
On Effective and Efficient Quality Management for
Approximate Computing

Ting Wang†, Qian Zhang†, Nam Sung Kim§ and Qiang Xu†

†CUhk REliable Computing Laboratory (CURE)
Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: {twang,qzhang,qxu}@cse.cuhk.edu.hk

§University of Illinois, Urbana-Champaign
Email: {nskim}@illinois.edu

ABSTRACT
Approximate computing, where computation quality is traded off
for better performance and/or energy savings, has gained signifi-
cant tractions from both academia and industry. With approximate
computing, we expect to obtain acceptable results, but how do we
make sure the quality of the final results are acceptable? This chal-
lenging problem remains largely unexplored. In this paper, we pro-
pose an effective and efficient quality management framework to
achieve controlled quality-efficiency tradeoffs. To be specific, at
the offline stage, our solution automatically selects an appropri-
ate approximator configuration considering rollback recovery for
large occasional errors with minimum cost under the target quality
requirement. Then during the online execution, our framework ju-
diciously determines when and how to rollback, which is achieved
with cost-effective yet accurate quality predictors that synergisti-
cally combine the outputs of several basic light-weight predictors.
Experimental results demonstrate that our proposed solution can
achieve 11% to 23% energy savings compared to existing solutions
under the target quality requirement.

CCS Concepts
•Hardware → Power and energy;

Keywords
Approximate Computing; Quality Management

1. INTRODUCTION
Despite the advances in semiconductor technologies and circuit

design techniques, the overall energy consumption of computer
systems is still rapidly growing at an alarming rate in order to pro-
cess an ever-increasing amount of information. Considering that
a large amount of emerging applications (e.g., Recognition, Min-
ing and Synthesis (RMS)) are inherently error-resilient, approxi-
mate computing [1], where computation quality is traded off for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4185-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934583.2934608

better performance and/or energy gains, has become one of the
most promising energy-efficient design techniques for such kind
of workloads.

Even though error-resilient RMS applications can accept some i-
naccuracy, it is still essential to be able to control approximation er-
rors in a disciplined manner to ensure satisfactory user experience.
With approximate computing, the quality of the output is highly
dependent on the input patterns, and it is very difficult, if not im-
possible, to select an appropriate approximator configuration that
can always satisfy the target quality requirement. Rollback recov-
ery is therefore needed when the quality violation occurs [2, 3].

Grigorian et al. [2] utilizes the application specific light-weight
checkers to detect quality violations and then re-computes with
more accurate approximator configurations (or the fully accurate
one) until the target quality requirement is satisfied. However, s-
ince the proposed solution always starts with the most inaccurate
approximator configuration, frequent rollback recoveries may oc-
cur, causing significant performance and energy overheads. On
the other hand, if an overly accurate approximator configuration
is selected, the potential for energy efficiency of approximate com-
puting is not fully utilized. Rumba [3] resorts to the light-weight
quality predictors to detect large approximation errors and conduct-
s rollback recovery with accurate re-execution when the predicted
error is larger than a threshold. Three light-weight quality predic-
tors are presented, which are based on the linear model, the deci-
sion tree and the moving average, respectively. These simple pre-
dictors, however, may suffer from low prediction accuracy when
the application behavior is complicated. For inaccurate prediction-
s, false positives would result in unnecessary rollback recoveries
that damage the benefit of approximate computing while false neg-
atives would degrade the computation quality as essential rollback
recoveries are missed.

Generally speaking, two problems remained to be solved for the
quality management of approximate computing: 1) Quality check-
ers need to be designed for efficiently detecting the quality vio-
lations; 2) considering rollback recovery for quality violations, ap-
proximator configurations should be carefully determined. To tack-
le the above problems, in this paper, we propose a novel quality
management framework for approximate computing. To be spe-
cific, at the offline stage, our framework automatically determines
an appropriate approximator configuration considering rollback re-
covery for large errors with minimum cost based on the target qual-
ity requirement. Then, at the online stage, we conduct rollback
recovery based on our proposed cost-effective yet accurate quali-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2934583.2934608&domain=pdf&date_stamp=2016-08-08

ty predictors, which are achieved by synergistically combining the
outputs of several basic light-weight predictors through the majori-
ty voting, boosting and stacking techniques. While our quality pre-
dictors consume slightly more energy when compared to the ones
in [3], the prediction accuracy is considerably better and the overall
energy-efficiency of the proposed solution is much higher than the
existing solutions.

The rest of the paper is organized as follows. In Section 2,
we discuss our motivation and related works. Section 3 gives an
overview of our framework. Next, We introduce our framework in
detail in Section 4 and Section 5. Experimental results are present-
ed in Section 6. At last, Section 7 concludes the paper.

2. RELATED WORKS AND MOTIVATION
Many software and hardware techniques for approximate com-

puting have been proposed to exploit the error-resilience capabil-
ities of RMS applications. At the software layer, approximation
techniques include the programming language level code transfor-
mations [4] and the algorithm level relaxations [5, 6, 7]. At the
hardware layer, many approximate arithmetic unit designs (e.g., [8,
9, 10]) and approximate accelerators [11, 12] were proposed. While
significant energy gains were shown with slight quality losses, none
of them can achieve controlled quality-energy tradeoff and there
may exist large occasional errors from time to time. These large
occasional errors can significantly degrade the user experience [3].

To mitigate the above problem, SAGE [5] and Green [13] em-
ploy the sampling technique for quality checking. That is, they
compute an accurate result once every N invocations and com-
pare it against the approximate one. If their difference is larger
than a pre-determined threshold, they would use more accurate ap-
proximator configurations (if any) for the following computations.
While effective in many cases, since it is unrealistic to check every
invocation, the quality for those unchecked invocations cannot be
ensured. In addition, due to the lack of recovery support, previous
quality violations cannot be compensated. Therefore, rollback re-
covery is indispensable when quality violations [2, 3] occur. More
importantly, rollback recovery in fact provides the opportunity to
further improve the energy-efficiency of approximate computing.
For example, Rumba [3] has shown that only a small fraction (less
than 20%) of output elements see large approximation errors. As
rollback recovery can fix such errors, we can employ more aggres-
sive approximator configuration (with less computing effort) than
that without rollback recovery, and achieve better energy-efficiency
under the same target quality constraint.

Unlike the checkpointing and rollback recovery mechanism wide-
ly used in the fault-tolerant computing domain, in approximate
computing, usually we cannot exactly tell whether a quality viola-
tion occurs or not, simply because it would violate the very purpose
of the approximation (by comparing with accurate results). Conse-
quently, we have to rely on light-weight quality checkers to decide
whether to rollback or not and the efficiency of quality checking
has a significant impact on the benefits of approximate computing.

Generally speaking, a good quality checker should be accurate
and light-weight in nature. This is because the output quality is
highly input-dependent and every output element should be mon-
itored. Quality checkers with high energy overheads would kill
the benefits of approximation. There were some quality checker-
s proposed in the literature. The ones presented in [2] are rather
application-specific and cannot be generalized for other applica-
tions. Recently, Rumba [3] resorts to prediction-based methods for
quality checking. The three proposed quality predictors are based
on the linear model, the decision tree and the exponential moving
average (EMA), respectively. While they are shown to be quite

effective for determining when to rollback in their experimental re-
sults, we argue that these quality predictors may suffer from low
prediction accuracy when the application behavior is complicated
and we detail the reasons in the following.

Obviously, the linear model-based quality predictor is applicable
for those applications where the decision boundary1 for rollback
or not is linear. The prediction accuracy for non-linear problems,
which cover the majority of real applications, hence cannot be guar-
anteed. The decision tree can be used to form complex decision
boundary when the depth of the tree is high. However, consider-
ing the energy overhead of the quality predictor, we have to restrict
the depth of the tree (in Rumba [3], the tree depth is at most 7),
which limits its capability. The EMA-based quality predictor es-
timates approximation errors by observing the difference between
the current output and the moving average of existing ones, under
the assumption of the similarity between adjacent outputs. How-
ever, depending on the applications, adjacent elements may differ
significantly, and then the prediction accuracy would be quite low.

Motivated by the above, in this paper, we propose to synergisti-
cally combine several basic quality predictors to achieve the light-
weightiness and the high prediction accuracy simultaneously. The
key design principle lies in the fact that each individual basic pre-
dictor may make wrong quality predictions for some instances but
the likelihood for a strategic combination to be wrong is dramat-
ically reduced. To enforce the synergistic combination, for each
basic quality predictors used in our system, we train them with dif-
ferent input patterns such that the correlations among them are low,
and then combine them with different mechanisms.

3. FRAMEWORK OVERVIEW

User Input

Representative

Input Sets

Quality Metric/

Requirement

Rollback RecoveryHost/CPU

0 1 0 0 1 0

Rollback Queue

Output

Merger

I/O Queues

Offline

Approximate

Accelerator

Online

Quality

Management

Module

Offline

Optimization

Quality Predictor

Training

Rollback Threshold

Accelerator Config.

Quality

Predictor
Output

Figure 1: The proposed quality management framework.

Our quality management framework for approximate computing,
as shown in Fig. 1, targets at the host-accelerator system, which is
commonly used in today’s high-performance computing system-
s. The host is often a CPU while the accelerator can be any kind
of co-processors, e.g., GPUs or the approximate accelerators pre-
sented in [11, 12]. For the ease of explanation, we assume that
an approximate accelerator is used and it serves as the approxima-
tor in the system2. The dedicated quality management module in
Fig. 1 determines the approximator/accelerator configurations, con-
trols the quality prediction and determines whether to rollback or
not. The CPU conducts rollback recovery with exact re-executions

1Decision boundary is a hyperplane that partitions the underlying vector
space.
2Note that, however, our framework is applicable to other platforms as well.
If the approximation is not achieved with the approximate hardware units,
users could provide tunable programs as the approximators. For example,
when GPUs are used as the accelerators, users can employ software ap-
proximation techniques such as the loop perforation and function approxi-
mations [13].

of the original programs to correct quality violations when the roll-
back operations are triggered.

The overall quality management framework consists of both of-
fline and online operations. At the offline stage, users need to pro-
vide representative input datasets similar to those used in the appli-
cation test suite, the target quality requirement and the application-
specific quality evaluation metric. Based on these information,
our offline optimization step will determine the optimal accelera-
tor configuration and the corresponding error threshold for rollback
recovery with minimum energy cost. After that, we will train the
quality predictors using the obtained rollback threshold.

We augment the approximate accelerator with an error predictor
module for detecting quality violations. At the online phase, our
quality predictors operate simultaneously with the approximate ac-
celerator. The rollback decisions issued by quality predictors are
put in a FIFO rollback queue in Fig. 1 (‘1’ for rollback, and ‘0’
otherwise). These bits are sent to the host sequentially and then
the CPU fixes quality violations by re-executing the original pro-
gram accurately. The outputs of the approximate accelerator and
the CPU are put in the I/O queues. Finally, the output merger mod-
ule will choose the result for the final output either from the ap-
proximate accelerator or the CPU based on the bits stored in the
rollback queue.

Needless to say, the key challenges for effective and efficien-
t quality management include: i) how to do offline optimization
to determine the approximator configuration and the correspond-
ing rollback threshold and ii) how to design effective and efficient
quality predictors. These two parts are detailed in the following.

4. OFFLINE OPTIMIZATION
As error resilient RMS applications are usually data-parallel in

nature (e.g., image processing), whose final quality loss is often
measured by the mean error of all output elements (e.g., pixels in
the image), the output elements with larger errors contribute more
to the final quality loss. As a result, rollback recoveries for the
largest error elements achieve the best quality remedy. We define
that the rollback recovery is issued when the approximation error of
the current output element is greater than a pre-defined error thresh-
old. As shown in Section 2, with rollback recovery, we can employ
more aggressive approximator configuration than that without roll-
back recovery to achieve better energy efficiency under the same
target quality constraint. However, we cannot relax the computa-
tions too aggressively, otherwise, frequent rollback recoveries are
required. We try to choose the optimal approximator configuration
and the corresponding error threshold for rollback recovery so that
the total execution cost is minimized.

We assume that the representative input set I contains k input
elements in total (e.g., the input image contains k pixels). The
resilient program can be executed with n approximator configura-
tions AC = {A1,A2, · · · ,An}. The users provide the target quality
requirement Q and the quality evaluation function q(EAi), where
EAi is an array containing approximation errors of k elements ex-
ecuted with the approximator configuration Ai. The total cost Ci
is the sum of the approximator Ai execution, the quality prediction
and the rollback recovery costs.

Our offline optimization works as follows: we iterate over all the
approximator configurations in AC, for each Ai, if the initial quality
q(EAi) can meet the quality requirement Q, then no rollback recov-
ery is required. The corresponding error threshold Ti = ∞ and the
total cost Ci is only the approximator execution cost. Otherwise,
we need to fix a certain number of output elements for meeting the
quality requirement. We fix the approximation errors in EAi from
the largest to the smallest by setting the errors to be zero, until the

quality requirement is satisfied, that is q(EAi) ≥ Q. Then the er-
ror threshold Ti corresponding to the approximator configuration
Ai is the largest approximation error remained in EAi , as the ele-
ments with the approximation errors larger than it need to be fixed
for meeting the quality requirement. After sweeping over all the
approximator configurations in AC, we choose the approximator
configuration A j and the corresponding error threshold Tj with the
minimum total cost C j.

5. QUALITY PREDICTOR DESIGNS
Before we discuss the design of quality predictors, we first define

the input-output interfaces of the basic predictors. As they are used
to predict the approximation errors for rollback recovery, the output
of the basic predictor can be the approximation error of the output
element or one bit indicating rollback or not (e.g., the approxima-
tion error is larger/smaller than the error threshold). As the approx-
imation error of the element comes from the applied approximation
during the program execution, the inputs of the basic predictors can
be intermediate results before and/or after the approximation. In the
system shown in Fig. 1, the approximate accelerator contributes to
the final approximation error, so the inputs of the basic predictors
can be the input, output and intermediate results of the approxi-
mate accelerator. As our quality predictors are the combinations of
several basic quality predictors, the inputs of our quality predictors
are the inputs of all the basic quality predictors. The outputs of
our quality predictors can also be the approximation errors or the
rollback decisions according to the combination mechanism. If the
outputs of the quality predictors are the approximation errors, then
an extra step of comparing them with the error threshold is needed
for determining rollback or not.

5.1 Basic Quality Predictors
As discussed in Section 2, quality predictors should be designed

both accurate and light-weight in nature. Therefore, we cannot use
traditional models (e.g., decision trees and neural networks) due to
their high energy overhead. Instead, we try to combine the out-
puts of several light-weight basic predictors (e.g., the linear model-
based predictor) for both accuracy and low overhead. The two basic
quality predictors are detailed in the following.

5.1.1 Linear Model-based Basic Predictor
This model computes a linear function of its input as the predict-

ed value. Assume there are n input data, denoted by x, then the
predicted approximation error for the element is:

e = wn × xn +wn−1 × xn−1 + · · ·+w1 × x1 + c,

in which the parameters w and c are determined by offline training.

5.1.2 Table-based Basic Predictor
A table-based light-weight basic quality predictor stores the con-

tents (e.g., a single bit value for rollback decision or several bits
denoting the approximation error) in a table indexed by a hash over
the input bits. The key points for designing such a hash function
for the predictor include: i) it should utilize all the bits of the in-
put; ii) it can be implemented in the hardware efficiently. Based
on these considerations, we plan to resort to Linear Feedback Shift
Register (LFSR) for hashing the input bits. LFSR is a shift register
whose input bit is the linear function of its previous state, in which
exclusive-or (XOR) is the most commonly used linear function.
We generate input hash with LFSR-based Toeplitz hash proposed
in [14], in which the input bits of the predictor control the accumu-
lations of the LFSR states, as shown in Fig. 2. If the input bit is 1,
the corresponding state of LFSR is accumulated in the accumulator

0 0 1 0 0 1 1 01 . . .

. . .

Feedback

. . .

Accumulator

Enabler

Input Bits

Shift Out

Figure 2: LFSR for generating the input hash.
register, otherwise not. After all the input bits are shifted, the value
in the accumulator register is the corresponding input hash.

After obtaining the input hash, we can store the table contents of
the corresponding hash in the offline stage of our quality manage-
ment framework. If there are several approximation errors corre-
sponding to one hash value, we choose to store either the largest or
the average based on their prediction accuracy. If one bit for roll-
back decision is stored, the approximation error of the correspond-
ing input hash is compared with the error threshold obtained in Sec-
tion 4. If the approximation error is greater than the error threshold,
the table content indexed by the corresponding input hash will be
stored with 1, otherwise 0.

5.2 Predictor Combination
As shown in Section 2, basic quality predictors may suffer from

low prediction accuracy when the application behavior is compli-
cated. In this section, we describe three mechanisms to combine
the outputs of basic predictors to enhance the prediction accuracy.

• Voting-based Combination: Voting-based mechanism out-
puts one bit for rollback decision by taking the majority of
the outputs of all basic predictors. In this mechanism, we
assume we have the odd number of basic predictors, whose
outputs are one single-bit representing rollback or not. In this
combination, at least three basic predictors are needed. The
hardware implementation of the voters can be found in [15].

• Boosting-based Combination: This method comes from
the ensemble learning [16], where several weak learners (pre-
dictors) are ensembled to achieve better learning capability.
Boosting is a process of turning a weak predictor (less ac-
curate basic predictor) into a strong predictor (more accurate
predictor). We assume the outputs of basic predictors are
rollback recovery decisions. This mechanism works by iter-
atively adding basic predictors to the final strong predictor.
At the beginning, each element in the training dataset has the
same weight, that is 1/n, assuming n elements in total. Af-
ter adding a new basic predictor, the element in the training
dataset is re-weighted, in which the erroneous predicted ele-
ments gain weight and the successful predicted elements lose
weight. After re-weighting, future basic predictors will focus
more on the elements that are predicted erroneously by previ-
ous basic predictors. The outputs of the basic predictors are
combined into a weighted sum upon which a sign function
is applied to determine the rollback decision. The weights
of the basic predictors are decided based on their prediction
accuracy. In our framework, we use the linear models as the
basic predictors. We continue adding basic predictors until
the energy overhead exceeds the benefits.

• Stacking-based Combination: Stacking involves training
a learning algorithm, or a meta-level predictor, to combine
the predictions of several basic predictors. In stacking, the
outputs of the basic predictors on a validation dataset are ag-
gregated and combined with the known rollback decisions
to create a meta-level training dataset. For example, given
a validation dataset with n elements XXX = {xxxiii|i = 1,2, · · · ,n}

and L basic predictors whose outputs on the element xxxiii are
yyyiii = {yyyiii

jjj| j = 1,2, · · · ,L}. The known rollback decision on xxxiii

is di, so the meta-level training dataset is MMM = {(yyyiii,di)|i =
1,2, · · · ,n}. Then another predictor, called the meta-level
predictor, is trained on the meta-level dataset. At the test
phase, the rollback decision is the output of the meta-level
predictor which regards the outputs of all basic predictors as
its inputs. In our framework, we choose the single-layer lo-
gistic regression as our meta-level predictor. After obtaining
the model parameters, the logistic regression can be imple-
mented with a small look up table.

Boosting- and Stacking-based combinations succeed under the
theory of the ensemble learning [17]. In order to obtain the high
accuracy of combinations, we need to make basic quality predic-
tors work in a synergistic manner. To be specific, we need to train
the basic quality predictors with different patterns to reduce the
correlations among them such that they make wrong predictions
on different instances. And then a strategic combination of them
can significantly reduce the likelihood for wrong predictions. Our
Boosting-based combination can automatically satisfy this princi-
ple by re-weighting elements in the training datasets. To ensure this
principle for Voting- and Stacking-based combination mechanism-
s, we can choose different types of basic predictors and train them
with different datasets.

For a combination mechanism, we can choose different numbers
and types of basic quality predictors for combination. However, it
is impossible for us to choose a specific number and type of basic
quality predictors that can give satisfactory prediction accuracy all
the time. When using our quality predictor design methods, users
need to try different numbers and types of basic quality predictors
on a validation dataset and choose the one with the best accuracy.
Due to the energy overhead, the total number of basic predictors is
usually restricted, for example, no more than 5, the cost for explor-
ing and choosing the best number and type of basic predictors is
not a big deal.

6. EXPERIMENTAL RESULTS
6.1 Experimental Setup

Similar to Rumba [3], we evaluate our proposed framework with
Neural Processing Unit (NPU) from [11], in which a neural net-
work is selected and trained to mimic the execution of a region of
computation-intensive code. And the different network topologies
represent the approximator configurations with different accuracy
levels.

Energy Modeling: We use gem5 [18] simulator to measure the
performance of our quality control system. The micro-architecture
configurations of the x86_64 CPU and NPU parameters for gem5
simulation are the same as those shown in [3], and the energy
consumption is estimated by McPAT [19]. Quality predictors are
implemented with Verilog and synthesized with Synopsys Design
Compiler. Their energy consumptions and running time are achieved
with Synopsys PrimeTime. The whole system is modeled in 32nm
technology node.

Benchmarks: We select 5 benchmark applications from [11], as
summarized in Table 1. The application domain, train data, test da-
ta and the application-specific quality loss metrics are listed. The
initial topology of the NPU and the initial quality without rollback
recovery are also given in the table. The quality loss is directly
related to the output quality. For example, the 5% quality loss rep-
resents the 95% output quality. We estimate the accuracy of the
predictors based on the initial NPU topology, in which 9->8->1
represents that the NPU accelerator has 9 inputs, 1 hidden layer

Benchmark Domain Train Data Test Data Quality Loss Metric Topology Initial Quality
blackscholes Financial 4K inputs 16K inputs Avg. Relative Error 6->4->2->1 90.58%

fft Signal Procession 4K fp numbers 32K fp numbers Avg. Relative Error 1->2->2->2 87.02%
inversek2j Robotics 50K (x, y) points 500K (x, y) points Avg. Relative Error 2->2->2->2 90.03%

jmeint 2D Gaming 10K 3D triangles 100K 3D triangles Miss Rate 18->16->16->2 76.56%
sobel Image Processing 256x256 pixel image 256x256 pixel image Image Diff 9->8->1 83.79%

Table 1: Benchmark information, accelerator topology and initial quality without rollback recovery.

(a) Target 92.5% Quality Requirement (b) Target 95.0% Quality Requirement (c) Target 97.5% Quality Requirement

0

20

40

60

80

100

blackscholes fft inversek2j jmeint sobel

Random Linear Tree EMA

Voting Boosting Stacking

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

0

20

40

60

80

100

blackscholes fft inversek2j jmeint sobel

Random Linear Tree EMA

Voting Boosting Stacking

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

0

20

40

60

80

100

blackscholes fft inversek2j jmeint sobel

Random Linear Tree EMA

Voting Boosting Stacking

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Figure 3: The prediction accuracy compared to the Ideal predictor when targeting different quality requirements.
with 8 neurons and 1 output. The NPU topology can be changed
to obtain different computation accuracy levels. Usually, the com-
putation accuracy can be improved by increasing the complexity of
the NPU topology, e.g., increasing the number of hidden layers or
neurons, but requiring more computation time and energy.

6.2 Prediction Accuracy
6.2.1 Predictor Setup

We use the topology listed in Table 1 to evaluate the prediction
accuracy of different predictors, which should issue rollback recov-
eries for the elements with approximation errors larger than the er-
ror threshold and no rollback for other elements. The error thresh-
old is obtained with the method described in Section 4, in which
we restrict the approximator configuration as the NPU topology in
Table 1. In order to evaluate the prediction accuracy of quality pre-
dictors, we compare the outputs of our predictors against an Ideal
predictor which has the oracle knowledge about the approximation
errors of all output elements. Therefore, it knows exactly which
output element needs rollback recovery. The prediction accuracy
of the other quality predictors is the percentage of the same predic-
tion results compared with the Ideal predictor.

We combine the linear- and table-based basic predictors with
three combination mechanisms shown in Section 5.2 to obtain three
quality predictors, named as Voting, Boosting and Stacking. Their
prediction results are presented in Fig. 3 when targeting for the
92.5%, 95.0% and 97.5% quality requirements, respectively. After
exploring different numbers and types of the basic quality predic-
tors, we choose the one with the best prediction accuracy on a val-
idation dataset (a subset of the quality predictors training data) in
our experiments. We also present the prediction accuracy of qual-
ity predictors proposed in [3], named as Linear, Tree and EMA,
respectively. A Random predictor fixes a given percentage of the
output elements randomly.
6.2.2 Prediction Results

According to the results shown in Fig. 3, we have the following
observations. First of all, our predictors can achieve better predic-
tion accuracy than the ones proposed in [3] and Random under dif-
ferent quality requirements. Take the fft benchmark as an example,
as its output elements with high approximation errors have similar
properties and can be easily separated with the ones with low ap-
proximation errors, our three quality predictors can obtain as high
as 95%, 99% and 98% prediction accuracy, respectively, when tar-
geting for 92.5% quality requirement. However, Linear, Tree and
EMA can only obtain the prediction accuracy of 82%, 85% and
68%, respectively. And the prediction accuracy of Random is 69%.
Secondly, when we increase the acceptable quality from 92.5% to

97.5%, all predictors’ prediction accuracy levels decrease. The pos-
sible explanation is that as the quality requirement increases, more
output elements are required to rollback. The rollback decision
boundary becomes more complex and difficult to determine. How-
ever, our Stacking predictor is more robust than the other predictors,
as it relies on a more sophisticated learning process to combine the
basic predictors.

6.3 Energy Consumption
Our framework targets the selection of the approximator con-

figuration considering rollback recovery and the quality predictor
designs. In order to evaluate its energy efficiency, we use the CPU
execution for benchmark applications as the baseline for compar-
ison. The system energy includes the energy consumption of the
CPU, the approximator and quality predictors. As the NPU topol-
ogy space is large, we restrict that the neural network has at most 2
hidden layers and each hidden layer has at most 32 neurons.

6.3.1 Impacts of the Approximator Configuration
We show the normalized energy consumption with respect to the

baseline (no approximation) in Fig. 4 when targeting different qual-
ity requirements, named as NPU+Rollback. We compare it with the
method only tuning approximator configurations and the one only
tuning error threshold for rollback, named as NPU and Rumba [3],
respectively. NPU selects the topology with the minimum energy
consumption that can satisfy the quality requirement. Rumba fixes
the minimum number of output elements for meeting the quality re-
quirement without changing the NPU topology. It utilizes the same
topology as our method under the 95% quality requirement.

According to the results, our method, NPU+Rollback, achieves
the best energy efficiency except jmeint. This is because we co-
optimize the approximator configurations and the error threshold
for rollback recovery, which is certainly superior to only optimizing
one of them. NPU usually needs the approximator configuration
with the higher accuracy level (e.g., more complex neural network
topology) to satisfy the quality requirement, as no rollback recov-
ery is utilized. Even though no quality prediction is needed, more
complex network topology usually consumes much more energy.
For example, when targeting the 92.5% quality requirement of the
fft application, NPU consumes 37% energy of the baseline, while
our method only needs 23% energy. Moreover, without rollback
recovery, NPU cannot always satisfy the quality requirement. For
instance, the final quality of jmeint is not acceptable, even though
NPU achieves more energy efficiency. We cannot find a NPU topol-
ogy to meet the target quality requirement, which indicates rollback
recovery is indispensable for guaranteeing the quality requirement.
For Rumba, when the quality requirement increases from 92.5% to

(a) Target 92.5% Quality Requirement (b) Target 95.0% Quality Requirement (c) Target 97.5% Quality Requirement

0

20

40

60

80

100

blackscholes fft inversek2j jmeint sobel

NPU Rollback NPU+Rollback

N
o

rm
a

li
ze

d
E

n
e

rg
y
 (

%
)

0

20

40

60

80

100

120

blackscholes fft inversek2j jmeint sobel

NPU Rollback NPU+Rollback

N
o

rm
a

li
ze

d
E

n
e

rg
y
 (

%
)

0

20

40

60

80

100

120

blackscholes fft inversek2j jmeint sobel

NPU Rollback NPU+Rollback

N
o

rm
a

li
ze

d
E

n
e

rg
y
 (

%
)

Figure 4: The normalized energy when targeting different quality requirements.
97.5%, it needs to fix more output elements. As rollback recovery
with the CPU is expensive, Rumba consumes much more energy.

6.3.2 Impacts of the Quality Predictors

0

20

40

60

80

100

120

140

blackscholes fft inversek2j jmeint sobel

Random Linear Tree EMA

Voting Boosting Stacking

N
o

rm
a

li
ze

d
 E

n
e

rg
y
 (

%
)

Figure 5: The normalized energy with different predictors.
In this section, we compare the impacts of different quality pre-

dictors on the system energy efficiency.
Fig. 5 shows the energy consumption of benchmark applications

with respect to the baseline by applying different quality predic-
tors when targeting the 95.0% quality requirement. We find that
our predictors always obtain better energy efficiency than predic-
tors from [3] and random rollback recovery (Random in the figure).
Again, take the fft as an example, by performing rollback recov-
ery randomly, the system consumes 60% energy with respect to the
baseline. Predictors from [3] need 57%, 55% and 64% energy, re-
spectively. However, by applying our predictors, the system only
consumes 50%, 47% and 46% energy, respectively. This is because
the prediction accuracy of predictors from [3] and Random is not
satisfactory, which will produce many false positives and introduce
many unnecessary rollback recoveries. As rollback recovery with
the CPU is expensive in terms of energy, even though our predic-
tors consume slightly more energy, we still achieve better energy
efficiency by avoiding many unnecessary expensive rollback recov-
eries. However, we do not achieve energy gains from the jmeint
benchmark. As NPU-based approximator is not good at approx-
imating this application, many rollback recoveries are needed for
ensuring the target quality requirement.

To conclude, considering both the impacts of approximator con-
figurations and quality predictors, our framework can achieve 11%
to 23% energy savings compared to existing solutions. Moreover,
according to our experiments, the initial quality without rollback
recovery of the selected NPU topology is slightly lower than the tar-
get quality requirement. So we can reach a conclusion that the most
energy efficient way of applying approximate techniques is to se-
lect an approximator configuration whose quality is slightly worse
than the target quality requirement, and then obtains the quality re-
quirement by performing rollback recovery to fix a certain number
of output elements.

7. CONCLUSIONS
In this paper, we propose an effective and efficient quality man-

agement framework for approximate computing, in which we syn-
ergistically combine the outputs of several basic light-weight pre-

dictors to obtain more accurate predictions. Our solution can achieve
11% to 23% more energy gains under the given target quality re-
quirement, when compared to the state-of-the-art techniques.

8. ACKNOWLEDGMENT
This project was supported in part by the Hong Kong SAR Re-

search Grants Council (RGC) under General Research Fund No.
CUHK418112, in part by National Natural Science Foundation of
China (NSFC) under Grant No. 61432017, in part by NSFC/RGC
Joint Research Scheme under Grant No. N_CUHK444/12, and in
part by National Science Foundation (CCF-1600896/0953603).

9. REFERENCES
[1] Q. Xu, N. S. Kim, and T. Mytkowicz, “Approximate computing: A survey,” in

IEEE Design & Test, vol 33, pp. 8–22, Feb. 2016.
[2] B. Grigorian, N. Farahpour, and G. Reinman “Brainiac: Bringing reliable

accuracy into neurally-implemented approximate computing,” in International
Symposium on High Performance Computer Architecture (HPCA),
pp. 615–626, 2015.

[3] D. S. Khudia, et al., “Rumba: an online quality management system for
approximate computing,” in International Symposium on Computer
Architecture (ISCA), pp. 554–566, 2015.

[4] S. Sidiroglou, et al., “Managing performance vs. accuracy trade-offs with loop
perforation,” in ACM SIGSOFT symposium and European conference on
Foundations of software engineering, pp. 124–134, 2011.

[5] M. Samadi, et al., “Sage: Self-tuning approximation for graphics engines,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 13–24, 2013.

[6] H. Hoffmann, et al., “Using code perforation to improve performance, reduce
energy consumption, and respond to failures,” Computer Science and Artificial
Intelligence Laboratory Technical Report, 2009.

[7] Q. Zhang, et al., “Approxit: An approximate computing framework for
iterative methods,” in ACM Design Automation Conference (DAC), pp. 1–6,
2014.

[8] R. Ye, et al., “On reconfiguration-oriented approximate adder design and its
application,” in International Conference on Computer-Aided Design
(ICCAD), pp. 48–54, 2013.

[9] N. S. Kim, et al., “Multiplier supporting accuracy and energy trade-offs for
recognition applications,” Electronics Letters, pp. 512–514, 2014.

[10] Q. Zhang and et al., “ApproxANN: an approximate computing framework for
artificial neural network,” in IEEE/ACM Design, Automation & Test in Europe
Conference (DATE), pp. 701–706, 2015.

[11] H. Esmaeilzadeh, et al., “Neural acceleration for general-purpose approximate
programs,” in IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 449–460, 2012.

[12] S. Venkataramani, et al., “Quality programmable vector processors for
approximate computing,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1–12, 2013.

[13] W. Baek and T. M. Chilimbi, “Green: a framework for supporting
energy-conscious programming using controlled approximation,” in ACM
Sigplan Notices, vol. 45, pp. 198–209, 2010.

[14] P. Deepthi and P. Sathidevi, “Design, implementation and analysis of hardware
efficient stream ciphers using lfsr based hash functions,” Computers &
Security, vol. 28, no. 3, pp. 229–241, 2009.

[15] B. Parhami, “Voting networks,” Reliability, IEEE Transactions on, vol. 40,
no. 3, pp. 380–394, 1991.

[16] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
classifier systems, pp. 1–15, Springer, 2000.

[17] Z.-H. Zhou, “Ensemble learning,” in Encyclopedia of Biometrics,
pp. 270–273, Springer, 2009.

[18] N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[19] S. Li, et al., “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in International
Symposium on Microarchitecture(MICRO), pp. 469–480, 2009.

