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Abstract

Existing methods for spatial joins assume the existence of

indices for the participating data sets. This assumption

is not realistic for applications involving multiple map

layer overlays or for queries involving non-spatial selections.

In this paper, we explore a spatiaJ join method that

dynamically constructs index trees called seeded trees at join

time. This method uses knowledge of thedata sets involved

in the join to speed up the join process.

Seeded trees are R-tree-like structures, and are divided

into the seed levels and the grown levels. The nodes in

the seed levels are used to guide tree growth during tree

construction. The seed levels can also be used to filter out

some input data during construction, thereby reducing tree

size. We develop a technique that uses intermediate linked

lists during tree construction and significantly speeds up

the tree construction process. The technique allows a large

number of random disk accesses during tree construction to

be replaced by smsller numbers of sequential accesses.

Our performance studies show that spatial joins using

seeded trees outperform those using other methods signif-

icantly in terms of disk 1/0. The CPU penalties incurred

are also lower except when seed-level filtering is used.

1 Introduction

Spatial databases and GIS systems have received in-

creasing attention in recent years. Most research on

query processing in such system has focused on the spa-

tial selection, or spatial search operation. Examples of

spatial selection operations are window queries, which

find all spatial objects contained within or intersect-

ing a predefine window area, and point queries, which

find all objects overlapping a particular point in space.

Many spatial access methods have been devised to fa-

cilitate such operations [Sam90].
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However, relatively little work has been done on the

spatial join, one of the most important operations for

spatial databases and GIS applications. Spatial joins

are expensive but necessary in such applications as

map overlay. Existing join algorithms can generally be

divided into those based on join indices, those based

on z-ordering, and those based on tree-like indices.

The spatial join index [Rot91] method builds a spatial

version of a join index [Va187] for two data sets if spatial

joins between these data sets are known to be frequent.

This method trades the overhead of pre-computation at

index building time for accelerated processing at join

invocation time. It assumes that grid-files [NHS84] are

used as the main access method, which must exist for

the relevant data sets before spatial join indices can

be built for them. A similar method using distance-

associated join indices [LH92] has also been proposed

to speed up spatial range queries. Orenstein [Ore89,

0re90, 0re91] proposed z-order-based algorithms to

perform both spatial selection and join. In these

algorithms, the space under study is first decomposed

into elements, which can then be sequenced by their z-

order and organized using one-dimensional indices such

as the B+ tree. Joining two spatial data sets amounts

to merging two z-value streams.

1.1 Tree-like Index-Based Join Algorithms

Several spatial join algorithms using tree-like indices

have also been proposed. Gunther [Gun93] analyzed the

applicability to spatial joins of the join techniques used

in relational database systems, and proposed a general

join algorithm using the concept of generalization trees,

which are abstractions of tree-like spatial indices. The

algorithm can be applied to join two data sets as long

as some tree-like indices exist for both data sets. Since

breadth-first order is used in tree traversal, the pairs of

matching tree-nodes at tree level n must be recorded

before the algorithm can descend to level n + 1. In

practice, the amount of memory required to hold such

information could be large for indices with high fan-

out, such as R-trees. Analytical models were to used

to study the performance of various techniques, but
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memory constraints were not considered in depth.

The R-tree and its variations [Gut84, BKSS90, FSR87,

SRF87] have been gaining popularity due to their rel-

atively simple structure and their efficient handling of

spatial objects with extent, such as region objects. An

R-tree is a B+-tree like access method that stores mul-

tidimensional spatial objects. A non-leaf R-tree node

contains entries of the form (mbr, cp), where cp is a

pointer to a child node and mbr is the minimum bound-

ing rectangle of all objects described by entries in the

child node. A leaf-node contains entries of the form

(rnbr, old), where old refers to a spatial object, and

mbr is its minimum bounding rectangle. R-trees refer-

ence their stored spatial objects in whole units, without

clipping or transforming them into higher-dimensional

points.

Brinkhoff et al. [BKS93] proposed a join algorithm

based on the R-tree or variations. This join method

requires each participating data set to have a pre-

computed R-tree index. The join algorithm consists

of a R-tree matching algorithm and a collection of

techniques to reduce CPU and disk 1/0 costs,

The tree matching algorithm is straightforward. It

starts by matching the children of the root nodes of the

two R-trees for overlaps, and then recursively traverses

down the matched children, resulting in a depth-first

tree traversing order. Results are reported when leaf

nodes are reached in both trees. We will denote this

tree matching component of the join algorithm by Tikl

in subsequent discussions.

Improvement techniques described in the paper in-

cluded those aimed at reducing CPU costs and those

aimed at reducing the amount of disk 1/0. When the

bounding boxes representing two R-tree nodes Iil and

Rz were found to overlap, their intersection area was

used to eliminate some children from further considera-

tion. If the bounding box of a child of RI did not over-

lap the intersection area, no answer would result from

mat thing this child and any child of R2. Also, when

looking for overlapping child pairs, the children could be

sorted on one axis, and a plane-sweeping technique used

to further reduce the number of comparisons needed.

As a result, the number of overlapping tests in the join

process was significantly reduced. To reduce disk 1/0,

plane-sweeping order was also used to decide the order

in which the children of a node were traversed. A page

pinning technique based on degrees was also used, The

results also showed decreases in 1/0 costs, though less

substantial than those in CPU costs. Realistic buffer

sizes were used in performance experiments.

1.2 Motivation

All these previous methods require some index struc-

tures to have been constructed for the input data sets

and/or some pre-computation to have been done be-

fore a spatial join is invoked. Such requirements can

be inconvenient or even impossible to satisfy in many

situations. First, it may not be cost-effective to main-

tain index structures for all data sets regardless of their

usage patterns and frequencies. In addition, joins may

be required on the results of a series of previous selec-

tions on non-spatial attributes, the results of previous

spatial joins, or the results of some other spatial oper-

ations. Clearly, in such cases, no spatial indices exist

for the newly derived data sets. Any pre-computed spa-

tial index for the original data sets may not be easily or

efficiently applied to the join operation.

As an example, consider two data sets DB and

Dp that cover some common area. DB contains all

buildings in the area , and DP contains all parks in

the area. Assuming that R-tree indices have been

constructed for both DB and DP, consider the following

join operations:

Ql: Find all buildings that overlap with a park

Q2: Find all government-owned buildings that overlap

with a park.

For the first query, existing algorithms, such as that

of Brinkhoff [BKS93], can be applied using the pre-

computed R-trees. However, for the second query, if

the total number of buildings is large, and only a small

fraction of the buildings is government-owned, it may

be more efficient to perform a non-spatial selection first

to find the set of all government-owned buildings and

then perform the spatial join. This approach would

involve an intermediate data set for which no spatial

index exists.

In real-life applications, it is also common for a spatial

query to involve joins between multiple data sets. If an

input to a spatial join is the output of previous spatial

joins, it might be only remotely related to the original

data set. Utilizing pre-computed access methods for

the original data sets for such queries could be very

inefficient or infeasible. Other spatial operations such

as re-classijicatiorz, aggregation and buffering [SE90]

may also occur in queries, requiring transformation

of the original data sets and further complicating the

situation, For convenience, we call a data set that is

the output of an earlier spatial or non-spatial operation

a derived data set,

Our approach to supporting such queries is to dynam-

ically build access methods for the derived data mts as

necessary to support spatial join. However, most spatial

access methods [Gut84, BKSS90, FSR87, SRF87] were

originally designed for a different context. In particular,

such indices are assumed to be built up incrementally,

so the construction algorithms for these indices are not

optimized for all-at-once construction. Most of these in-

dices are designed to minimize the cost of spatial selec-

tion, not that of spatial join. Thus, they tend to reduce

the average number of disk accesses per spatial selec-
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tion and the worst-case selection costs, and to minimize

disk space consumption, Such characteristics are not al-

ways the most important ones in the context of spatial

joins. In addition, there is useful information available

at join time that existing spatial index construction al-

gorithms do not exploit. For example, the sizes of the

input data sets are known at join time. So is the spatial

distribution characteristics of these data sets. We need

a spatial data structure that is inexpensive to create at

join time, and takes advantage of information available

at join time to support efficient spatial join processing.

In this paper, we address this problem with a

new spatial join method using index structures called

seeded trees. We assume a system in which the

R-tree is the main type of spatial index, but our

method does not require R-tree-like indices to pre-

exist for both participating data sets. Thus, it handles

situations where using pre-computed indices is not

practical. The seeded trees are constructed dynamically,

its construction algorithm taking advantage of the

information about the join and the input data sets

available at join time. Upon encountering a join

operation, a seeded tree is first constructed for one of the

participating data sets. The join then proceeds, using

some standard tree matching algorithm to compute

results. Our method works with any tree matching

algorithm, but we will use algorithm TM proposed in

[BKS93] as the tree matching component of our method,

given its simplicity and reasonable performance. Our

experiments show that our method outperforms existing

methods, both during tree construction and actual join

phases.

This paper is organized as follows. Section 2

describes the structure and behavior of the seeded trees

in detail. Section 3 presents techniques to reduce

tree construction costs, Section 4 reports on our

performance studies. Section 5 discusses related issues,

and Section 6 concludes this paper.

2 Seeded Trees

Let us assume that we want to join a derived data set

DS, for which no pre-computed spatial index exists,

with an ordinary data set DR , for which we are given an

R-tree index. Our algorithm constructs a seeded tree for

the derived data set, and matches the seeded tree with

the existing R-tree index. Let Ts denote the seeded tree

for DS, and let TR denote the R-tree for DR.

The central idea behind the seeded tree method is to

use available information to reduce join costs. When a

seeded tree Ts is to be constructed for Ds, we know

that DR and its R-tree TR will be used in the join

proceae. We can make use of the characteristics of

DR and TR to expedite the join process. It has been

noted that the performance of an R-tree-like index

depends not only on its constituent data objects but

m

m ~q Bounding box in tree 2

■ Date object in tree 2
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= Bounding box in tree 1

(c)

Figure 1: Beneficial and non-beneficialformation of bounding
boxesin a seededtree.

also on the order in which data objects were inserted

into it [Gut84, BKSS90]. The data inserted earlier will

decide the initial organization of the tree and hence the

position in the tree of the data inserted subsequently.

It has also been observed that deleting and re-inserting

a fraction of the data objects in an R-tree improves its

performance [BKSS90]. Such phenomena suggest that

when constructing a seeded tree for a spatial join, we

can start with a small tree to guide tree growth, instead

of starting from a single root node. Furthermore, since

we know the seeded tree will be matched with TR, the

characteristics of TR can be used to determine this small

initial tree. By choosing the information used in the

initial tree well, we may expect to have a seeded tree

that is shaped more suitably for joining with DR.

The importance of tree organization in spatial joins

is illustrated by the example in Figure la. Say we have

an R-tree TR and fourteen data objects to be inserted

into a seeded tree TS, and that TR will be joined with

Ts. Assume tree fan-outs of four, Figure lb shows the

bounding boxes of the children of the root of Ts when

the bounding boxes are organized to achieve smallest

area. If the data objects are inserted into Ts in such an

order that these bounding boxes are actually achieved,

the join process will match each of the seeded tree

bounding boxes BS1, BS2, BS3 and BS4 against two

bounding boxes in TR. However, if the bounding boxes

in Ts are allowed to be non-minimal but are organized

as in Figure lc, each seeded tree bounding box will be

matched against only one bounding box in TR. Thus,

the criteria for organizing tree indices are different when

the tree is optimized ‘for spatial selection and when the

tree is optimized for spatial join. If we can create an

initial tree so that the data objects will be inBerted as
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Figure 2: Exampleof a seededtree.

in Figure lc, both 1/0 and CPU cost can be reduced

during the join process.

In the seeded tree method, this goal is achieved by

copying the first k levels of the R-tree TR to the seeded

tree. Structurally, a seeded tree consists of the seed

levels and grown levels (see Figure 2). The tree nodes

at the seed levels are called seed nodes, and those at the

grown levels are called grown nodes. The seed levels

start from the root and continue consecutively for a

small number of levels. The grown levels span from the

children of the last seed level to the leaf level. As with

R-tree nodes, a non-leaf node in the seeded tree contains

entries of the form (mbr, cp), where cp points to a child

node, and mbr is the minimum bounding rectangle of all

objects cent ained in the child node. A leaf node contains

entries of the form (rnbr, old), where old refers to a

spatial object in the database, and mbr is the bounding

box of that object. The entries in a seed node can have

an additional shadow field, if seed level jiltering will be

performed during data insertion (see Section 3.2). In

the following discussion we assume shadow fields do not

exist.

2.1 Seeding Phase

The construction of a seeded tree consists of a seeding

phase, a growzng phase and a simple clean-up phase.

The seed levels are numbered from O (the root level)

through k – 1, and the grown levels span from level k

to level 1 (the leaf level).

In the seeding phase, the seed levels of the seeded

tree T5 are set up by copying over the top k levels

of the R-tree TR. The R-tree TR, from which the

copied information is derived, is called the seeding tree.

The bounding box fields of the TR nodes may undergo

some simple transformations before being copied into

corresponding T5 nodes. The pointer fields of the seed

nodes at levels O to k – 2 are set to point to their child

nodes. The pointer fields of level k — 1 seed nodes are

set to NULL. We call each (mbr, cp) pair at level k – 1

a slot, and level k – 1 of the seeded tree, the slot level.

The information copied into the seed nodes will guide

data insertion in the growing phase, thus deciding the

(

(
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El R3 o

L
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—

J
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0

R2

L ——— —. —__

Figure 3: Efficientand inefficientboundingboxes

shape into which the tree will eventually grow.

The seed levels of the seeded tree have the following

properties:

:1)

:2)

:3)

The seed nodes at the slot level have null pointers

but non-null bounding boxes.

During tree construction, the bounding boxes in the

seed nodes are used only to guide data insertion.

Thus, in a seed node, the value of mbr in a bounding

box and pointer pair (mbr, cp) need not reflect the

true minimal bounding box of all data reachable

through cp, The bounding box fields must be

modified into the true minimal bounding boxes

before tree matching begins.

Although the bounding box fields of seed nodes

and the pointer fields of the slot level nodes may

change as needed during data insertion (the growing

phase), the structure of the seed levels never changes.

In particular, node spltttzng at the grown levels

never propagates upwards into the seed levels. The

behavior of the grown nodes will be described in

detail in Section 2.2.

Since the seed levels guide the growth of the tree,

the values in the bounding box fields of seed nodes are

crucial to the performance of the seeded tree. Simply

copying over the bounding boxes from the seeding

tree TR to the seeded tree TS may not always be

the best strategy. Copying badly formed minimum

bounding boxes from the seeding tree will penalize the

performance of the seeded tree. As an example, consider

Figure 3, where minimal bounding box 111 contains

two long rectangles RI and R2, and minimal bounding

box B2 contains two squares R3 and R4. As a result,

bounding box B1 has a large dead area and only badly

describes its children, whereas B2 is a more compact and

better description of its children. If the bounding boxes

B1 and B2 were to be copied unchanged into the seeded

tree, and we use minimal area increase as the criterion

for insertion [Gut84], object S1 would be inserted into

B1 instead of B2, which could result in unnecessary disk

accesses during the join process.
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Other information can be copied into the bounding

box field of seed nodes. In the previous example, if we

had copied the center points of bounding boxes from

the seeding tree, S1 would have been inserted properly

into Bz. In this study we investigate three different

strategies for copying information from the bounding

box fields of seeding tree nodes:

Cl: copy the minimal bounding boxes.

(72: copy the center points of the minimal bounding

boxes.

(73: At the slot level, copy the center points of the

minimal bounding boxes. At other levels, the

bounding box field contains the true minimum

bounding box of its children.

Our results show that copy strategies Cz and C3 almost

always out-perform strategy Cl.

2.2 Growing Phase

During the growing phase, data objects in D5 are

inserted into the seeded tree. Figure 4 shows an example

of seeded tree growth. To insert a data object, we

traverse the tree from the root to the slot level, at

each level choosing a suitable node to traverse from

the next level, Eventually the slot level is reached

and a slot chosen for inserting the data. If this is the

first insertion through this slot, the child pointer of the

slot will be NULL. In this case, a new grown node is

allocated, the child pointer is set to point to the new

node, and the data object inserted into it. Otherwise

the data’are inserted into the grown node found through

the slot pointer. This grown node behaves like the

root of an ordinary R-tree. When it overflows due to

insertions, it will be split into two grown nodes, and

a third grown node allocated to become the parent of

the two nodes. The slot pointer is modified to point to

the new root. Subsequent insertions through this slot

behave like ordinary R-tree insertions, the root of the

R-tree being the node pointed to by the slot pointer.

Recall that node splitting does not propagate up to

the seed levels, and that the structure of the seed levels

remains unchanged during the whole growing phase.

Thus, a seeded tree can be visualized as consisting of

a small tree of seed nodes, with an R-tree forest of

grown nodes attached to the slots. The R-tree pointed

to by the each slot pointer is called a grown subtree (see

Figure 2).

At each seed level we must choose a child from the

next level to traverse, until a slot is found. We make this

choice based on the information stored in the bounding

box fields of each node. The exact criterion for child

selection depends on whether the value stored is a

central point or an area, If central points are stored, we

choose a child whose central point is close to the central

point of the data being inserted. If areas are stored,

ASI s
— .

(a)

A

S1 s
—

Q 2

RI R2 R3

(b)

❑ seed node

■ grown node

E data rectangle

B

S1 s

G––
2

G1 G3
R3

RI R2 R4

(c)

Figure 4: Exampleof seeded tree growth. The fan-out of tree
nodes is two. In (a) the seed levels havejust been set up. In (b)
rectanglesRI, R2 and R3 are inserted through slot S1 and S2.
GrownnodesGI andG2 are allocatedas a result. In (c), rectangle
R4 is inserted throughslot S1, and ovetflows G1. A new root G4
of the sub-treeis allocatedand S1 is madeto point to it.

we choose a child that yields the smallest bounding

box area after insertion, subtracting from it the sum

of the areas of the old bounding box and the input

rectangle. This criterion is the same as that used in

R-tree construction.

The bounding box fields of the traversed seed nodes

are not always updated after each data insertion, We

can choose whether to update these bounding boxes,

and how how to update them. If we choose not to

update these bounding boxes, subsequent insertions will

continue using the original bounding boxes in trying to

find a slot, and will be guided only by the characteristics

of the seeding tree. Updating bounding boxes right

after each insertion causes the bounding boxes to reflect

the data inserted through their associated pointer at all

times, so that subsequent insertions will be guided not

only by the information derived from the seeding tree

but also by the part of data set IIs inserted so far. In

this study, we investigate the following bounding box

update policies:

U1: No updates after insertions.

tY2: Update traversed bounding boxes after each inser-

tion to enclose the inserted data objects and the orig-

inal seed bounding box.

C73: Same as U2, but the updated bounding box en-

closes only inserted data, but not the seed bounding

box.

U4: Update bounding box at the slot level as in Uz.

Bounding boxes at other seed levels are not updated.

U5: Update bounding box at the slot level as in U3.

Bounding boxes at other seed levels are not updated.

The bounding boxes

in ordinary R-trees.

at the grown level are updated as
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The clean-up phase begins after all data object in DS

are inserted into the seeded tree. The bounding box

fields of seed node are adjusted to be the true minimum

bounding boxes of their children. Slots containing no

data objects are deleted and relevant data structures

made consistent.

The tree matching process begins after the seeded tree

is built. Note that with the above insert algorithm,

more data objects may have been inserted into some

slots than into others. As a result, grown subtrees

may have different heights. However, since the tree

matching procedure TM [BKS93] does not require the

participating trees to be balanced, it can be applied

directly without any difficulty. Furthermore, any

optimization technique developed for mat thing R-trees

can be applied to matching seeded trees as long as tree

balance is not a pre-requisite.

3 Tree Construction Improvements

Since traditional tree-like indices have been optimized

for incremental updates rather than for being con-

structed all at once, their total construction costs can

be high. As we construct seeded trees dynamically at

join time, it is important that we reduce such costs. In

this section, we examine a method that uses interme-

diate linked lists to eliminate most of the random disk

accesses during tree construction, hence substantially

reducing total join costs. We also present a technique

that exploits the structure of the seed levels to reduce

the sizes of seeded trees.

3.1 T’uning Construction Costs

We have found that the costs of constructing tree-like

indices all at once arise mainly from buffer misses as the

trees grow and overflow the memory buffer space. The

actual construction costs depend on the relative sizes of

the tree and the buffer. For both R-trees and seeded

trees using straightforward construction algorithms,

such costs can be very high. In the particularly bad

cases, buffer misses have resulted in disk 1/0 costs

several times higher than that of the actual join process.

For example, we have observed that constructing an R-

tree for a 800 K-byte data set with 40K data objects,

using a 512 page buffer with lK-byte page size can

result in 7,234 disk accesses during construction (see

Table 2, second row). This number is nine times the

number of disk accesses needed to read the input data

set, disregarding the difference between random and

sequential disk accesses, and three times the number

of disk access needed for a match with an R-tree having

100K entries. Another factor affecting the construction

cost is the degree of clustering in the input data stream.

If data objects close to each other in space are also close

in their input order, the chances of buffer misses will be

lower. However, such clustering is hard to guarantee in

general.

For seeded trees, we have been able to avoid most

random disk accesses due to buffer misses by forming

intermediate linked lists under the slots (see Figure 5).

During the growing phase, if we estimate that the tree

size will be larger than the buffer size, the data inserted

through a slot will not be built into a grown subtree

immediately, but first organized into a linked list of

data pages. A data page in the linked lists contains an

array of entries, each with a bounding box and a data

pointer field. The linked lists grow as data objects are

inserted. Eventually all data pages in the buffer will

be allocated. If we now want to insert an additional

data object into a linked list in which all data pages

are full, we write all linked lists longer than a small

pre-defined constant to disks, freeing up most of the

buffer space. The corresponding slot pointers are reset

to NULL. The set of linked lists so written is called a

batch. The insertion process then proceeds as before.

When all data objects in DS are inserted, we can start

constructing grown subtrees from the linked lists. An

R-tree is built for each group of linked lists that have

been grown under the same slot, using the data objects

recorded in the lists. The slot pointer is then modified

to point to the root the R-tree.

By using such intermediate linked lists, we can

construct the grown subtrees one by one instead of all

together. Since there are many slots in the seeded tree,

and hence many grown subtrees, the average size of

a grown subtree is much smaller than the size an R-

tree built with the same input data. The chances of

a grown subtree overflowing the buffer are therefore

much smaller, and the number of random disk access

is significantly reduced. The price this method must

pay is an increase in the number of sequential accesses

for writing and reading the linked lists. However, since

sequential access is much faster than random access in

disk 1/0, this results in much faster construction times.

The number of slots in a seeded tree is determined

by the number of seed levels. For as few as two

seed levels, the number of slots varies be from a few

tens to hundreds, assuming at least a fan-out of at

least 50. This means that the algorithm could work

for seeded trees of size at least tens of times larger

than the buffer size. Note that even if some grown

subtrees do overflow the buffer, they are likely to be

much smaller than R-trees built using the same input,

and the penalty incurred likely to be much smaller.

In practice, however, buffers are unlikely to overflow

even with some data skew since the average subtree

size can be made much smaller than the buffer size, In

our experiments, we have constructed seeded trees with

more than 2,500 nodes using a 512-page buffer size. The

worst buffer “overflow we ha~e experien-ced

tree construction is two buffer misses.

during seeded
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Figure 5: Treeconstructionusing linkedlists. Assumeeach data page has a capacityof two data objects,and the buffer has a capacity
of 10 pages. (a) showsfour linked lists formed under the four slots. All 10 pages in the bufferhavebeen allocated,and one additionaldata
object is now insertedinto linkedlist underslot SI, resultingin bufferoverflow.In(b), the batchof linkedlists formedin (a) has beenwrittento
disk due to bufferoverflow.A new linkedlist is formedunder SI for the dataobject insertedin the last step. Grownsubtreesare constructed
usingthe data in the linkedlists when all the data objectsare inserted. (c) showsone grownsubtreeconstmctedusina linked lists LI I and
LIZ, the linkedlists constructedunderslot S1.

3.2 Reducing Tree Sizes with Seed Level

Filtering

The seed levels of the seeded tree serve one additional

function: they can be used to reduce the seeded tree

size. Smaller tree sizes incur less disk 1/0 during both

tree construction and actual join time.

It is easy to see that a rectangle overlaps some data

objects indexed by an R-tree if and only if it overlaps

at least one bounding box at each level of that R-tree.

Since the seed levels of TS resemble the first k levels

of the R-tree T~, they can be used to test whether a

data object overlaps TR. Data objects found to be non-

overlapping with TR need not be inserted into Ts at all.

We call this test seed level filtering.

When seed level filtering is used, the entries in the

seed nodes carry one additional bounding box field

during tree construction time, called shadow. When

seeding phase information is copied from the TR to the

seed levels of Ts, the mbr fields of the TR nodes are

copied into the shadow fields of the corresponding Ts

nodes without change. Once copied, these fields are

not changed during the entire tree construction phase.

When a data object is to be inserted during the growing

phase, we first check if the data object overlaps at least

one shadow field at each of the k seed levels. If there is

no overlap, the data object does -not overlap any data

object in DR and need not be inserted into TS at all.

The shadow fields are not used after tree construction,

and so the space occupied by them becomes free.

4 Experiments

Assume that a spatial join is to be performed on a

derived data set Ds and a data set Dn, for which an R-

tree TR exists. We conducted experiments with seeded-

tree joins using three spat ial join algorithms: S TJ,
RTJ, and BFJ. Algorithm STJ (Seeded Tree Join) is

our algorithm, as described so far. It constructs a seeded

“ . .

tree Ts for the data set D.s, and then matches the tree

indices Ts and TR. Algorithm RTJ (R- Tree Join) is a

simple variation of the algorithm proposed by Brinkhoff

et al. [BKS93]. It first constructs an R-tree Ts for Ds,

and then matches Ts with TR. Algorithm BFJ (Brute

Force Join) simply performs a series of window queries

on the R-tree TR, using the data rectangles in D5 as

query windows. The aggregation of answers to these

window queries is equivalent to a spatial join between

DR and Ds. RTJ and STJ both use the CPU and

disk 1/0 tuning techniques described in [BKS93]. For

generality, the original R tree structure was used, and

not any of its variations.

For simplicity, we assume that both the disk page

size and the memory page size are lK bytes, as are

the sizes of both the seeded tree nodes and the R-tree

nodes. The data files are assumed to contain entries

consisting of a 16-byte bounding box and a 4-byte object

identifier. We also assume a dedicated buffer of 512

pages. For algorithms STJ and RTJJ the buffer is

used during both tree construction and tree matching.

During construction of T5, the buffer pages cent aining

newly created tree nodes are marked as dirty and must

be written to disks if the pages are to be re-used. We do

not purge the dirt y buffer pages after tree construction.

Hence tree matching starts with a warm buffer cache.

Note that there could be disk writes during the tree

matching process if dirty buffer pages containing Ts

nodes are re-allocated by the buffer manager.

We studied data of different degrees of spatial cluster-

ing. The degree of clustering was cent rolled by a simple

scheme. When generating a data set of x x y objects,

we first generated x cluster rectangles, whose centers

were randomly distributed in the map area. We then

randomly distributed the centers of y data rectangles

within each clustering rectangle. By controlling the to-

tal area of the clustering rectangles, we could control the

degree of clustering of the data set. The smaller the to-
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tal area of the clustering rectangles, the more clustered

the data set. The length and the width of each cluster-

ing rectangle was chosen randomly and independently

to lie between O and a predefine upper bound. This

upper bound controlled the tot al area of the clustering

rectangles. The size and shape of data rectangles were

similarly chosen using a smaller upper bound. When

clustering rectangles or data rectangles extended over

the boundary of the map area, they were clipped to fit

into the map area. When a data rectangle extended

over the boundary of its clustering rectangle, it was not

clipped. In the experiments, the number of data objects

per cluster was set to be 200, and the number of cluster-

ing rectangles was set according to the total number of

data objects. Without loss of generality, the map area

under study was assumed to range from O to 1 along

both X and Y axes.

4.1 Experimental Results

We conducted two series of experiments. In the first

series, we fixed the cardinality of I)R at 100,000,

resulting in an R-tree of 4 levels, and varied the

cardinality of IIs from 20,000 to 80,000. The degree of

spatial clustering of data was set by setting the upper

bound on the side length of clustering rectangles to 0.04.

The resulting cover quotient of the clustering rectangles

in DR was 0.2, meaning that the centers of all the data

objects in DR were restricted to 20$Z0 of the map area.

For each data configuration, we tested RTJ and BFJ
and conducted an extensive study of S TJ variations

by applying combinations of different seed node copy

and update policies, as described in Section 2. For

each combination of policies, we studied the effect of

the number of seed levels, and the effect of seed level

filtering on performance.

In the second series of experiments, we fixed the

cardinality of DR and Ds at 100,000 and 40,000,

respectively, and varied the degree of clustering of the

data sets. We adjusted the upper bound on side length

of the clustering rectangles so that the cover quotient of

the clustering rectangles of DR equaled O.2, 0.4, 0.6, 0.8

and 1.0, respectively. The upper bound on side length

of the clustering rectangles of Ds was set to be same as

that of DR in each experiment. We ran the same set of

seeded tree variations as the in first series of experiments

for each data configuration.

Among the various combinations of seed node copy

and update policies, we found that copy strategies C72

and C3 (see Section 2.1) and update policies U3, U4 and

U5 (see Section 2.2) always gave better performance.

The differences between the three best update policies

were marginal. Due to space limitations, we list only

the results from seeded trees built using combinations

(C3, U3), and (C’3, U4), denoted as STJ1 and STJ2,

respectively.

Our experiments showed that the STJ versions
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subst ant i all y outperformed BFJ and R TJ in all cases

in terms of disk 1/0 costs. The S TJ versions also

incurred the lowest CPU costs among all algorithms

when seed level filtering was not activated. With seed

level filtering, the CPU costs of STJ were between the

costs of BFJ and RTJ, and were about an order of

magnitude greater than the costs without seed level

filtering. Figures 6 and 9 summarize the disk 1/0 costs

observed in the two series of experiments. Figures 7, 8,

10, and 11 break down the 1/0 costs into those of tree

creation and those of tree mat thing. The BFJ method

creates no tree structures on the fly, and so incurs no

tree creation costs.

Tables 1 through 4 show the disk 1/0 and CPU costs

of the first series of experiments in detail. The number

of seed levels of the seeded trees used in S TJ variants

appears after the hyphen following the algorithm name.

A letter “F” following this number indicates that seed

level filtering was activated, and a letter “N” indicates

that no filtering was performed. Thus, STJ2-2F stands

for variation 2 of S TJ with two seed levels and no

filtering. Disk 1/0 is shown as the number of random

disk accesses. A sequential disk access counts as 1/30

of a random disk access. Under 1/0 costs, the columns

“match” and “construct” give the costs incurred during

tree matching and construction, and “rd” and “wr”

show read and write costs, respectively. Note that since

tree matching starts with a warm buffer left over from

tree construction time, dirty pages containing Ts nodes

may need be written to disks if the pages are re-allocated

during tree matching. The write column under “match”

should thus be charged to the tree construction part of

the algorithms.

The CPU costs given are the numbers overlap

tests performed by the algorithms in units of 1000.

The column “bbox” lists the numbers of bounding

box overlap tests performed during tree construction.

Column ‘(XY” is the numbers of operations that test

whether two bounding boxes overlap along the X or Y

axis, used during tree matching [B KS93].

In the the first series of experiments, we found as

expected that the costs go up as the size of D5 increases.

STJ outperforms RTJ in all experiments in terms

of disk 1/0. The number of disk reads during tree

construction is particularly interesting, For RTJ this

cost arises from buffer misses during tree construction.

For S TJ the cost arises both from buffer misses and

from 1/0 for reading in the linked lists during tree

construction. The numbers of creation time reads

remain very small for S TJ even for large Ds sizes, while

for RTJ they vary from 1.5 times (Table 1) to 30 times

(Table 2,3 and 4) larger than those of STJ. Our earlier

experiments showed that S TJ incurred similar numbers

of creation time reads as RTJ when intermediate linked

list was not used. Using intermediate linked lists in tree

construction successfully eliminated most of the buffer

misses in these cases.

STJ outperforms BFJ in all cases expect when D5

size is the smallest (see Table 1). We found that BFJ
accessed only 483 different TR nodes in this case. Since

this number was smaller than the buffer size, no buffer

overflow occurred. Overflow occurred for S TJ with the

same data sizes, since the buffer held nodes from both

Ts and Ts during tree matching. However, with larger

data sets, BFJ incurred two to three times the numbers

of disk accesses incurred by S TJ as soon as the number

of accessed R-tree nodes exceeded the buffer size. To

our surprise, we found that RTJ performed worse than

BFJ in all cases. A closer look showed that though tree

matching costs are lower for RTJ the high tree creation

1/0 cost due to buffer misses outweighed the savings.

Seed level filtering provides a consistent gain for the

STJ variations in terms of disk 1/0, Filtering using

three seed levels performs better than that using only

two. This trend is especially clear for tree creation costs.

The reduction in 1/0 cost is paid for by an increase

in CPU costs during tree creation. When seed level

filtering is not used, STJ also incurs the lowest CPU

cost among all algorithms.

Tables 2 and Table 5 through Table 8 list the results

of the second series of experiments, In general, we have

found that the processing costs rise as the degree of

clustering decreases, especially for tree matching. This
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n 1/0 costs CPU costs

Match [ Construct I (K tests)

A lg rd Wr r-d w!- total bim X’Y

BFJ 438 0 0 0 438 2381 0
RTJ 1182 359 144, 243 1914 130 170
STJ1-2N 694 319 94 137 1244 79 168
STJ2-2N 849 358 94 150 1451 84 170

STJ1-2F 685 314 94 85 1178 896 168
STJ2-2F 823 349 94 99 1365 898 170

1 STJ 1-3F 712 226 94 5 1037 1945 160

uSTJ2-3F 746 223 I 94 5 1068 2001 167 u

Table 1: Join performance with llDnll = 100K, I]DsII =

20K. Cover quotient of D~ clustering rectangles equals 0.2,

n 1/0 costs CPU costs

Match I Construct (K tests)

Ala. rd I Wr I !-d I Wr total bboz I XY 1.
BFJ 8864 0 0 0 8864 4648 0

RTJ 2439 50 6015 1219 9695 295 372
STJ1-2N 1623 364 236 817 3040 169 349
STJ2.2N 1648 360 236 820 3064 174 355

STJ1-2F 1588 357 236 715 2896 1735 349
STJ2-2F 1606 359 236 719 2920 1739 356

STJ1-3F 1519 342 236 140 2237 3767 330
STJ2-3F 1537 353 236 120 2246 3843 344

Table 2: Join performance with llD~ll = 100K, \lD~ll n

40K. COvel quotient of ~R clustering rectangles eqU& 0.2.

is because with less clustered data, the possibility that

a data rectangle in Ds overlaps data rectangles in DR

is higher] and thus we must access more Ts and TR leaf

nodes during tree mat thing. This suggests that degree

of spatial clustering should be an important factor in

estimating the results of spatial joins.

Also, as the degree of clustering decreases, the

number of disk accesses by S TJ at tree matching time

becomes close to that of RTJ. This is because for low

degrees of spatial clustering, most leaf tree nodes must

be accessed, leaving little room for optimization. In this

case, tree creation costs become the deciding factor for

performance. For S TJ, the tree creation costs remain

consist ently low, and the total costs are always less

than half of those of RTJ. For BFJ, the number of

disk accesses grows rapidly and become the worst of all

methods as the degree of clustering decreases, because

the number of touched TR nodes becomes much larger

than the buffer size.

We have also found that the effectiveness of seed level

filtering is high when the degree of spatial clustering of

data is high, and diminishes as the degree of clustering

decreases. Again, this is because most data objects

in Ds overlap some objects in DR, and cannot be

eliminated by the frlt ering pro cess.

1/0 costs CPU costs

Match construct (K tests)
Alg. rd wr rd wr total bboz XY

IJFJ 13650 0 0 0 13650 6984 0
RTJ 260S 27 12274 18S7 16754 315 560
STJ1-2N 2422 370 366 1483 4641 263 53s
STJ2-2N 2439 369 367 1477 4652 267 538

STJ1-2F 2362 358 366 1343 4429 2603 535
STJ2-2F 2429 367 366 1357 4519 2610 536

STJ 1-3F 2274 349 366 451 3440 5613 498
STJ2-3F 2244 368 366 426 3404 5709 520

Table 3: Join performance with llD~ll = 100K, [IDs([ =

60K. Cover quotient of DR clustering rectangles equals O.2.

I/o costs CPU costs

Match I (K tests)

Alg. rd I UIr rd I wr bboz ] XY

BFJ 17151 I o [ o I o I 17151 9085 I o r
y RTJ 3292 38 16555

L
2525 22354 415 741

STJ1-2N 2996 361 506 2126 5989 334 685
STJ2-2N 3063 362 505 2154 6084 353 691

STJ1-2F 2956 353 507 1952 5768 3418 686
STJ2-2F 3068 363 507 1947 5885 3431 690

STJ1-3F 2739 344 505 698 4286 7328 638
STJ2-3F 2745 354 505 672 4276 7435 666

Table 4: Join performance with IIDRII = 100K, I]DsII =

80K. Cover quotient of DR clustering rectangles equals 0.2.

I/o costs CPU costs

atc~ (K tests)

Alg. rd UT rd Wr total bboz XY

BFJ 14803 0 0 0 14803 6628 0
RT.I 2881 57 6909 121’7 11036 405 443
STJ1-2N 2265 329 236 794 3624 268 437
STJ2-2N 2347 374 236 795 3752 284 445

STJ1-2F 2242 330 236 770 3578 2688 436
STJ2.2F 2328 374 236 752 3690 2702 445

STJ1-3F 2265 337 236 430 3268 5268 411
STJ2-3F 2342 358 236 430 3366 5364 429

Table 5: Join performance with IIDRII = 100K, IIDsII =

40fi-. (her quotient of ~R Chstering reCtangkS eqU& ().4.

I/o costs CPU costs
Match ~

Alg.

(K tests)

rd Wr rd w!- total bboz

BFJ 23177 0 0 0 23177 7773 0
kl~ 3451 62 6370 1202 11057 a64 634
STJ1-2N 3263 350 236 813 4662 419 514
STJ2-2N 32S0 366 236 802 46S4 410 524

STJ1-2F 3251 352 236 782 4621 2707 514
STJ2-2F 3268 366 236 763 4633 2701 529

STJ 1-3F 3212 346 236 637 4431 5788 481
STJ2-3F 3385 354 236 583 4558 5879 509

Table 6: Join performance with IIDRII = 100K, [lDsll =

40K. Cover quotient of DR clustering rectangles equals O.6.
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1/0 costs CPU costs

Mate~

Alg.

(K tests)

rd w?- rd w!- total b oz

13FJ 2.5167 0 0 II 25167 7228 0

RI’,J 3304 62 6287 1195 10820 587 556
STJ1-2N 3141 358 236 814 4549 450 550
STJ2-2N 3206 366 236 820 4628 457 557

STJ1-2F 3142 358 236 790 4526 2242 550
STJ2-2F 3217 366 236 805 4624 2248 552

STJ1-3F 3268 335 236 736 4575 5104 497
STJ2-3F I 3487 344 236 677 4744 5205 526

Table 7: Join performance with I l.D~ll = 100K, I IDs-II =

40K. Cover quotient of DR clustering rectangles equals 0.8.

I/o costs (7PU costs

Match ~ (K tests)

Alg. rd Wr rd wr total -lb ox

13FJ 31831 0 0 0 31831 8300 0
RTJ 3710 69 5976 1207 10934 763 623
STJI-2N 3582 338 236 800 4956 551 587
STJ2-2N 3611 340 236 808 4995 566 613

STJ1-2F 3579 333 236 793 4941 2353 588 j
STJ2-2F 3600 330 236 799 4965 2367 615

STJ1-3F 3689 297 236 849 5071 5772 553
STJ2-3F 4125 371 236 769 5501 5872 581

Table 8: Join performance with IIDRII = 100K, IID.sII =

40K. Cover quotient of DR clustering rectangles equals 1.0.

5 Discussion

We have studied the seeded tree join method using

a seeded tree and a pre-computed R-tree. However,

it may be necessary to perform a spatial join using

two seeded trees when the following situations occur:

(1) the input data sets are the results of complicated

spatial operations including other spatial joins, and no

pre-computed R-trees are related closely enough to the

input data sets to be used in the join, or (2) one or both

input data sets are the results of non-spatial selections,

and it is determined that dynamically constructing two

seeded trees is more efficient for the join. This can be

the case if the selectivity of the non-spatial selection is

high, In the one-seeded-tree scenario, the seed levels of

the seeded tree are derived from the seeding tree. For

the two-seeded-tree scenario, there is no obvious choice

for the seeding tree. We must still somehow determine

the seed levels in both seeded trees.

Suppose the join joinA(oP~(~~), OPC(DC)) is to be

processed by constructing two seeded trees. If at least

one of opB or opc, say OpB, is a non-spatial selection, we

can use the pre-computed R-tree for DB as the seeding

tree for both seeded trees. If no pre-computed R-trees

can be applied, we can use a common set of seed levels

for both seeded trees that is artificially constructed

rather than being copied from any pre-computed R-tree.

One approach may be to have a set of seed levels whose

slots uniformly divide the map area. Another solution

may be to extract information from the data sets using

techniques such as spatial data sampling [OR93], and

use such information as a basis for building the common

seed levels. More research is necessary to find the

most suitable way to construct seeded trees in these

situations.

A closely related issue is finding quantitative mea-

sures to predict the characteristics, such as the sizes, of

the outcomes of spatial operations based on the char-

acteristics of their input data sets. Such techniques are

necessary in choosing the best way to realize a spatial

query. Relatively little work has been done for spatial

databases in this area. Addressing these issues will be

within the focus of our future work,

It is worth noting that if necessary, a seeded tree can

be retained after join and used as an ordinary spatial

access method for spatial selections. The height of a

seeded tree is no greater than the height of the R-tree

constructed with the same input data plus the number

of seed levels, However, most paths from the root to

leaf nodes will be shorter than this upper bound.

6 Conclusions

In this paper, we have presented and studied a spatial

join method that dynamically constructs index trees,

called seeded trees, at join time. This method addresses

the situations where existing R-trees cannot be used to

help with join processing, or where no R-trees exist for

the input data sets.

The seeded tree is divided into the seed levels and

the grown levels. The characteristics of the input data

sets are utilized to build the seed levels. Tree nodes

in the seed levels are used to guide tree growth during

tree construction, resulting in a tree better shaped for

the join. The seed levels are also the basis of a tree

construction algorithm that uses intermediate linked

lists to drastically reduce construction time 1/0 costs.

We also presented a technique called seed level filtering

that can be used to further reduce the size of the tree,

We have tested the seeded tree technique against

other methods with input data sets of varying sizes and

degrees of spatial clustering. Our results show that the

total 1/0 costs of the seeded tree method are always

lower than the faster of the other two methods by a

factor of two to three, except in one boundary case. Tree

construction using intermediate linked lists is shown to

be very effective in eliminating tree construction time

buffer misses. When the input data set is spatially

clustered, the tree matching costs of the seeded tree

method are also lower due to better tree organization.

1If a seeded tree is to be used in spatial selections after the

original spatial join terminates, seed level tiltering should not be

used, as the set of data indexed by the tree will be a subset of the

original data.
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CPU costs for the seeded tree method are always the

lowest among all methods when seed level filtering is

not act ivat ed.

Seed level filtering is effective in reducing tree sizes

when the degree of data clustering is high, and can

reduce the tot al 1/0 costs by almost 3070. However,

it could incur CPU costs without gain when the degree

of spatial clustering of data is low. If the characteristics

of the input are not known before a join, this technique

should be used only when CPU capacity is not a special

concern.
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