
Spatial Hash-Joins*

Ming-Ling Lo Chinya V. Ravishankar

Department of EECS Department of EECS

University of Michigan–Ann Arbor University of Michigan-Ann Arbor

1301 Beal Avenue, Ann Arbor, MI 48109 1301 Beal Avenue, Ann Arbor, MI 48109

mingling@eecs. umich .edu ravi@eecs. umich.edu

Abstract

We examine how to apply the hash-join paradigm to spatial

joins, and define a new framework for spatial hash-joins.

Our spatial partition functions have two components: a

set of bucket extents and an assignment function, which

may map a data item into multiple buckets. Furthermore,

the partition functions for the two input datasets may be

different.

We have designed and tested a spatial hash-join method

based on this framework. The partition function for the

inner dataset is initialized by sampling the dataset, and

evolves as data are inserted. The partition function for the

outer dataset is immutable, but may replicate a data item

from the outer dataset into multiple buckets, The method

mirrors relational hash-joins in other aspects. Our method

needs no pre-computed indices. It is therefore applicable to

a wide range of spatial joins.

Our experiments show that our method outperforms

current spatial join algorithms based on tree matching by

a wide margin. Further, its performance is superior even

when the tree-based methods have pre-computed indices.

This makes the spatial hash-join method highly competitive

both when the input datasets are dynamically generated and

when the datasets have pre-computed indices.

1 Introduction

Relational hash joins [1, 2, 3, 4, 5, 6, 7] yield excellent

performance, particularly for relations that are large

compared to buffer sizes. The hash-join paradigm is

well-studied in the relational domain. However, due to

difficulties peculiar to spatial joins, this method has not

been directly applicable to the spatial domain. Existing

spatial join methods have been tree-based for the most

part, with seeded trees [8, 9] being a particularly efficient

approach.

This work was supported in part by the Consortium for
International Earth Science Information Networkhg.

Permission to make digitahhard copy of part or all of this work for personal
or classroom use is ranted without fee provided that copies are not made

7or distributed for pro It or commercial advantage, the copyright notkx, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’966196 Montreal, Canada
01996 ACM 0-89791 -794-4196/0006,.. $3,50

The hash-join paradigm may yield other advantages

in the spatial domain besides efficiency. First, existing

hash-join software may be easily modified to implement

a spatial hash-join, facilitating integration with existing

database systems. Second, relational hash-join costs

depend mainly on input data sizes and can be easily

estimated. A spatial join following this paradigm may

also lead to greater predictability in costs, facilitating

spatial query planning and optimization. In contrast,

the costs of spatial joins based on tree matching or other

spatial indices can depend mostly on characteristics

such as spatial distribution or ordering in input stream

of the input data, and thus harder to estimate.

In this paper, we discuss the difficulties of applying

the hash-join paradigm to spatial joins, and propose

a framework for designing spatial hash-join methods.

Based on this framework, we implement a spatial hash-

join algorithm very similar to its relational counterpart,

and with similar advantages. We evaluate our method

by conducting experiments with a variety of data sets,

including real-life data.

Like relational hash-joins, our method partitions its

input into buckets during the partition phase and then

joins the buckets to produce join results in the join

phase. However, unlike relational joins, a partition

function in our framework comprises two components:

a set of bucket extents and an assignment function. The

assignment function may map a data item into multiple

buckets, and the partition functions for the two datasets

may differ.

Spatial joins proceed in two stages: the filter step and

the refinement step [10]. This paper focuses on the filter

step. We view the refinement step as an important but

orthogonal issue; any innovation in this step should also

be usable with our method.

Our experiments show that our spatial hash-join

method outperforms current spatial join algorithms

based on tree matching by wide margins, even when

the tree-based methods are given pre-computed indices.

This makes our method highly competitive both when

the input datasets are dynamically generated and when

they have pre-computed indices.

247

This paper is organized as follows. Section 2

discusses related work. Section 3 studies the difficulties

in applying the hash-join paradigm to spatial joins.

Our framework for spatial hash joins is presented

in Section 4. Section 5 presents our design of a

spatial hash-join algorithm, and Section 6 presents its

implementation. The results of our experiments are

given in Section 7. Section 8 discusses related issues,

and Section 9 concludes the paper.

———4—

Bucketl Bucket2

Figure 1: A simple spatial join. Data objects A and B

belong to one dataset, and X and Y to another. Boxes

with dashed lines represent hash buckets.

2 Related Work

Previous methods for spatial joins have generally as-

sumed pre-computed indices for the input datasets or

other forms of pre-computation, with the seeded tree

method [8, 9] being an exception. These algorithms in-

clude those based on join indices [11, 12], those based

on z-ordering [13, 10, 14], and those based on tree-like

indices [15]. Guting and Schilling [16] proposed a divide-

and-conquer algorithm based on seperational r-epresen-

tation. This method does not require spatial indices,

but does require external sorting for large data sets.

Tree-based methods include those based on the R-

tree and its variants [17, 18, 19, 20] and the seeded

tree method [8, 9]. R-trees are commonly used as

indices in spatial databases, and can be used to

facilitate spatial joins when they exist. Brinkhoff et al.

[21] proposed a method to join two existing R-trees,

which consists of an R-tree matching algorithm and a

collection of techniques to reduce CPU and disk 1/0

costs. The seeded-tree method [8, 9] may be used when

no indices exist, and delivers better performance. A

brief discussion of seeded trees also appears in Section

6.1.

The PBSM method of Patel and DeWitt [22] also

requires no indices, and operates by first dividing the

input into manageable partitions and joining them using

plane-sweeping. This method is discussed further in

Sections 4.3.1 and 8.

3 Difficulties with Spatial Joins

Two characteristics intrinsic to spatial joins prevent

direct application of relational join algorithms to spatial

joins. First, spatial data lack a natural total order

preserving spatial closeness. Although techniques based

on space-filling curves [13, 10, 14, 23] exist for defining

total orders over sets of spatial objects, such total

orders do not uniformly preserve spatial closeness, so

two objects adjacent in space can sometimes be far

away in the ordering. This difficulty prevents direct

application of relational techniques to spatial databases.

The second difficulty is that the relational hash-join

method is optimized for handling equi-joins, but spatial

join predicates are often much more complicated.

3.1 The Coherent-Assignment Problem

Relational hash-joins find pairs of tuples with identical

join-attribute values. Their partition functions hash

tuples with identical join-attribute values into the same

bucket. Spatial joins, on the other hand, must identify

pairs of objects with relationships more complicated

than equality. Placing objects with identical spatial

attributes into the same bucket does not suffice.

Difficulties arise at both the predicate and the join

operator levels. Consider the spatial intersection join,

which identifies pairs of objects whose spatial attribute

values overlap. Consider three objects A, B and X, and

denote the attribute value j of object A by A.j. For an

equi-join predicate, if X.j = A.j and A.j # B.j, we

know that X.j # B.j. On the other hand, if we know

that A intersects X, but A does not intersect B, we still

know nothing about whether B and X intersect.

Suppose objects A and B belong to one dataset,

and object X to another. In performing an equi-join

on attribute j, we could hash tuples A and X into

one bucket, and tuple B into another, and be certain

there are no matching pairs across the two buckets.

Unfortunately, we cannot do the same for a spatial

intersection join. Figure 1 shows three pairs of matching

objects (A, X), (B, X) and (B, Y). Although A and B

do not intersect, X intersects both of them. If we hash

A and X into one bucket, and B and Y into another, we

will miss identifying the intersecting pair (B, X). Unless

we hash all objects into one single bucket, we will always

miss some intersecting pairs, no matter how we divide

the objects between buckets.

An equi-join effectively constructs the equivalence

classes induced by the equality predicate over values

of the join attribute. The relational hash-join method

works well because partition functions create buckets

that fully include one or more of these equivalence

classes. The property most crucial to the performance

of the relational hash-join method is that the equi-join

equivalence classes are not split across buckets. Thus,

given a join predicate, we do not have to match objects

across buckets. We term this a coherent assignment

of attribute values to buckets with respect to a join

predicate.

Unfortunately, spatial join predicates do not always

248

define such equivalence classes, and it is impossible

to guarantee a coherent assignment of objects to hash

buckets with respect tospatial join predicates. That is,

we cannot divide the objects in the two datasets into

n groups, and ensure that the two objects appearing

in any matched pair always belong in the same group.

We call this the coherent-assignment problem. This

difficulty and the fact that spatial attributes are of

higher dimensions, and thus more complicated, make

spatial hashing a difficult problem.

4 Our Spatial Hash-Join Framework

We present our framework for designing spatial hash-

join algorithms in this section. Hash-join algorithms

for various spatial join predicates can be realized

through appropriate choices for the design parameters

of this framework. We borrow from relational-join

terminology, and call the operand datasets of a spatial

hash-join the inner and the outer datasets. Buckets

produced by partitioning the inner (outer) dataset or

relation are called the inner (outer) buckets. Our

algorithmic framework, like that of the relational hash-

join, has two phases: the partition phase and the join

phase.

Partition phase: place inner and outer dataset ob-

jects into buckets using spatial partition functions.

Join phase: join corresponding inner and outer buck-

ets to obtain results.

Relational hash-join algorithms have conformed to two

principles, one relating to the partition phase, and the

other to the join phase:

Single assignment: The partition function assigns

each input data item to exactly one bucket.

Single matching: Each bucket of the inner relation is

joined with exactly one bucket of the outer relation.

The partition phase divides the inner and outer relations

into some number of bucket pairs, each pair having

one inner bucket and one “corresponding” outer bucket.

The “single matching” principle states that each inner

or outer bucket appears in exactly one bucket pair. We

will call a pair of buckets to be joined in the join phase

a join bucket pair.

4.1 Primary Design Alternatives

The coherent assignment problem requires us to relax

the single-assignment or single-matching principle. The

two main alternatives are:

Multiple assignment: The partition function may

map an input object into multiple buckets.

Multiple matching: A bucket may appear in multiple

join bucket pairs.

haa~o~bla

dataaet 1

Bucket Bucket
11 12

I

haa~rable

dataaef 2

Bucket Bucket
22~?!,

(a)

haa;o:ble haah tabla
for

dataaet 1 dataaet 2

Bu&ket Bye$et Bu;fket E3y~t

.——. = —_. —
1 J;
I J —.

Figure 2: (a) A non-duplicative hash table produced by

the multiple-matching approach. (b) A duplicative hash

table produced by the multiple-assignment approach.

The benefit of the multiple-assignment approach is

algorithmic simplicity. The only conceptual difference

from relational hash-joins is that a partition function

now maps an input object to a set of buckets instead of

a single bucket. Its drawback is that data sizes may be

inflated after partitioning, resulting in more 1/0.

No size inflation occurs with multiple-matching.

However, we may need to read a bucket more than

once during the join phase, so we must schedule join-

phase reads carefully so as to minimize disk 1/0. Also,

identifying join buckets pairs is no longer trivial.

For the example in Figure 1, the multiple-matching

approach may hash the objects as in Figure 2(a). Since

object X in dataset 2 overlaps both objects A and B in

dataset 1, the join bucket pairs are (11, 21), (12, 22) and

(12, 21). During the matching phase, we must be able

to identify these bucket pairs.

There still remain scheduling and buffer-management

problems. For example, suppose the buffer can hold

only two objects and we join buckets pairs in the order

(12, 22), (11, 21) and (12, 21). When bucket 12 is needed

the second time, it would have been flushed to disk and

must be read from disk again, We must either endure

the buffer thrashing problem or carefully schedule the

processing of join buckets pairs.

Using the same example, multiple-assignment may

assign X into both buckets 21 and 22 (see Figure 2(b)).

During the matching phase, we need only match bucket

pairs (11, 21) and (21, 22). With this approach, buffer

thrashing is not a problem. However, object X is

written and read twice.

We believe duplication is particularly suitable in the

context of spatial joins. It has also been used with

spatial indices [20]. The use of duplication in spatial

index trees complicates insertion and deletion of objects.

However, this is not a drawback with data structures

for joins, since they are constructed and used once.

It is never necessary to update them once they are

built. Hybrids of these two main approaches may also

be appropriate for some situations.

249

4.2 Spatial Partition Function

Our spatial partition functions are defined by two

components: a assagnrnent function and a set of bucket

ezt ents, one bucket extent associated with each bucket.

The assignment function maps a spatial object to a set

of buckets. The maximum cardinality of this set is a

design parameter. Quite unlike relational hash-joins,

we allow the partition functions for the inner and outer

dataset to differ. This feature is useful in addressing

the coherent-assignment problem. A bucket extent

corresponds to a region (not necessarily contiguous) in

the space where the spatial join is to be computed, and

is used in assigning objects to buckets.

Spatial objects can be hashed on various properties

with different degrees of efficacy. For example, they

may be hashed based on the bit patterns of their binary

representations, or be transformed into points in higher

dimensional spaces and hashed on coordinates in these

spaces Our implementation focuses on hashing spatial

objects on their locations in the original space, though

our framework is not limited to hashing in the original

space. Since spatial objects are generally stored with

coordinate values in their original space, our approach

requires no additional transformations.

Bucket extents serve two main functions: (1) they

are used by the assignment function to determine the

buckets an input spatial object is mapped to, and (2)

they are used by the join phase to identify join bucket

pairs. As we hash in the original space, a bucket

extent corresponds to a region in the space where spatial

objects logically reside. A bucket extent is generally

suggestive of the spatial coverage of the objects assigned

to the bucket. However, it is not necessarily a bounding

box for the objects assigned to its associated bucket.

There is also no obvious counterpart to bucket extents

in relational hashing.

The assignment function assigns a spatial object

to buckets based on relationships between object at-

tributes and bucket extents. For example, it may assign

an object to a bucket whose extent overlaps it the most,

or to all buckets whose extents overlap it,

The design of a spatial hash-join algorithm consists

of determining: (1) the set of bucket extents, (2) the

assignment function, and (3) the join bucket pairs.

The choices made for these parameters can realize

either the multiple-assignment or the multiple-matching

approach, and affect efficiency.

4.2.1 Choosing Bucket Extents

The partition function must divide the input datasets

into approximately equal-sized buckets by properly

choosing the bucket extents and the assignment func-

tion. In addition to the locations, sizes and shapes of

the individual bucket extents, the following parameters

should be decided for the set of bucket extents:

U Design issues
——
I__/ Destgn choices

spatial hash
function design

c

.fs%L_. “’awgnment i
~ funct(on

__lC+l

[Or]glnal i I transformed I assignment swgnment

1:p~e_, 1:pace I criterion ~ multiplicity
——. — . .— ———

1

bucket
extents

r 3 Y
I

, I
a-l

~ ‘ntersec””” i Ez!!!5 I –d

Figure 3: Design space for partition

~m
functions..

Intersection: do extents overlap?

Coverage: does the union of all extents cover the map

area?

Partitioning: are extents determined by partitioning

the space statically or based on object distribution?

Mutability: are the bucket extents updated as data

are inserted into buckets? If so, how?

4.2.2 Choosing the Assignment Function

An assignment function maps an input object to a set

of buckets based on its relationship with the bucket

extents. An object may overlap or be contained by

a bucket’s extent, but still not be assigned to it.

Assignment function design consists of two related

aspects:

Assignment criterion: the spatial relationship be-

tween data objects and bucket extents upon which

assignment of objects to buckets is based.

Assignment multiplicity y: the number of buckets an

input object can be assigned to.

Some examples of assignment criterion are to assign

an object to: (1) all buckets whose extents overlap it,

(2) to all buckets whose extents fully contain it, or

(3) to the bucket whose center is nearest the object.

The assignment criterion may comprise several rules,

depending on the assignment multiplicity. When the

single-assignment principle is used, there must be a

series of tie-breaking assignment rules to choose a

single bucket when several buckets satisfy the primary

assignment rules. Figure 3 summarizes the design space

discussed so far for the partition functions.

4.2.3 Identifying Join Bucket Pairs

In principle, an inner bucket must be matched with

every outer bucket that may contain objects overlapping

the inner bucket’s objects. We may be able to reduce

this matching space significantly in practice depending

on the design of the inner and outer partition functions.

250

When the multiple-assignment principle is chosen

and the single-matching property preserved, each inner

bucket need only be joined with its corresponding

outer bucket. When the multiple-matching principle

is applied and each bucket may appear in many join

bucket pairs, known properties of the bucket extents

and assignment functions can be used to identify join

buckets pairs For example, if we know that every

bucket’s extent fully cent ains all objects assigned to it,

each inner bucket need only be joined with the outer

buckets whose extents overlap its extent. Methods

for identifying join-bucket pairs thus depend on the

partition function, an d are considered components of

its design.

4.3 Examples

We now present two straightforward examples for

intersection join based on our framework. The first

adopts the multiple-assignment approach, the second

the multiple-matching approach.

4.3.1 Example 1

Bucket extents: Tessellate the map area with equal,

non-overlapping regions, for example, with a regular

grid of n cells Each of these cells is the extent of

one bucket. The inner and the outer datasets have

the same set of bucket extents. The bucket extents

are immutable.

Assignment function: A data object is assigned to

all buckets whose extents overlap it. An object may

thus be assigned to multiple buckets.

Join-bucket pairs: Join each pair of inner and outer

buckets with the same extent (grid cell). This

method may produce spurious matching object pairs

when a pair of matching objects overlap the same

two bucket extents. We must eliminate spurious

results after the join.

The first drawback of this method is that bucket sizes

may be very imbalance. Depending on the spatial

distribution of input objects, some buckets may have

many objects, while others may be nearly empty.

Second, we must duplicate objects when they fall on

the boundary between two bucket extents, inflating data

size. Finally, additional effort is necessary to remove

redundant results.

The PBSM method [22] can also be interpreted using

our spatial join framework. In some ways, its data

partitioning scheme resembles the partition function

of Example 1. PBSM divides the plane into a large

number of grid cells, but instead of using a single grid

cell as a bucket extent, it avoids imbalance buckets by

grouping several possibly non-contiguous cells to derive

the equivalent of a bucket extent.

4.3.2 Example 2

Bucket extents: Start with n equal-sized, regular grid

cells covering the whole map area, each cell being a

bucket extent. The inner and outer datasets have

the same set of initial bucket extents. As objects

are assigned to a bucket, its extent is enlarged to

enclose them. Thus, the final bucket extents for the

inner and outer datasets may be different.

Assignment function: Each object is assigned to the

bucket whose extent is enlarged the least after

assignment, choosing the bucket whose extent has

the nearest center of gravity if there are ties.

Join bucket pairs: Join each pair of inner and outer

buckets whose extents overlap.

The drawback of this method is that during the join

phase, we must track the bucket pairs to be joined. A

bucket may participate in multiple join bucket pairs. If

the buffer size is not large enough, a bucket may need

to be read in several times during the join phase.

5 Our Design Choices

Several choices for the above design parameters are

feasible for implementing a given spatial join. We

do not seek an optimal method, since our goal here

is only to demonstrate the feasibility of our approach

and that it yields convincing performance gains. The

optimal spatial hash-join method may be different for

different join predicates and for input dataset with

different characteristics, and will be the subject of future

research.

We now design a spatial hash-join method for the

intersection join using our framework. The result-

ing method is simple in design and efficient when im-

plemented (see Section 6). We adopt the multiple-

assignment approach because of its conceptual simplic-

ity. It differs from the relational hash-join only in that

its partition function maps a data object to multiple

buckets. We expect that only a small amount of effort

will be required to modify hash-join irnplementations in

existing relational databases to realize this method.

We hash in the space where the objects reside, thus

avoiding the costs of transforming representations. Our

bucket extents are allowed to overlap, do not cover the

whole object-distribution space, and based on object

distribution in space.

This leaves open the initial values and the mutability

of the bucket extents, and the assignment functions.

Here we discuss only choices that affect the correctness

of our methods. Design

efficiency are discussed in

the inner dataset are:

choices affecting only the

Section 6. Our choices for

251

Bucket extents: Initial value: see Section 6. Mutability:

bucket extents are updated to enclose all assigned

objects.

Assi~nment fund ion: Assimment criterion: see Sec-

tion 6. Multiplicity: Each object is assigned to ex-

actly one bucket.

Under these choices a bucket extent is also a bounding

box of the objects assigned to it. However, an object

contained in the extent of a bucket may not belong to

that bucket. The design choices for the outer dat aset

are:

Bucket extents: Initial value: Outer bucket extents

= final inner bucket extents. If two inner buckets

have the same extent, relabel the extents and

associate one outer extent with each inner extent.

Mutability: extents are immutable.

Assignment function: Assignment criterion: An ob-

ject is assigned to all buckets whose extents overlap

it. Multiplicity: An object may be assigned to mul-

tiple buckets.

Our outer assignment criterion serves to reduce the

total number of outer dataset objects to be processed

in the join phase, since an object not overlapping any

bucket extent need not be assigned at all (see Section 6).

Identifying the join bucket pairs is trivial given these

choices of-parameters. Each inner bucket simply pairs

with the outer bucket with the same bucket extent.

We now show that our design produces correct and

non-redundant results for intersection joins. When

the the join phase begins, the corresponding buckets

have the same extents. Let the inner buckets be

A1, Az, ..., Ak, and the corresponding outer buckets

Bl, B2,Bk.

Theorem 1: For each inner dataset object in Ai, all

outer dataset objects that overlap it can be found in Bi,

Proof: We show that no outer dataset object outside

B, can overlap any object in A,. If an outer dataset

object p does not belong to B2, it does not overlap Bi’s

extent. Since Bi and /li have the same extent, p does

not overlap Ai’s extent. Since all inner dat aset objects

in A% are contained by Ai’s extent, p does not overlap

any inner dataset objects in Ai. ❑

Theorem 2: Joining all bucket pairs identified as

above produces the exact answer of the join.

Proof We know that a bucket contains at most one

copy of any object. Since each inner object is assigned

to only one inner bucket, and an inner bucket is joined

with exactly one outer bucket, an inner dat aset object

can meet any outer dataset object at most once when

considered for join. ❑

Any spatial hash join method following the above

design choices will produce the correct answer for

intersection joins. The actual choices for initial shape

and location of inner bucket extents and the assignment

criterion for the inner assignment function may affect

efficiency, but not algorithm correctness. These issues

are discussed further in Section 6.

This design can also be modified very easily to im-

plement containment queries. If we want to find object

pairs such that the inner dataset object contains the

outer dataset object, we modify the assignment crite-

rion for the outer assignment function to assign objects

to buckets whose bucket extents contain the object, and

to look for containment instead of overlapping object

pairs during the join phase. Every other aspect of the

algorithm stays the same.

6 Implementation

Producing equal-sized buckets is crucial to the perfor-

mance and stability of hash-join methods. For the

above design choices, it is best to choose the initial in-

ner bucket extents and an inner assignment criterion

that lead to a set of final inner buckets with the follow-

ing properties: (1) each bucket contains approximately

an equal number of objects, (2) bucket extents over-

lap as little as possible, and (3) the total area of the

bucket extents is minimized. The two latter require-

ments arise since the outer bucket extents are set to

final inner bucket extents. When bucket extent over-

laps are minimized, the probability of an outer dataset

object being assigned to multiple buckets is minimized.

When the total area of bucket extents is minimized, the

probability of not assigning an outer dataset object to

any bucket is maximized. These requirements are very

similar to the requirements for nodes of spatial index

trees. This suggests that our partition functions would

benefit from techniques developed for constructing spa-

tial index trees.

6.1 Determining Inner Bucket Extents

We choose rectangular bucket extents in our implemen-

tation, and use the bootstrap seeding technique [9] to

identify their initial configuration. Seeding tailors a

seeded tree for a join by setting its initial (or seed) lev-

els (see Figure 4). Bootstrap-seeding builds a seeded

tree directly from its underlying dataset. Readers are

referred to [9] for full details of this technique.

All key seed-level information is contained in the slots

[8, 9]. Using our present terminology, a slot can be

considered to represent a bucket extent and a set of

spatial objects. Initially, slot extents are points, and the

set of objects is empty. As objects are assigned to the

slots, their extents are updated to enclose the objects.

The slot extents determine how objects are assigned to

slots, and also largely determine the how effectively data

are grouped into subtrees. Determining the number and

initial extents of slots involves three steps:

252

seed levels

grown levels

1.

2.

3.

growny grown
subtree ❑ seed node subtree

■ grown node

Figure 4: Example of a seeded tree.

Determining the number of slots S. A formula

describing the upper and lower bounds for choosing

the number of slots was derived in [9]. In this work,

we use the average of the upper and lower bounds

as the number of buckets.

Sampling the input data set, the sample size being

some multiple of the number of slots.

Placing the S slots in the map area using information

from the sample. We identify S clusters among the

sample objects, and choose their centers to be the

slot locations. In [9], we examined several heuristics

to identify clusters efficiently. We use the nearest-

center heuristic in this implementation.

6.2 Inner Dataset Partitioning

We use the number and the initial extents of the slots

determined by the bootstrap-seeding process as the

number and the initial extents of the inner buckets. The

initial bucket extents are points. As objects are assigned

to a bucket, its extent enlarges to become the MBR of its

member objects. Our inner assignment criterion assigns

an object to a bucket, whose extent enlarges the least.

Bucket extent updating and the assignment criterion are

similar to insertion into seeded trees. These heuristics

reduce the total area and overlap of seeded-tree nodes,

and are likely to do the same for bucket extents.

6.3 Outer Dataset Partitioning and the Join

Phase

The outer bucket extents are immutable, and set to the

final extents of their corresponding inner buckets. To

partition the outer dataset, we assign a copy of an outer

dataset object to every bucket whose extent overlaps it.

If an object overlaps no bucket extents, we can discard

it since it is irrelevant to the join result. We call this

technique bucket-extent jiltertng. It is analogous to the

seed-level filtering technique in [8, 9].

The partitioning of both the inner and the outer

datasets uses a technique called batch wrztes. As in the

seeded tree algorithm! we write all buckets larger than a

pre-defined threshold to disk when the bucket contents

grow to fill whole buffer. This technique writes buckets

to disk mostly in sequential 1/0, and contributes greatly

to the performance of our method.

After the outer dataset is partitioned, pairs of inner

and outer buckets with the same extent are joined. The

sizes of buckets partitioned using our scheme are in

general smaller than the buffer size. Thus, two buckets

can be joined without additional 1/0 overhead. Since

the filter step is usually 1/0 intensive and our work

focuses on reducing 1/0 cost, we do not look for an

optimal method for the bucket-bucket join.

The algorithm we use to join a pair of buckets is

similar to the “brute force join” in [8] or the “indexed

nested loop join” in [22]. We first construct the inner

bucket into a quadratic-split-cost R-tree [17], and then

probe the objects of the outer bucket against it. This

approach requires only one bucket (instead of two)

to exist in the buffer. and reduces the chances of

buffer overflow during the join phase. If the R-tree

so constructed does overflow the buffer, we use LRU

buffer management as outer objects are probed against

the tree.

Our spatial hash-join method can be summarized as

follows:

PI Obtain initial bucket extents for the inner dataset

using bootstrap seeding. Assign each inner object

to one bucket based on the bucket extents and the

assignment criteria. Update bucket extents after

each assignment.

P2 Set the outer bucket extents to the final inner

bucket extents. Assign a copy of each outer object to

every outer bucket whose extent overlaps the object.

J 1 Join corresponding bucket pairs to produce result.

7 Experiments

We now study the behavior of our spatial hash-join

method, and compare its performance with other spatial

join methods. We conducted experiments on three

methods: spatial hash join (lf.7), seecled tree join (SJ),

and R-tree join.

The seeded-tree join method (SJ) constructs two

seeded-tree indices just prior to performing tree match-

ing for the join. The first tree is constructed using

the bootstrap-seeding technique, and the second is con-

structed by copy-seeding from the first tree [8]. We

study three variants of R-tree joins in our experiments.

RJ constructs two R-trees dynamically and then per-

forms tree matching. To offer the R-tree join a clear

advantage, we also considered an ideal case when the

input data is stored so that there is no buffer thrash-

ing at all during tree construction (though there may

be some during tree matching), This method is de-

noted as RJ(I), and is implemented by disregarding all

random read costs during tree construction. RJ(M)
is given two pre-computed R-tree indices, and simply

performs tree matching. RJ(M) is always the most

Method Description

HJ Spatial Hash Join

SJ Bootstrawseedirw method

E
R-tree join, no pre-existing indices

(both indices built before join)

buffer thrashing while building indices

R-tree join, two pre-existing indices

Table 1: Competing methods

efficient among the R-tree join variations, but we em-

phasize that it depends on pre-computed indices, and

cannot be applied to all cases in practice. The tree

matching step in SJ, RJ, RJ(I) and RJ(M), imple-

ments all the optimization techniques described in [21].

Table 1 summarizes these competing methods.

Our experiments have focused on the filter step. For

simplicity, we assume the sizes of disk blocks, memory

pages, and R-tree and seeded-tree nodes all to be 8K

bytes. Unless otherwise specified, we used a buffer of

512K bytes, The data files are assumed to contain

entries consisting of a 16-byte bounding box and a 4-

byte object identifier. Since we focus on the filter step,

we assume the output to consist 8-byte object identifier

pairs. Also, since the filter step is I/O-bound, we focus

on 1/0 costs in our measurements. The ratio of the cost

of accessing one disk block randomly to that of accessing

one disk block sequentially is assumed to be 5, unless

otherwise specified.

7.1 Experimental Data

The range and nature of data and other parameters used

in our study is shown in Table 2, A series of basic tests

established the performance of the HJ method under

conditions expected to be frequently encountered, and

a series of tests confirmed the stability and robustness of

the method. The stability tests included real-life data,

as well as data designed to induce degraded performance

in the algorithm.

We studied input datasets of varying sizes and degrees

of spatial clustering. The degree of clustering was

controlled by a simple scheme. When generating a

data set of z x y objects, we first generated z cluster

rectangles, whose centers were randomly distributed in

the map area. We then randomly distributed the centers

of y data rectangles within each clustering rectangle.

We could control the degree of clustering of the data set

by controlling the total area of the clustering rectangles.

We denote the cover quotient of the clustering rect angles

(total area of the clustering rectangles divided by the

map area) by (7CQ. The smaller the value of CCQ, the

more clustered the data set.

The length and the width of each clustering rectangle

Table 2: Experimental parameters

were chosen randomly and independently to lie between

O and a predefine upper bound. This upper bound con-

trolled the total area of the clustering rectangles. The

size and shape of data rectangles were similarly chosen

using a smaller upper bound. When clustering rect an-

gles or data rectangles extended over the boundary of

the map area, they were clipped to fit into the map area.

When a data rectangle extended over the boundary of

its clustering rectangle, it was not clipped. In the ex-

periments, the number of data objects per cluster was

set to be 200, and the number of clustering rectangles

was set according to the total number of data objects.

Without loss of generality, the map region under study

was assumed to range from O to 1 along both X and Y

axes.

7.1.1 Choice of Data Size and Clustering

We conducted two series of basic experiments. In

the first series, we fixed the cardinality of the outer

dataset at 100,000, resulting in an R-tree of 4 levels,

and varied the cardinality of the inner dataset from

20,000 to 80,000. The upper bound on the side length

of clustering rectangles was set to 0.04. The resulting

CCQ quotient of the clustering rectangles in the outer

dat aset was 0,2, meaning that the centers of all the data

objects in the outer dataset were restricted to 20% of

the map area.

To study the effect of spatial clustering of data on

joins, we fixed the cardinality of the inner and outer

datasets at 40,000 and 100,000, respectively, and varied

the degree of clustering of the data sets. We adjusted

the upper bound on side length of the clustering

rectangles so that the CCQ of the outer dataset was

0.2, 0.4, 0.6, 0.8 and 1.0, respectively. The upper bound

on side length of the clustering rectangles of the inner

dataset was the same as that of the outer dataset in

each experiment.

7.2 Basic Experiments

Figure 5 shows the results of various joins methods on

an example join. As clearly shown in the figure, RJ is

the worst method by far. This behavior occurs primarily

because R-trees are not designed to be constructed all

at once, and cause severe buffer thrashing when so

constructed. This trend held in all our experiments, so

254

““””~

.,.
ioin methods

Figure 5: Join method costs. Datasets sizes are lOOK

(2 M-bytes) and 40K objects (800 K-bytes), respectively.

C7CQ = 0.2.

we drop RJ from further consideration as a competitor

for HJ.

1400

1200

1000

800

600

400

200

“~
10 20 30 40 50 60 70 80 90

inner dataaet size (K-byte)

Figure 6: Join costs under different input dataset sizes

Figure 6 shows the results of the first series of basic

experiments, which varied input dataset sizes. SJ and

RJ(I) incurred the highest costs. Although RJ(I)
assumed no buffer thrashing during tree construction,

the nature of its tree construction algorithm still caused

its tree nodes to be written to disk using random 1/0,

increasing costs. It is noteworthy that while SJ did

not make the idealized assumptions of RJ(I), its tree-

construction techniques enable it to run faster than

RJ(I) in many cases. RJ(M) ran faster than RJ(I)
and SJ as itignores tree-construction costs altogether.

The costs of HJ are much lower than even those

of RJ(M), although HJ includes the costs of both

partitioning the input datasets and joining them, while

RJ(M) includes tree-matching costs only. The main

reason is that the tree matching process of RJ(M)
incurs random 1/0, while the join phase of HJ incurs

mainly sequential 1/0. Even though RJ(M) accesses

less data (only the pre-computed indices), the effects

of random 1/0 make it more expensive. Thus, HJ is

the method of choice even if the input datasets have

pre-computed R-trees.

Effect of Spatial Clustering of Input Data
1300 ~ I

J!!~~a=:g900 - +’”

o 800 ->

x 700 -~

600 -
... .. -a

,Q ., ., m,.. “

$’ 500 - ~.,..,.... 0

400

300 1- .–.––— .-.—---—-. -- —-- * 1
2“” ~~

0.2 0.4 0.6 0.s 1.2
CCQ of inner dataset’

Figure 7: Effect of data clustering on join methods

The second series of basic experiments studied the

effects of spatial clustering on join costs (see Figure 7).

Again, HJ demonstrates substantial performance gains

over all other methods.

For all methods except HJ, the processing costs were

higher when data were less clustered spatially. This is

because the degree of spatial clustering influences the

number of tree nodes accessed during the tree matching

step of these methods. HJ, on the other hand, incurred

almost constant costs as the degree of spatial clustering

varied. This confirms that the costs of our spatial

hash join method are easier to estimate than those

of competing methods, facilitating query planning and

optimization.

7.3 Stability Tests and Tests with Real-Life

Data

Our next series of experiments compared the stability

of various methods, These experiments were performed

with datasets with cardinalities of 100,000 and 40,000.

In experiment “CLU-UNI”, the inner dataset was

a clustered dataset with CCQ = 0.2, and the outer

dataset was a uniform dataset for which CCQ = 1. The

experiment “UNI-CLU” worked the other way around.

Experiment “EXCL” tested two spatially clustered

but negatively correlated spatial datasets, both having

CCQ = 0.2. Because of negative correlation, “EXCL”

produced only 40K matched object pairs, instead of the

approximately 70K pairs in other experiments.

We also ran tests with real-life data. These exper-

iments joined two datasets extracted from the TIGER

line files of the US Census Bureau [24]. The first dataset

was a street map with 131,461 objects, the second a map

of rivers and railway tracks with 128,971 objects. The

MBRs of the objects were used. Experiment “REAL12”

ran with the first dataset as the inner dataset and the

second dataset as the outer dataset, while “REAL21”

worked the other way around.

Figures 8 shows the results of these experiments. iYJ
ran as least 2.5 times faster than SJ, and at least 3 times

faster than RJ(I). Though comparisons with RJ(M)

255

Effect of ratio of random to sequential accass costs

4000 ~n❑ I’Ll

❑ w

❑ RJ(M)

❑ RJ(I)

UNI-CLU CLU-UNI EXCL REAL1 REAL2
input datasats

Figure 8: Stability tests and tests on real-life data.

5000

4500

4000 1
3500

3000

2500

2000

1500

1000

500

0
0 50 100 150 200 250

buffer size (number of pages)

Figure 9: Buffer size effects (real-life data).

are unfair since it assumes pre-computed indices, HJ
still runs approximately twice as fast as RJ(M).

Experiments “UNI-CLU”, “CLU-UNI” and ‘(EXCL”

all used input data of the same size, but with different

degrees of spatial clustering. Figure 8 again shows

that while the costs for rival methods varied under

different data characteristics, the costs for HJ were

almost constant for these three sets of input data. This

confirms that HJ is the most stable method among all

tested.

7.4 Effects of Buffer Sizes and ratio r

We also studied the effects of buffer size on the

join methods by varying buffer sizes from 24 pages

(192K Bytes) to 256 pages (2M bytes). Figure 9

shows the results of experiments with the real-life

datasets. Experiments with synthetic datasets show

similar trends. In general, HJ performs the best, and

RJ(M) comes in second, with SJ and RJ(I) being the

worst. As expected, the join costs rose for all methods

as the buffer size dropped. The costs for HJ stayed

low and relatively stable through out the whole range

of buffer sizes.

We also tested the effects of r, the ratio of random

to sequential block access costs, on the join costs. We

had set r = 5 in all our earlier experiments. Here we

show the join costs for r in the range 1–30. Figure

3500

~ 3000

g 2500
Q
G 2000
~
g 1500

~ 1000

500

o~
15 10 15 20 2s 30

r

Figure 10: Effects of ratio r (real-life data)

,~
1 5 10 15 20

ratio of raw-data file size to M BR file sizes

Figure 11: Projected performance given raw data,

10 shows the results of experiments with real-life data.

Tests with synthetic data show very similar trends.

HJ and SJ exploit the differences between random

and sequential block access costs, so their performance

improved faster than RJ(I) and RJ(M) as r increased.

It is noteworthy that HJ began to outperform all other

methods at very small values of r. This happened at

r N 2.08 for the synthetic datasets, and at r w 1.05 for

the real-life datasets. The costs for HJ are considerably

lower than all other methods even for r as small as 5. As

r increases to 30, the performance gaps between HJ and

other methods widen continuously but not drastically.

HJ does not require very large value of r to outperform

other methods.

8 Discussion

The outer dataset size may be inflated since multiple

assignment is used in the outer partition function.

On the other hand, bucket filtering deflates the outer

dataset size by discarding irrelevant objects during

partitioning. In the 14 experiments that we ran using

a 512K byte buffer, the number of additional copies

produced was 17.5’%0 of the original number of outer

dataset objects, on average. Bucket-filtering eliminated

an average of 12 .7~o of objects from the original outer

dat aset. The average net inflation of the outer dat aset

size was 5.270. The bucket-filtering effect tends to be

stronger when the outer dataset. is much larger than

256

the inner dataset, and with spatially clustered data.

Filtering actually reduced net outer dataset size by over

30% in some cases. The largest inflation from multiple

insertion was 62 .6’ZO, and the largest net inflation was

61.6%. We observed that inflation and bucket-filtering

effects can depend significantly on the number of and

initial settings for inner bucket extents. More research

is required on these issues.

An input dataset may comprise files containing raw

data, MBR, and object pointer pairs, and in some cases,

pre-computed spatial indices. The MBR and index

files tend to be similar in size, but raw data files may

be many times larger. Our experiments assume input

to be MBR files. If only raw data exists, we would

need to compute MBRs on the fly. We expect this

process to be 1/0 bound, and to increase read costs for

all methods except RJ(M), which cannot run in this

case because of its reliance on pre-computed R-trees.

Although the cost increase is the same for all methods,

it diminishes the the ratio by which HJ outperforms

other methods. Figure 11 projects the performance gain

of HJ over RJ(I) when input datasets exist only in

raw data format. We assume that raw data files of all

sizes generate the same MBR file, so that join costs

are affected only by the costs of reading input. As the

figure shows, even when the raw data is as much as

20 times larger than the MBR data size, HJ still runs

substantially faster than RJ(I).

When pre-computed R-trees exist, RJ(M) comes

closest to HJ. If MBR files also exist, .H.7 outperforms

RJ(M) substantially, as demonstrated by our exper-

iments. When R-trees exist, but not MBR files, HJ
can simply read the R-tree file, discard all internal tree

nodes, and treat the leaf nodes as its MBR file. The

performance advantages of HJ over RJ(M) will still

hold.

HJ outperforms SJ and RJ(M) by a large factor

in all cases, even though our comparison of HJ and

RJ(M) is manifestly unfair since RJ(M) assumes pre-

computed indices but HJ does not. Our experimental

results clearly show that HJ is a very efficient join

method whether or not pre-computed indices exist.

Patel and DeWitt [22] describe the implementation

of the filter and refinement steps for their PBSM join

method on the Paradise database system [25], and

report both 1/0 and CPU times. Our focus has

been on the filter step. The data partitioning phase

in PBSM corresponds to the partition phase in our

spatial hash-join framework (see Section 4.3. 1). We

can use the context of our framework to compare the

respective strategies of PBSM and of our design. The

PBSM equivalent of bucket extents are non-overlapping,

immutable, cover the the whole map area, and are

based on static space partitioning. Identical bucket

extents and assignment functions are used for both

input datasets. PBSM balances buckets by using

extents that may comprise many non-contiguous sub-

regions, It applies multiple assignment to both inner

and outer datasets, so they may both be inflated after

partitioning. Elimination of duplicate results is also

necessary. In contrast, our method uses bucket extents

that overlap and do not cover the whole map area. We

balance bucket sizes by choosing bucket extents that

are adaptive and based on the spatial distribution of

objects. Our bucket extents are initialized by sampling

input data, and evolve as input objects are assigned.

Our partition functions for the inner and outer datasets

are different. This asymmetry offers several benefits.

First, multiple assignment need only be used for one

dataset. The inner dataset is not inflated. Second,

our design allows bucket filtering, which can reduce

outer dataset size significantly. Its effects also serve to

counteract data inflation, and even outweigh it in some

cases. Third, our method produces no duplicate results,

and requires no post-processing effort for their removal.

9 Conclusions

Although hash-join methods are efficient for implement-

ing relational joins, it has been difficult to improve the

efficiency of spatial joins using relational hash-join ideas

due to the complexity of spatial joins predicates.

This paper overcomes the difficulties of applying

hash-join paradigm to spatial join and defines a new

framework for spatial hash-joins. Our spatial partition

functions have two components: a set of bucket extents

and an assignment function. An assignment function

may assign a data object into multiple buckets. Fur-

thermore, the partition functions for the two datasets

may be different.

We have designed and tested a spatial hash-join

method based on this framework. The partition func-

tion for the inner dataset is initialized by sampling the

dataset, and evolves as data are inserted. The partition

function for the outer dataset is immutable, and can as-

sign objects into multiple buckets. The method mirrors

relational hash-joins in other aspects. Our experiments

show that our spatial hash-join method far outperforms

earlier spatial join algorithms based on tree matching.

Acknowledgment:

The authors would like to thank Dr. T. Brinkhoff, Prof. H.-

P. Kriegel and Prof. B. Seeger for generously providing the

datasets used in our experiment with real-life data.

References

[1] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Ap-

plication of hash to data base machine and its archi-
tecture, ” New Generation Computing, vol. 1, no. 1, pp.

66-74, 1983.

[2] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,

M. R. Stonebraker, and D. Wood, “Implementation

257

techniques for main memory database systems,” in Pro-

ceedings of A CM SIGMOD International Conference on

Management of Data, pp. 1-8, 1984.

[3] D. J. DeWitt and R. Gerber, “Multiprocessor hash-

based join algorithms,” in Proceedings of VLDB 85, pp.

151-164, Stockholm, 1985.

[4] M. Nakayama, M. Kitsuregawa, and M. Takagi, ‘(Hash-

partitioned join method using dynamic destagingstrat-

egy,” in Proceedings of the l~th VLDB Conference, pp.

468-478, 1988.

[5] M. Kitsuregawa, M. Nakayama, and M. Takagi, “The

effect of bucket size tuning in the dynamic hybrid

grace hash join method, ” in Proceedings of the Fifteenth

International Conference on Very Large Data Bases,

pp. 257-266, Amsterdam, 1989.

[6] L. D. Shapiro, “Join processing in database systems

with large main memories, ” ACM Transactions on

Database Systems, vol. 11, no. 3, pp. 239-264, Septem-

ber 1986.

[7] P. Mishra and M. H. Eich, “Join processing in relational

databases,” ACM CornputEng Surveys, vol. 24, no. 1,

pp. 64-113, March 1992.

[8] M.-L. Lo and C. V. Ravishankar, “Spatial joins using

seeded trees,” in Proceedings of ACM SIGMOD Inter-

national Conference on Management of Data, pp. 209–

220, Minneapolis, MN, May 1994.

[9] M.-L. Lo aud C. V. Ravishankar, “Generating seeded

trees from data sets,” in The Fourth International

Symposium on Large Spatial Databases (Advances in

Spatial Databases: SSD ‘95), Portland, Maine, August

26-29 1995, Springer-Verlag.

[10] J. Orenstein, “A comparison of spatial query process-

ing techniques for native and parameter spaces, ” in Pro-

ceedings of A CM SIGMOD Inter-national Conference on

Management of Data, pp. 343-352, 1990.

[11] D. Rotem, “Spatial join indices,” in Proceedings of

International Conference on Data Engineering, pp.

500-509, Kobe, Japan 1991.

[12] W. Lu and J. Han, “Dist ante-associated join indices for

spatial range search ,“ in Proceedings of Internataond

Conference on Data Engineering, pp. 284-292, 1992.

[13] J. A. Orenstein, ‘(Redundancy in spatial databases,”

in Proceedings of A CM SIGMOD International Confer-

ence on Management of Data, Portland, OR, 1989.

[14] J. Orenstein, “An algorithm for computing the over-

lay of k-dimensional spaces,” in Advances in Spatial

Databases (SSD ‘91), O. Gunther and H.-J. Schek, ed-

itors, pp. 381–400, Zurich, Switzerland, August 28-30

1991, Springer-Verlag.

[15] O. Gunther, “Efficient computation of spatial joins,”

Proceedings of International Conference on Data Engi-

neering, pp. 50–59, 1993.

[17] A. Guttman, “R-trees: A dynamic index structure

for spatial searching,” Proceedings of ACM SIGMOD

International Conference on Management of Data, pp.

47-57, Aug. 1984.

[18] N. Beckmann, H.-P. Kriegel, R. Schneider, and

B. Seeger, “The R*-tree: An efficient and robust access

method for points and rectangles,” Proceedings of A CM

SIGMOD International Conference on Management of

Data, pp. 322-332, May 1990.

[19] C. Faloutsos, T. Sellis, and N. Roussopoulos, “Analysis

of object oriented spatial access methods,” Proceedings

of ACM SIGMOD International Conference on Man-

agement of Data, pp. 427–439, 1987.

[20] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-

tree: A dynamic index for multi-dimensional objects,”

in Proceedings of Very Large Data Bases, pp. 3–11,

Brighton, England, 1987.

[21] T. Brinkhoff, H.-P. Kriegel, and B, Seeger, “Efficient

processing of spatial joins using R-trees,” Proceedings

of ACM SIGMOD International Conference on Man-

agement of Data, pp. 237–246, May 1993.

[22] J. M. Patel and D. DeWitt, “Partition based spatial-

merge join, “ in Proceedings of the 1996A CM- SIGMOD

conference, Montreal, Canada, 3-6 June 1996.

[23] C. Faloutsos and Y. Rong, “Dot: A spatial access

method using fractals, “ in Proceedings of International

Conference on Data Engineering, pp. 152-159, 1991.

[24] B. of Census, “Tiger/lines precensus files: 1990 techni-

caJ documentation,” TechnicaJ report, Bureau of Cen-

sus, Washington, DC, 1989.

[25] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and

J. Yu, “Client-server paradise,” in Proceedings of the

.%Nz VLDB Conference, Santiage, Chile, September

1994.

[16] R. H. Guting and W. Schilling, “A practical divide-

and-conquer algorithm for the rectangle intersection

problem,” Information Sciences, vol. 42, no. 2, pp. 95-

112, July 1987.

258

