
Lookup Table Allocation for Approximate
Computing with Memory under Quality Constraints

Ye Tian, Qian Zhang, Ting Wang and Qiang Xu

Department of Computer Science & Engineering, The Chinese University of Hong Kong

Shenzhen Research Institute, The Chinese University of Hong Kong

{tianye, qzhang, twang, qxu}@cse.cuhk.edu.hk

Abstract—Computation kernels in emerging recognition, min-
ing, and synthesis (RMS) applications are inherently error-
resilient, where approximate computing can be applied to im-
prove their energy efficiency by trading off computational effort
and output quality. One promising approximate computing tech-
nique is to perform approximate computing with memory, which
stores a subset of function responses in a lookup table (LUT),
and avoids redundant computation when encountering similar
input patterns. Limited by the memory space, most existing
solutions simply store values for those frequently-appeared input
patterns, without considering output quality and/or intrinsic
characteristic of the target kernel. In this paper, we propose
a novel LUT allocation technique for approximate computing
with memory, which is able to dramatically improve the hit
rate of LUT and hence achieves significant energy savings
under given quality constraints. We also present how to apply
the proposed LUT allocation solution for multiple computation
kernels. Experimental results show the efficacy of our proposed
methodology.

I. INTRODUCTION

Emerging recognition, mining, and synthesis (RMS) appli-

cations are usually error-resilient. They often process noisy

and redundant datasets and have many “acceptable” outputs

with limited user perceptual capability. As the system does

not need to perform exact computation, one promising solution

to achieve high energy efficiency is approximate computing,

which trades off computational effort and output quality [1, 2].

Another effective technique for energy savings and perfor-

mance improvements is computing with memory [3], which

stores results of frequently-used functions in a lookup table

(LUT) and reuses pre-stored outputs directly without con-

ducting computation. For instance, the energy consumption

of the sinx function involving hundreds of instructions is

about 100nJ, while read operation of a 512kB SRAM at 32nm

technology only consumes about 100pJ [4].

Many computation kernels are very likely to have similar

outputs when encountering similar input patterns. Based on

this observation of similarity, Rahimi et al. explores the combi-

nation of approximate computing and computing with memory

[5, 6, 7, 8, 9]. Instead of searching for the exactly matching

entry in the LUT, approximate computing with memory stores

only a subset of function responses in associative memories

and finds a similar entry to output an approximate result.

Due to the increasing energy consumption of search and

read operation required by a larger lookup table [9], only

a small portion of function responses can be pre-stored in

the LUT for computation reuse. For patterns whose output

quality cannot be guaranteed with this LUT, the processor

needs to perform accurate computation. Consequently, which

patterns to store decides the hit rate (i.e. reuse rate) and the

energy saving. To achieve a higher hit rate, most existing so-

lutions store output values for those frequently-appeared input

patterns, without considering output quality and/or intrinsic

characteristics of the target kernel. In addition, sharing the

lookup table for multiple functions has not been explored in

the literature yet.

Based on the above, in this paper, we propose a novel

lookup table allocation technique for approximate computing

with memory under quality constraints, which can be applied

to various computation kernels. The main contributions of this

paper are as follows:

• We present how to select proper data points to store

in the lookup table for a given computation kernel,

which dramatically improves the hit rate of LUT, thereby

achieving significant energy savings under given quality

constraints;

• We propose a novel lookup table allocation technique for

multiple computation kernels, which is able to maximize

the total energy saving under a given size of the lookup

table.

The remainder of this paper is organized as follows. Section

2 presents related works on approximate computing with

memory and the motivation for this paper. Section 3 details

the proposed lookup table allocation technique. Experimental

results comparing existing method and the proposed technique

are then presented in Section 4. Finally, Section 5 concludes

this paper.

II. RELATED WORKS AND MOTIVATION

Computing with memory achieves energy savings by stor-

ing results of frequently-used functions in a lookup table.

The LUT can be stored in the memory of the processor

and retrieved based on hashing function [10, 11]. Richard-

son caches the results of Ackerman’s function and replaces

subsequent function calls with table lookup, achieving real

speedup as much as 1473 times [12]. Heydon et al. propose a

technique for recording and propagating precise dependencies

for efficiency when caching a function call [13]. Recently,

a number of computing with memory techniques [14, 15]

propose to use memristor-based ternary content-addressable

153978-3-9819263-0-9/DATE18/ c©2018 EDAA

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:29:52 UTC from IEEE Xplore. Restrictions apply.

memories (TCAMs) for low-power search and read operations

of the LUT. In the above techniques, only exactly matched

entries in the LUT can be reused without taking advantage of

the error-resilience capability of RMS applications.

The energy consumption of a computation kernel with

associative computing using LUT can be calculated as

rEt + (1− r)(Ec + Et) = Ec − (rEc − Et),

where r is the hit rate of the LUT, Et represents the energy

for search and read operation of the LUT, and Ec represents

the energy consumption of the original computation. Therefore

energy saving can be calculated as

Es(%) =
rEc − Et

Ec
= r − Et

Ec
.

As Et << Ec in most cases, the hit rate r determines energy

saving of lookup table based computing.

To improve the hit rate, many previous works apply inexact

match considering the similarity of input patterns in RMS

applications. Rahimi et al. employ voltage overscaling on

associative memristive memory modules and enables inexact

match that allows the search pattern to be within a specified

Hamming distance from the prestored patterns [9]. As the

significance of different bits of the input operand could be

quite different, Imani et al. propose a resistive configurable as-

sociative memory (bitline configurable and row configurable),

which can perform approximate search on selected bit indices

or selected patterns [6]. They also design a multi-stage content

addressable memory in [16], which matches patterns stage by

stage from the most significant bits.

To the best of our knowledge, existing approximate comput-

ing with memory techniques profile the occurrence frequency

of the input patterns offline and store the function responses for

those frequently-appeared input patterns. Such simple lookup

table allocation strategy is not very effective. As shown in [17],

when the search pattern is within 2-bit Hamming distance, the

hit rate improvement is only about 10% than that of exact

match. More importantly, the increase of energy saving is at

the cost of uncertain output quality loss, and hence the scope

is limited to certain applications with extremely high error-

tolerance capability (e.g., image processing).

Motivated by the above, in this paper, instead of filling LUT

according to the occurrence frequency of input patterns, we

propose a novel lookup table allocation technique considering

the intrinsic characteristics of the target computation kernel

(e.g., input-output relationship and input-frequency relation-

ship), which aims at optimizing LUT hit rate under quality

constraints to maximize its energy saving.

III. METHODOLOGY

In this section, we firstly show how to select data points

to store in the LUT for single function approximation given

table size and output error bound. Then we present lookup

table allocation method for multiple functions.

A. Points Selection for Single Function

1) Problem Formulation: We define a data point as (x, y),
where x is the input and y is the output of the target function

or computation kernel. Both x and y can be scalars or vectors

of arbitrary dimensions. I represents the set of all possible

data points.

Suppose the size of the lookup table is s, which means

the table has s rows and can only store s points, denoted by

(cxi, cyi), i = 1, 2, . . . , s, where cyi doesn’t need to be the

output for cxi. We define input bounds (denoted by di, i =
1, 2, . . . , s) for (cxi, cyi) as follows,

di = max dist, s.t.|y − cyi| ≤ bound, ∀|x− cxi| ≤ dist.

So di is determined by (cxi, cyi) and the predefined error

bound (denoted by bound). And all data points satisfying this

input bound are defined as neighbors of the centroid.

For example, Fig. 1 shows some data points around the

centroid (cx, cy) in the input space. For data point (xj1, yj1),
as |yj1 − cy| > bound, the input bound d for (cx, cy) must be

smaller than |xj1 − cx|. Data points within the dashed circle

are neighbors of (cx, cy). Therefore, for (xj2, yj2), though

|yj2−cy| < bound, it is not a neighbor. Based on this definition

of input bound, for any possible point (x0, y0), as long as the

distance between x0 and cxi is not larger than di, the distance

between y0 and cyi will satisfy the error bound and y0 can be

approximated with cyi. And we say (x0, y0) is a neighbor of

(cxi, cyi) and is covered by the LUT.

Input Bound d < |cx - xj1|

cx

|yj1 - cy| > Error Bound
 Xj1

Xj2

|yj2 - cy| < Error Bound

|cx - xj1|

Fig. 1. Definition of Input Bound for the Centroid (cx, cy) Based on Error
Bound

Given (cxi, cyi), i = 1, 2, . . . , s and error bound of out-

put approximation, we can calculate input bounds di, i =
1, 2, . . . , s, and then decide whether a certain data point in I
is covered. We use Φ to represent the set of all points covered

by all prestored points in LUT (i.e. (cxi, cyi), i = 1, 2, . . . , s).

For any point (xj , yj) ∈ I , pj represents the probability that

the data point appears during online computation. The hit rate

of LUT is defined as the probability that the acceptable output

can be found in the lookup table for arbitrary input and thus

can be calculated by

hit rate =
∑

(xj ,yj)∈Φ

pj .

Our objective is to determine the s points to store and

maximize the online hit rate, i.e.

max
(cx1,cy1),(cx2,cy2),...,(cxs,cys)

∑

(xj ,yj)∈Φ

pj ,

and therefore we can obtain maximum energy saving.

2) Flow of Data Selection for Single Function: To solve

this problem, as shown in Fig. 2, our method contains the

following three steps.

154 Design, Automation And Test in Europe (DATE 2018)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:29:52 UTC from IEEE Xplore. Restrictions apply.

Characterization Centroid Generation Based on
Error Bound and Frequency Centroid Selection

Input (x) Input (x)

Frequency (f)Output (y)

Input (x)

Output (y)

...

Input (x)

Output (y)

...

bound

bound

selected centroids

Fig. 2. Flow of Data Selection For Single Function

• Characterization. For the target computation kernel, find

all possible data points (x, y) ∈ I and frequency fj that

each data point (xj , yj) appears. Frequency is used to

approximate the probability pj that (xj , yj) appears.

• Centroid Generation Based on Error Bound and
Frequency. Centroids are intialized and updated with

the inputs, outputs and frequency of their neighbors.

Neighbors of certain centroid are all points within the

input bound from the centroid.

• Centroid Selection. Select s centroids among all cen-

troids generated from step 2 to store in the LUT to

maximize the hit rate.

Details of step 2 and step 3 will be explained in the following

subsections.

Input :

all data points (x, y),
frequency f that each point appears,

output error bound

Output:
centroids (cx1, cy1), (cx2, cy2), · · ·

1 repeat
2 Centroid Initialization: find the data point

with highest f among uncovered points and

set it as the new centroid (cx(0), cy(0));
3 repeat
4 Neighbors Update: update the neighbors

and input bound of the centroid

(cx(i), cy(i)) based on output error bound;

5 Centroid Update: update the centroid to

(cx(i+1), cy(i+1)) based on f ;
6 until Centroid doesn’t change or No. of

updates > Th1;

7 Centroid Finalization: find the centroid

among (cx(0), cy(0)), (cx(1), cy(1)), · · ·with

the highest sum of f , and output this centroid;

8 Update covered data points;

9 until sum of f of all covered points > Th2;

Algorithm 1: Process of Centroid Generation

3) Centroid Generation Based on Error Bound
and Frequency: Process of centroid generation is shown in

Algo. 1. To initialize a new centroid, the data point with

highest frequency among uncovered data points is chosen to

be the original centroid. The centroid is modified repeatedly

until it doesn’t change any more or the number of updates

is larger than certain threshold. Then another new centroid

is initialized and modified until the sum of frequency of all

covered points is larger than certain threshold.

Neighbors Update Based on Error Bound. As mentioned

above, input bound d of (cx, cy) is defined as

d = max dist, s.t.|y−cy| ≤ bound, ∀|x−cx| ≤ dist, (x, y) ∈ I.

To calculate d, we check all data points having similar inputs

with cx. Input distances between x and cx are calculated and

sorted in ascending order. As shown in Fig. 3, dj,1 < dj,2 <
· · · < dj,k < dj,k+1 · · · , where input distance dj,l = |xj,l −
cx|, l = 1, 2, · · · . Then from the point with smallest input

distance (xj,1, yj,1), output error ej,l = |yj,l−cy| is calculated,

and then compared with the error bound (denoted by e) until

we find the first point (xj,k+1, yj,k+1) whose output error is

larger than the error bound. Input bound is set as d = dj,k,

and data (xj,1, yj,1), (xj,2, yj,2), · · · , (xj,k, yj,k) are neighbors

of the centroid.

... ...

< < <... < < ...
Input Bound d = dj,k

(xj,k , yj,k) (xj,k+1 , yj,k+1)(xj,1 , yj,1) (xj,2 , yj,2)

dj,1 dj,2 dj,k dj,k+1

ej,1 < e ej,2 < e ej,k < e ej,k+1 > e... ...
Input Distance dj,l = |xj,l-cx|, Output Error ej,l = |yj,l-cx|, l = 1,2,...

Fig. 3. Calculation of Input Bound

Centroid Update Based on f . We use frequency of data

point as its weight when updating the centroid, i.e.

(cx(i+1), cy(i+1)) =

∑
(xj ,yj)∈neighbors of (cx(i),cy(i))

fj × (xj , yj)

∑
(xj ,yj)∈neighbors of (cx(i),cy(i))

fj
.

Design, Automation And Test in Europe (DATE 2018) 155

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:29:52 UTC from IEEE Xplore. Restrictions apply.

With the above formula, centroid (cx(i+1), cy(i+1)) is closer

to neighbors with higher frequency compared to the previous

centroid (cx(i), cy(i)).

Condition to End the Centroid Update. If the centroid

does not change after one update, the computation has con-

verged. We add another condition to terminate the update, i.e.

number of updates is larger than certain threshold. During

update process, the neighbors are decided according to dis-

tance of input and output and then centroid is calculated with

frequency. The neighbors and the centroid may oscillate be-

tween certain states and the computation will never converge.

Therefore the constraint on number of updates is necessary

for convergency.

Centroid Finalization. The above update process calculates

a sequence of centroids (cx(0), cy(0)), (cx(1), cy(1)), · · · . We

find the centroid with the maximum sum of f of its neighbors

to output, and then update covered points to determine whether

the generation process can end.

Condition to End the Centroid Generation. We can

continue computing centroids until all data points are covered.

However for many computation kernels, there can be millions

of data points, among which many points have quite low prob-

ability to appear. Considering scalability of the algorithm, we

can ignore those low-frequency points and end the generation

process when the sum of f of covered data points is larger

than certain threshold.

4) Centroid Selection: With centroids generated from step

2, we then choose s centroids and maximize the sum of f of

covered data points. There are mainly three steps of centroid

selection as follows.

• Calculate sum of f of neighbors of all unselected cen-

troids. For the kth centroid,

Ak =
∑

(xj ,yj)∈neighbors of (cxk,cyk)

fj .

• Select the centroid with the largest sum of f . The centroid

(cxi, cyi) and its input bound di will be stored in the

lookup table as one entry (or one row).

• Remove all neighbors of the new selected centroid from

neighbors of remaining unselected centroid. As these data

points have already been covered by the table, we should

not take them into account for later selection.

We repeat these three steps s times and obtain s entries to

store.

Using the proposed method, as shown in Figure 4, there

could be a phenomenon that for data point (x, y), cx1 is

the closest to x among all centroids but (x, y) is covered by

(cx2, cy2). Therefore, we need to check all covered points

and calibrate the input bound of the centroid if needed.

This phenomenon will not happen in most cases unless two

centroids are very close to each other.

During online computation with table lookup, for coming

input operand x, the processor reads the row whose cx has the

nearest input distance from x. If the distance is within the input

bound, the corresponding cy is used directly to approximate

the exact output y.

d2

x

d1

cx1

|cx1 - x|<|cx2 - x|

cx2

Fig. 4. Covered Data Point (x, y) Cannot be Approximated with the Nearest
Centroid

B. Table Allocation for Multiple Functions

In practical situation, several applications or different com-

putation kernels in one application will share the memory to

store lookup tables. Therefore we need to allocate the space

for LUTs for multiple functions. In this paper, we assume error

bound of each kernel is given. To determine the error bound,

the user should consider error accumulation if some kernel

uses approximate output of another.

1) Problem Formulation: Suppose the total the memory

space for LUTs is M . n functions or computation kernels

F1, F2, · · · , Fn will share this memory and their memory s-

paces and corresponding hit rates of LUT are m1,m2, · · · ,mn

and r1, r2, · · · , rn respectively. The energy for search and read

the table once is represented by Et, and energy for computing

function Fi once is represented by Eci, i = 1, 2, · · · , n. For

the ith function, energy consumption of one computation using

LUT can be calculated as

riEt + (1− ri)(Eci + Et) = Eci − (riEci − Et).

Therefore energy saving of one computation, denoted by Esi,

can be calculated as Esi = riEci − Et. Suppose the ith
function is executed for ci times, then the energy saving of the

whole lookup table for these n functions, denoted by Es can

be calculated as Es =
∑n

i=1 riciEci−
∑n

i=1 ciEt, where ciEci

is actually the total energy consumption of the ith function,

denoted by Ei. Our objective is to maximize energy saving,

which is equivalent to the following problem:

max
mi,i=1,2,··· ,n

n∑

i=1

Eiri,

where ri is the hit rate of LUT with the memory space mi

for the ith function.

2) Constrained Optimization Problem: With the method to

select data points for single function, for every function Fi,

we can characterize a set of memory sizes and corresponding

hit rates, i.e. (mi,1, ri,1), (mi,2, ri,2), · · · . We define variable

zi to represent which choice we make for Fi, i.e., the memory

size and hit rate of Fi is mi,zi and ri,zi . Then the problem

can be modeled as a constrained optimization problem (COP).

There exists many kinds of solvers for COP. In this paper,

we choose Gecode and the constraints on relationship between

mi and ri can be implemented with element constraints. For

example, the statement “element(home, c, x, y);” constrains

the variable y to be the element of array c at index x. (The

argument “home” represents an object that might store infor-

mation which is useful for posting propagators and branchers

156 Design, Automation And Test in Europe (DATE 2018)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:29:52 UTC from IEEE Xplore. Restrictions apply.

and we don’t need to be concerned with it when modeling

with Gecode.) Therefore, for the ith function, we can use

constraints:

sizeArrayi = [mi,1,mi,2, · · ·];
rateArrayi = [ri,1, ri,2, · · ·];

element(home, sizeArrayi, zi,mi);

element(home, rateArrayi, zi, ri);

where zi is the index of elements we choose from these two

arrays. The pseudocode in Gecode for the COP is shown in

Algo. 2. After putting these constraints into Gecode solver, we

can obtain memory sizes to allocate for all functions.

Input :

M (total memory space),

(mi,1, ri,1), (mi,2, ri,2), · · · (relationship

between memory size and hit rate of

Fi, i = 1, 2, · · · , n),

Ei (total energy consumption of

Fi, i = 1, 2, · · · , n)

Output:
zi (index of choice of memory size and

hit rate for Fi, i = 1, 2, · · · , n),

mi (memory size for Fi, i = 1, 2, · · · , n),

ri (hit rate for Fi, i = 1, 2, · · · , n)

1 Objective: max
∑n

i=1 Eiri
2 Constraint 1:

∑n
i=1 mi ≤ M

3 Constraint 2:
4 for i from 1 to n do
5 sizeArrayi = [mi,1,mi,2, · · ·];
6 rateArrayi = [ri,1, ri,2, · · ·];
7 element(home, sizeArrayi, zi,mi);
8 element(home, rateArrayi, zi, ri);
9 end

Algorithm 2: Pseudocode in Gecode

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

As discussed above, energy saving of the lookup table can

be calculated as

Es(%) =
rEc − Et

Ec
= r − Et

Ec
,

where r is the hit rate of LUT (i.e. sum of frequency

of covered data points), Ec is the energy consumption for

calculating the kernel and Et is the energy for table search

and read operation. To estimate Ec, we simulate benchmark

applications on x86 64 CPU with gem5 simulator, and then

transform the simulated statistics (e.g., how many instructions

executed) and micro-architecture configurations to the power

simulator McPAT. As Et << Ec(
Et

Ec
< 1%) for these com-

putation kernels, energy saving of LUT can be approximately

represented by the hit rate r, therefore we only show the hit

rate of LUT in the results.

In the experiment, we compare the hit rate of LUT between

our table allocation method and existing method which simply

chooses highest-frequency data points. We apply our method

TABLE I
BENCHMARKS FOR LOOKUP TABLE ALLOCATION FOR APPROXIMATE

COMPUTING WITH MEMORY

Computation Kernel Inputs Outputs
Savity-Golay Filter 5 Inputs 1 Output

Black Sholes 5 Inputs 2 Outputs
inversek2j 2 Inputs 2 Outputs

Fast Fourier Transform (fft) 20 Inputs 20 Outputs

for single function to four commonly-used benchmarks of

approximate computing as shown in Table I and use datasets

from [18]. Th1 and Th2 in Algo. 1 are set as 8 and 90%

respectively. Then we compare hit rate for inversek2j under

different error bounds.

B. Comparison of LUT Hit Rate for Various Kernels

Given table size and error bound of output, the proposed

method selects proper data points to store and obtains higher

hit rate of LUT. As shown in Fig. 5, for all four computation

kernels, we compare hit rate of proposed method (denoted by

“Our Method”) and the existing method (denoted by “Highest

Frequency”) of four table sizes (i.e. 64, 32, 16 and 8). Error

bound is set according to relative error of the kernel’s output.

Table with larger size has a higher hit rate as more information

is prestored. Hit rate of our method is much larger (about 2

to 3 times) than that of existing method in all cases.

C. Comparison of LUT Hit Rate under Different Error Bounds

To prove the efficacy of our method, we change the error

bound of output for inversek2j and compare hit rate under

different error bounds. The error bound is set as the relative

error and we apply our method when errors are 1%, 5%, 10%
and 20% respectively.

As shown in Fig. 6, when the error bound is 1%, the hit

rates of our method and highest frequency method are the same

if the table size is 32 or 64. As the bound is too strict and

most centroids generated don’t cover other points, selecting

the centroid is equivalent with selecting the point with highest

frequency. In other cases for any error bound or any table size,

our method for table allocation achieves a much higher hit rate

than existing method.

When the error bound is 20%, 30 centroids are generated

and all data points have been covered, which means a LUT

with 30 points stored can cover all data points and the hit rate

is 1. However, using highest frequency method, the hit rate of

a LUT with 64 points is still smaller than 1. This is because the

error bound is very relaxed, some high-frequency data points

can be approximated with only one point. The results indicate

that the proposed method can construct a lookup table based

on table size and error bound, which fully utilizes intrinsic

characteristic of the target kernel.

V. CONCLUSION

LUT based approximate computing is one of the most

promising energy-efficient computing techniques for RMS

applications. Existing solutions simply stores high-frequency

patterns without considering the output quality and the intrin-

sic characteristic of the target kernel. In this paper, we propose

Design, Automation And Test in Europe (DATE 2018) 157

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:29:52 UTC from IEEE Xplore. Restrictions apply.

0.21

0.12

0.06
0.03

0.065
0.033

0.019 0.094
0

0.05

0.1

0.15

0.2

0.25

64 32 16 8

Hit Rate

Table Size

Savity-Golay Filter

Our Method
Highest Frequency

0.40

0.27

0.18
0.12

0.20

0.11
0.063

0.029
0

0.1

0.2

0.3

0.4

0.5

64 32 16 8

Hit Rate

Table Size

Black Sholes

Our Method
Highest Frequency

0.56

0.37

0.23

0.14

0.40

0.25

0.11
0.062

0

0.1

0.2

0.3

0.4

0.5

0.6

64 32 16 8

Hit Rate

Table Size

inversek2j

Our Method
Highest Frequency

0.11

0.066

0.037

0.0210.022
0.011

0.0051 0.0026
0

0.02

0.04

0.06

0.08

0.1

0.12

64 32 16 8

Hit Rate

Table Size

Fast Fourier Transform (fft)

Our Method
Highest Frequency

Fig. 5. Comparison of LUT Hit Rate between Our Method and Highest Frequency Method for Various Kernels (Error Bound: 5%)

0.56

0.37

0.23

0.14

0.40

0.25

0.11
0.062

0

0.1

0.2

0.3

0.4

0.5

0.6

64 32 16 8

Hit Rate

Table Size

Error Bound: 5%

Our Method
Highest Frequency

0.089

0.059

0.043
0.036

0.089

0.059

0.015
0.0077

0

0.02

0.04

0.06

0.08

0.1

64 32 16 8

Hit Rate

Table Size

Error Bound: 1%

Our Method
Highest Frequency

0.89

0.71

0.52

0.33

0.70

0.51

0.26
0.17

0

0.2

0.4

0.6

0.8

1

64 32 16 8

Hit Rate

Table Size

Error Bound: 10%

Our Method
Highest Frequency 1 1

0.94

0.71

0.98
0.88

0.65

0.45

0
0.2
0.4
0.6
0.8

1
1.2
1.4

64 32 16 8

Hit Rate

Table Size

Error Bound: 20%

Our Method
Highest Frequency

Fig. 6. LUT Hit Rate for inversek2j under Different Error Bounds

a novel lookup table allocation technique for approximate

computing with memory based on the input-output relationship

of the kernel and frequency distribution of different patterns,

which guarantees output quality and achieves much higher

LUT hit rate when compared to existing techniques, thereby

achieving much better energy savings. We have also shown

how to conduct effective lookup table allocation for multiple

computing kernels.

VI. ACKNOWLEDGEMENT

This work was supported in part by National Natural Sci-

ence Foundation of China (NSFC) under Grant No. 61432017

and 61532017.

REFERENCES

[1] S. Mittal. A survey of techniques for approximate computing.
ACM Computing Surveys (CSUR), 48(4):62, 2016.

[2] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and
J. Henkel. Invited: Cross-layer approximate computing: From
logic to architectures. In Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[3] P. Tang. Table-lookup algorithms for elementary functions
and their error analysis. In IEEE Symposium on Computer
Arithmetic, pages 232–236, 1991.

[4] J. Cong, M. Ercegovac, M. Huang, S. Li, and B. Xiao. Energy-
efficient computing using adaptive table lookup based on non-
volatile memories. In Low Power Electronics and Design
(ISLPED), 2013 IEEE International Symposium on, pages 280–
285. IEEE, 2013.

[5] J. Arnau, J. Parcerisa, and P. Xekalakis. Eliminating redundant
fragment shader executions on a mobile gpu via hardware mem-
oization. In Computer Architecture (ISCA), 2014 ACM/IEEE
41st International Symposium on, pages 529–540. IEEE, 2014.

[6] M. Imani, A. Rahimi, and T. Rosing. Resistive configurable
associative memory for approximate computing. In Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2016, pages 1327–1332. IEEE, 2016.

[7] A. Rahimi, A. Ghofrani, M. Lastras-Montano, K. Cheng,
L. Benini, and R. Gupta. Energy-efficient gpgpu architectures

via collaborative compilation and memristive memory-based
computing. In Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE, pages 1–6. IEEE, 2014.

[8] A. Goel and P. Gupta. Small subset queries and bloom filters
using ternary associative memories, with applications. ACM
SIGMETRICS Performance Evaluation Review, 38(1):143–154,
2010.

[9] A. Ghofrani, A. Rahimi, M. Lastras-Montaño, L. Benini,
R. Gupta, and K. Cheng. Associative memristive memory for
approximate computing in gpus. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 6(2):222–234, 2016.

[10] T. Kohonen. Associative memory: A system-theoretical ap-
proach, volume 17. Springer Science & Business Media, 2012.

[11] X. Liu, C. Deng, B. Lang, D. Tao, and X. Li. Query-adaptive
reciprocal hash tables for nearest neighbor search. IEEE
Transactions on Image Processing, 25(2):907–919, 2016.

[12] S. Richardson. Caching function results: Faster arithmetic by
avoiding unnecessary computation. 1992.

[13] A. Heydon, R. Levin, and Y. Yu. Caching function calls using
precise dependencies. In ACM SIGPLAN Notices, volume 35,
pages 311–320. ACM, 2000.

[14] J. Li, R. Montoye, M. Ishii, and L. Chang. 1 mb 0.41 μm2

2t-2r cell nonvolatile tcam with two-bit encoding and clocked
self-referenced sensing. IEEE Journal of Solid-State Circuits,
49(4):896–907, 2014.

[15] F. Alibart, T. Sherwood, and D. Strukov. Hybrid c-
mos/nanodevice circuits for high throughput pattern matching
applications. In Adaptive Hardware and Systems (AHS), 2011
NASA/ESA Conference on, pages 279–286. IEEE, 2011.

[16] M. Imani, Y. Cheng, and T. Rosing. Processing acceleration
with resistive memory-based computation. In Proceedings of
the Second International Symposium on Memory Systems, pages
208–210. ACM, 2016.

[17] M. Imani, S. Patil, and T. Rosing. Masc: Ultra-low energy
multiple-access single-charge tcam for approximate computing.
In Proceedings of the 2016 Conference on Design, Automation
& Test in Europe, pages 373–378. EDA Consortium, 2016.

[18] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-
Kamran. Axbench: A multiplatform benchmark suite for ap-
proximate computing. IEEE Design & Test, 34(2):60–68, 2017.

158 Design, Automation And Test in Europe (DATE 2018)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:29:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

