times and disk I/O costs of the algorithms to compute a five dimensional
Skyline for the anti-correlated database; this time we vary the size of the main-memory buffers from 100
KB (1% the size of the database) to 10 MB (100% the size of the database). We see that the performance of
the D&C algorithms improve the larger the memory gets. On the other hand, the running time of the BNL
algorithm can get slightly worse with a larger memory. The reason is that the BNL algorithms are CPU-
bound so that more memory does not help and that a smaller window results in overall less comparisons. In
other words, the BNL algorithms are attractive if memory is scarce and the system is disk-bound.

5.5 Varying the Size of the Database

Table 2 shows the running times of the BNL and D&C variants for a 100 MB anti-correlated database with
d = 5; i.e., a database with one million points. The size of the Skyline is 35.000 points. The buffer is set

14

Administrator
铅笔

Administrator
铅笔

Administrator
铅笔

Administrator
铅笔

10 MB Database 100 MB Database

BNL-basic 160 813
BNL-sol 125 605

BNL-solrep 145 924
D&C-basic 115 1768
D&C-mpt 37 388

D&C-mptesk 22 211

Table 2: Running Time (secs); 1 MB Buffer,d = 5, Anti-correlated, Vary Size of Database

to 1 MB or 1% of the size of the database. As a baseline, Table 2 also shows the results for the 10 MB
anti-correlated database which was used in previous experiments. Basically, we observe the same effects for
the 100 MB database as for the 10 MB database. In this case, D&C outperforms BNL, and among the D&C
variants D&C-mptesk is the clear winner. In fact,m-way partitioning and “Early Skyline” computation
become even more important in this case because the larger the database gets, the more critical is it to
reduce the I/O complexity.

It is important to note that the size of the Skyline does not grow linearly with the size of the database; in
this particular case, the size of the Skyline grew by a factor of three for a database ten times as large. As a
result, the BNL variants become more and more attractive the larger the database gets.

We believe that one million points is already a big case for the Skyline operation. We do not expect that
the Skyline operation is applied to significantly more points than that. For decision support, for instance, we
expect that the Skyline operation will be applied to aggregated data, as in Query 3 of Section 2.

6 Related Work

The closest work to our work is the work by Kung et al. on the maximum vector problem [KLP75]. In
that work, the basic divide-and-conquer algorithm was devised and theoretically analyzed. In some sense,
our work can be seen as a continuation of that work: we extended their algorithm to work much better in
a database environment, we proposed a new block-nested-loops algorithm which is significantly better in
good cases, we demonstrated the use of indices, and we showed how the Skyline operator can be combined
with other database operations.

Other algorithms for the maximum vector problem have been devised in [SM88, Mat91, RDL95]. These
works propose parallel algorithms for the maximum vector problem and/or specific algorithms for cases in
which the number of dimensions is 2 or very large. However, none of these approaches have been applied
to the database context.

In the “theory” literature a number of related problems have been studied; e.g., thecontour prob-
lem [McL74] or multi-objective optimizationusing linear programming [Ste86]. A more related problem is
to compute theconvex hullof a data set. The convex hull is a subset of the Skyline. The Skyline contains
all points which may be optimal foranymonotonic scoring function; in contrast, the convex hull contains
only those points which may be optimal for alinear scoring function. Computing the convex hull has been
studied intensively in theory (see, e.g., [PS85]), but to the best of our knowledge, this problem has not been
addressed in the database context either. Computing the convex hull is a tougher problem (at least in the-
ory). The best known algorithm to compute the convex hull has a complexity ofO(nbd/2c+1) for d > 3 and
O(n ∗ log n) for d = 2, 3. Thus ford > 3, the complexity of the best algorithm for the convex hull is higher
than the complexity of all our algorithms for the Skyline.

In the database area, work on nearest neighbor search andTop N query processing is related. For
instance, Roussopoulos et al. studied a branch-and-bound algorithm for nearest-neighbor search using R-
trees [RKV95]; other algorithms for nearest neighbor search with multi-dimensional search trees have been
studied by Berchtold et al. [BBKK97]. As mentioned in Section 4.3 some of the ideas topushSkyline op-
eratorsthroughjoins have been adopted from previous work onTopN query processing [CK97]. However,
nearest neighbor search andTopN are different problems. A nearest neighbor search for anideal hotel that
costs $0 and has 0 miles distance to the beach would certainly return some interesting hotels, but it would
also miss interesting hotels such as the YMCA which are extremely cheap but far away from the beach.

15

Furthermore, a nearest neighbor search would return non-interesting hotels which are dominated by other
hotels. Likewise aTop N query [CK97] would find some interesting hotels, miss others, and also return
non-interesting hotels. In practice, we envision that for many applications users will ask for the Skyline first
in order to get the “big picture” and then apply aTop N query to get more specific results. For applica-
tions such as the visualization of theSkylineof Manhattan, the Skyline operator is indispensable and nearest
neighbor search andTopN do not help.

7 Conclusion

We showed how a database system can be extended in order to compute theSkylineof a set of points. We
proposed theSKYLINE OFclause as a simple extension to SQL’sSELECTstatement, presented and ex-
perimentally evaluated alternative algorithms to compute the Skyline, discussed how indices can be used to
support the Skyline operation, and described how the Skyline operation interacts with other query operators
(i.e., join andTopN). The Skyline operation is useful for a number of database applications, including deci-
sion support and visualization. Our experimental results indicated that a database system should implement
a block-nested-loops algorithm for good cases and a divide-and-conquer algorithm for tough cases. More
specifically, we propose to implement a block-nested loops algorithm with a window that is organized as
a self-organizing list and a divide-and-conquery algorithm that carries outm-way partitioning and “Early
Skyline” computation.

There are several avenues for future work. One open question is what kind of statistics need to be
maintained in order to estimate the size of a Skyline; for example, such an estimate is necessary in order to
help the query optimizer decide whether a block-nested-loop or a divide-and-conquer algorithm should be
used. Initial work in this direction is reported in [BKST78]. That work, however, assumes that the attribute
values are independent which is an unrealistic assumption; for instance, hotels at the beach are typically
expensive. Another open question is to find the best algorithms to compute the Skyline with aparallel
database system and to study the use of indices more closely. Furthermore, we plan to studyapproximate
andonlineSkyline algorithms which compute a good approximation very quickly and improve their results
the longer they run.

Acknowledgments We would like to thank Christian B¨ohm, Reinhard Braumandl, and Alfons Kemper
for many helpful discussions.

References

[BBKK97] S. Berchtold, C. B¨ohm, D. Keim, and H.-P. Kriegel. A cost model for nearest neighbor search in high-
dimensional data space. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS),
pages 78–86, Tucson, AZ, USA, May 1997.

[BCK98] R. Braumandl, J. Claussen, and A. Kemper. Evaluating functional joins along nested reference sets in
object-relational and object-oriented databases. InProc. of the Conf. on Very Large Data Bases (VLDB),
pages 110–121, New York, USA, August 1998.

[BD83] D. Bitton and D. J. DeWitt. Duplicate record elimination in large data files.ACM Trans. on Database
Systems, 8(2):255–265, 1983.

[BKST78] J. L. Bently, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the avarage number of maxima in a
set of vectors and applications.Journal of the ACM, 25(4):536–543, 1978.

[CK97] M. Carey and D. Kossmann. On saying “enough already!” in SQL. InProc. of the ACM SIGMOD Conf.
on Management of Data, pages 219–230, Tucson, AZ, USA, May 1997.

[CK98] M. Carey and D. Kossmann. Reducing the braking distance of an SQL query engine. InProc. of the Conf.
on Very Large Data Bases (VLDB), pages 158–169, New York, USA, August 1998.

[Fag96] R. Fagin. Combining fuzzy information from multiple systems. InProc. ACM SIGMOD/SIGACT Conf.
on Princ. of Database Syst. (PODS), pages 216–226, Montreal, Canada, June 1996.

16

[GKG+97] T. Grust, J. Kr¨oger, D. Gluche, A. Heuer, and M. H. Scholl. Query evaluation in CROQUE – calculus and
algebra coincide. InProc. British National Conference on Databases (BNCOD), pages 84–100, London,
UK, July 1997.

[Gra93] G. Graefe. Query evaluation techniques for large databases.ACM Computing Surveys, 25(2):73–170,
June 1993.

[HCLS97] L. Haas, M. Carey, M. Livny, and A. Shukla. Seeking the truth aboutad hocjoin costs. The VLDB
Journal, 6(3):241–256, 1997.

[KLP75] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.Journal of the ACM,
22(4):469–476, 1975.

[Lar97] P. A. Larson. Grouping and duplicate elimination: Benefits of early aggregation. Microsoft Technical
Report, January 1997.http://www.research.microsoft.com/˜palarson/ .

[Mat91] J. Matoušek. Computing dominances inEn. Information Processing Letters, 38(5):277–278, June 1991.

[McL74] D. H. McLain. Drawing contours from arbitrary data points.The Computer Journal, 17(4):318–324,
November 1974.

[PS85] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New
York, Berlin, etc., 1985.

[RDL95] C. Rhee, S. K. Dhall, and S. Lakshmivarahan. The minimum weight dominating set problem for permu-
tation graphs is in NC.Journal of Parallel and Distributed Computing, 28(2):109–112, August 1995.

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 71–79, San Jose, CA, USA, May 1995.

[SM88] I. Stojmenovic and M. Miyakawa. An optimal parallel algorithm for solving the maximal elements prob-
lem in the plane.Parallel Computing, 7(2):249–251, June 1988.

[Ste86] R. E. Steuer.Multiple criteria optimization. Wiley, New York, 1986.

A Block-Nested-Loops Algorithm

M input of the Skyline operation; a set ofd-dimensional points
R output of the Skyline operation; a set ofd-dimensional points
T temporary file; a set ofd-dimensional points
S main memory; a set ofd-dimensional points

p ≺ q pointp is dominated by pointq

function SkylineBNL(M)
begin
// Initialization
R := ∅, T := ∅, S := ∅
CountIn := 0, CountOut := 0
// Scanning the database repeatedly
while ¬EOF(M) do begin

foreachp ∈ Sdo // propagate points that have been compared to all
if TimeStamp(p)=CountIn then save(R,p), release(p)

load(M,p), TimeStamp(p) := CountOut // load next point
CountIn := CountIn + 1
foreachq ∈ S\ {p} do begin // compare it to all points in memory

if p � q then release(p), break
if p ≺ q then release(q)

end
if ¬MemoryAvailablethen begin // write it to tempfile if necessary

save(T ,p), release(p)
CountOut := CountOut + 1

end

17

if EOF(M) then begin // continue with next run if necessary
M := T , T := ∅
CountIn := 0, CountOut := 0

end
end
// Flushing the memory
foreachp ∈ Sdo save(R,p), release(p)
return R
end

18

B Basic Divide-and-Conquer Algorithm

function SkylineBasic(M ,Dimension)
begin
if |M | = 1 then return M // terminate the recursion
Pivot := Median{mDimension|m ∈ M} // equi-partition the set
(P1,P2) := Partition(M ,Dimension,Pivot)
S1 := SkylineBasic(P1,Dimension) // compute skyline recursively
S2 := SkylineBasic(P2,Dimension)
return S1 ∪̇ MergeBasic(S1,S2,Dimension)
end

function MergeBasic(S1,S2,Dimension)
begin
if S1 = {p} then R := {q ∈ S2|p � q} // trivial cases
else ifS2 = {q} then begin

R := S2

foreachp ∈ S1 do if p ≺ q then R := ∅
end else ifDimension = 2 then begin // dimension is low

Min := Minimum{p1|p ∈ S1}
R := {q ∈ S2|q1 < Min}

end else begin // general case
Pivot := Median{pDimension−1|p ∈ S1} // partition both sets
(S1,1,S1,2) := Partition(S1,Dimension− 1,Pivot)
(S2,1,S2,2) := Partition(S2,Dimension− 1,Pivot)
R1 := MergeBasic(S1,1,S2,1,Dimension) // compare adjacent parts
R2 := MergeBasic(S1,2,S2,2,Dimension)
R3 := MergeBasic(S1,1,R2,Dimension− 1) // compare “diagonally”
R := R1 ∪̇ R3

end
return R
end

19

C M-way Divide-and-Conquer Algorithm

function SkylineMway(M,Dimension)
begin
Partitions := Minimum{2n|n ∈ N ∧ |S| · 2n > |M|} // partition the set
Quantiles := α-Quantiles(M,Dimension,Partitions)
(P1, ...,PPartitions) := Partition(M,Dimension,Quantiles)
for i := 1 to Partitions do // compute skyline recursively

if |Pi| < |S| then Si := SkylineBasic(Pi,Dimension)
elseSi := SkylineMway(Pi,Dimension)

while Partitions > 1 do begin
for i := 1 to Partitions

2 do Si := Si ∪̇ MergeMway(S2i−1,S2i,Dimension)
Partitions := Partitions

2
end
return S1

end

function MergeMway(S1,S2,Dimension)
begin
if S1 = {p} thenR := {q ∈ S2|p � q} // trivial cases
else ifS2 = {q} then begin

R := S2

foreachp ∈ S1 do if p ≺ q thenR := ∅
end else if|S1| + |S2| < |S| thenR := MergeBasic(S1,S2,Dimension)
else ifDimension = 2 then begin // dimension is low

Min := Minimum{p1|p ∈ S1}
R := {q ∈ S2|q1 < Min}

end else begin // general case
Partitions := Maximum{d |S1|

|S|/2e, d
|S2|
|S|/2e} // partition both sets

Quantiles := α-Quantiles(S1,Dimension− 1,Partitions)
(S1,1, ...,S1,Partitions) := Partition(S1,Dimension− 1,Quantiles)
(S2,1, ...,S2,Partitions) := Partition(S2,Dimension− 1,Quantiles)
R := ∅
for j := 1 to Partitions do begin// compare all parts

for i := 1 to j do
if i < j then S2,j := MergeMway(S1,i,S2,j ,Dimension− 1)

elseS2,j := MergeMway(S1,i,S2,j ,Dimension)
append(R,S2,j)

end
end
return R
end

20

