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Abstract
Software in the wild exhibits various computational e�orts, such as
dynamic behaviors arising from runtime invocations and nondeter-
ministic behaviors introduced by probabilistic algorithms. These
e�orts complicate software testing because they require meaningful
inputs for invocation, introduce additional branching decisions at
runtime, and produce divergent outcomes for identical inputs.

To address these challenges, we propose an e�ective testing
framework that leverages commonality analysis across inputs, exe-
cution traces, and outcomes. This paper presents our preliminary
experiment, which only leverages token-level commonalities to
synthesize strings as inputs for testing dynamic invocations in Java
applications. Speci�cally, we analyze naming patterns of loadable
targets for runtime invocations and generate inputs following such
patterns. Because existing string mutation operators cannot easily
synthesize meaningful inputs for runtime invocations, we construct
a token tree to prioritize tokens that are likely to be used for invo-
cation based on common vocabularies such as pre�xes or su�xes.
To address the challenge that branching decisions and execution
paths are not deterministic, we enhance traditional branch coverage
guided fuzzing by monitoring dynamic behaviors based on class
hierarchies and call graphs.

In the future, we plan to extend our test generation framework
for dynamic behaviors to include nondeterministic behaviors. Non-
determinism often stems from probabilities and randomization,
causing programs to branch into multiple outcomes despite iden-
tical inputs. We want to systematically explore as many of these
outcomes as possible. Leveraging the insight from our preliminary
research that there exist common patterns such as shared pre�xes,
we plan to de�ne constraints to enable early termination when iden-
tical execution trace pre�xes are detected, allowing us to improve
testing e�ciency while covering diverse execution paths.
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1 Introduction
The prevalence of arti�cial intelligence has introduced increas-
ing computational e�orts in emerging software systems, including
dynamic behaviors due to runtime invocations [20, 26, 31], nonde-
terministic behaviors resulting from randomization [11], and non-
terminism [18]. For example, users must pass in a meaningful string
argument to specify which tokenizer (e.g., bert-base-uncased) to
use for classi�cation in the Deep Java Library (DJL) [1]. However,
the fundamental question of “How can we e�ciently generate and ex-
ecute tests to e�ectively exercise dynamic, nondeterministic behaviors
in an application?” has been largely overlooked in the literature.

Test Generation Challenges. Fuzz testing has emerged as a highly
e�ective input generation technique for large software systems [3,
23, 24]. Typically, fuzzers iteratively generate new test inputs by
mutating seed inputs and save them if they exercise new branches.
However, naïvely applying existing fuzzers to dynamic, nondeter-
ministic behaviors is ine�cient for three reasons.
• Invalid Strings. Traditional fuzzers struggle to synthesize valid
string inputs for dynamically loadable targets such as classes and
methods. For example, running a fuzzer JQF [24] onDJL programs
for 24 hours failed to generate any valid method names, lead-
ing to repeated NoSuchMethodExceptions without any deeper
execution path exploration.

• Ine�ective Branch Coverage. Fuzzing techniques often build on an
inherent assumption that branch coverage is a meaningful signal
for guiding input generation. However, this signal may fail to
di�erentiate dynamically loaded code. For example, the branch
coverage for accessing name and age �elds in UserDetails class
via re�ection [2] is identical, despite accessing di�erent attributes.

• Dynamic Branches. Fuzzers often assume a static set of executable
branches. However, testing dynamic behaviors requires expand-
ing this scope to include branches that are introduced and ex-
ecuted after dynamic loading. Nondeterminism introduces ad-
ditional complexity, as the same input may traverse di�erent
execution paths across test runs.

Commonality Analysis Based Testing. Our overall insight is that
we can address these challenges for testing dynamic, nondetermin-
istic behaviors by analyzing commonalities in test inputs, execution
traces, and program outcomes. As shown in Figure 1, we observe
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Figure 1: Overview of Testing with Commonality Analysis.

that (1) runtime invocations use strings as arguments to construct
loadable target names and (2) tokens sharing common vocabularies
(e.g., the su�x Chart in LineChart and BarChart) are likely to
represent di�erent loadable targets at the same site of runtime invo-
cations (e.g., the method create). We thus hypothesize that we can
prioritize tokens with similar vocabularies to improve the reacha-
bility of runtime invocations. Furthermore, while probabilistic and
randomized algorithms may cause identical inputs to yield di�erent
outcomes (e.g., generating varied line charts in Figure 1), we observe
that similar preceding execution traces often lead to consistent
results. We thus hypothesize that we can leverage trace analysis for
early termination to e�ciently explore diverse execution paths.

S��T����. In this paper, we present our initial exploration on token-
level input commonalities to generate tests for dynamic invocations
in Java applications [7, 19, 31, 34]. Speci�cally, we propose S��T����,
a two-fold test generation tool as elaborated below.
1. Commonality Based Token Substitution and Prioritization. Based
on the insight that loadable targets (e.g., classes, methods, �elds, and
libraries) for runtime invocations in Java often adhere to naming
conventions, such as camel cases [29], where strings are repeated
with common pre�xes or su�xes, S��T���� increases the likelihood
of generating strings of dynamically loadable targets. S��T����
�rst generates a token dictionary from source code to include all
possible loadable targets present in the software and its included
libraries. Naïvely enumerating all tokens does not consider the fact
that not all tokens contribute equally to the reachability of runtime
invocations and would result in a large number of futile attempts.
To expedite this process, S��T���� constructs a token tree, a tree-
based data structure representing pre�xes and su�xes, to prioritize
tokens with the same structure based on the naming patterns.
2. Loadable Target Monitoring. Unlike conventional fuzzers that
primarily rely on branch coverage [3] or performance metrics [21,
33] for guidance, S��T����’s loadable target monitoring adds three
additional categories: (1) all loadable targets within the software, (2)
all sibling targets related to previously executed tests, and (3) all sub-
targets derived from previously executed tests. Any inputs leading
to either new branch coverage or successful dynamic loading are
then retained for subsequent mutations.

Preliminary Findings. We conducted an evaluation with 71 sub-
ject programs from XCorpus [13], a widely used corpus of real-
world Java projects. We compared S��T���� with two alternatives:
(1) S��T���� without tree-based input prioritization and (2) tra-
ditional input generation with the AFL engine [3, 24]. Overall,
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Figure 2: Synthesizing Tokens for Testing Dynamic Behavior.

S��T���� was able to cover all targets that can be dynamically
loaded and used and reveal all 280 manually inserted bugs residing
in the loadable targets. Per the open science policy, we provide the
artifacts to S��T���� at https://doi.org/10.5281/zenodo.15278627.
We summarize our key �ndings as follows.
• String substitutions in S��T���� enable to generate meaning-
ful inputs to reveal bugs, such as NullPointerException and
IllegalArgumentException, that reside in loadable targets.

• Analyzing input commonalities is highly e�ective for exercising
dynamically loaded code. Input prioritization based on analyz-
ing common pre�xes and su�xes provides up to 10⇥ speedup
compared to random string substitution in the token dictionary.

Future Plan.Moving forward, we plan to investigate how to extend
this approach to other dynamic and nondeterministic behaviors. For
example, wewill identify commonalities across traces and outcomes
to enhance the coverage of diverse execution behaviors.

2 Preliminary Research on Analyzing Input
Commonalities

Figure 2 shows an overview of synthesizing tokens based on
input commonalities for an application with dynamic invocations:
(1) token tree construction and token substitution (Section 2.1) and
(2) loadable target exploration and monitoring (Section 2.2).

2.1 Token Substitution and Prioritization
Exploring code after runtime invocations requires an understand-
ing of possible loadable targets (i.e., valid string arguments). Load-
able targets in Java often adhere to naming conventions, such as
camel cases [4, 14, 29]. Class names like BarChart and LineChart

share the su�x Chart, while method names like createBar and
createLine repeat the pre�x create. Prior research has leveraged
such naming patterns [17] for API recommendation tasks [16] or
code completion tasks [30]. By leveraging this insight, we can ef-
fectively navigate the token space, prioritize replacement tokens,
and enhance the generation of valid loadable targets.

Step 1. Token Extraction. Using JavaParser [15] to facilitate token
analysis, we traverse Abstract Syntax Trees (ASTs) of the program
under test (e.g., Figure 3a) and target speci�c nodes such as class def-
initions and method de�nitions, because they primarily represent
possible loadable targets. We generate multiple token dictionaries
for each category (e.g., classes, methods) and then combine them.

Step 2. Tree Construction. Prior work that replaces an input with
a randomly selected token ignores the fact that loadable target

612

https://doi.org/10.5281/zenodo.15278627


E�icient Test Generation for Dynamic Behaviors Leveraging Token-Level Input Commonalities FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

1 public class ChartFactory {

2 String theme = �JFree�;

3 JFreeChart createBar(...) {}

4 JFreeChart createLine(...) {}

5 }

6
7 public void saveChart(...){}

8

9 public class BarChart extends ChartFactory{}

10

11 public class LineChart extends ChartFactory{

12 @override

13 JFreeChart createLine (...) {

14 JFreeChart createDashedLine (...) {}

15 }

16 }

(a) Source Code of the Program under Test.
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(c) Loadable Targets.

Figure 3: An Example of Token Tree Construction and Loadable Targets for JFreeChart [5] in XCorpus [13].

names usually have recurring pre�xes or su�xes. We thus con-
clude that not all tokens contribute equally to the exploration of
dynamic behaviors. In fact, based on our experiments, among 3,511
tokens extracted from the real-world project JFreeChart [5], only
607 tokens are relevant to dynamic class loading, which indicates
that the random replacement from dictionaries would result in 83%
futile attempts. Therefore, we construct a token tree to relate to-
kens that share common vocabularies. For instance, in Figure 3b,
createBar and createLine share identical nodes c, r, e, a, t, and
e as their common pre�x, and BarChart and LineChart share the
same nodes C, h, a, r, and t as their common su�x.

Step 3. Prioritized Input Selection. Based on the class and method
relations presented in the token tree, we traverse the token space
and prioritize tokens with the longest common pre�x or su�x as
the next generated input (i.e., another possible loadable target). We
use a tunable parameter to decide whether to search in the pre�x
tree or su�x tree. Traversals in the pre�x tree will proceed top-
down from the top root node, while traversals in the su�x tree will
proceed bottom-up from the bottom leaf node.

For example, in Figure 3b, when the current input is createBar
and S��T���� searches in the pre�x tree, S��T���� traverses the
token tree along the common parent nodes and identi�es that
createLine is the token having the longest common pre�x with
createBar. Then createLine will be selected as the next test in-
put. Importantly, the subtrees including tokens like saveChart are
deprioritized, enabling an expedited search process.

Mutation.We do not sacri�ce the capability of generating arbitrary
inputs and retain random bit and byte mutations to include the
capability of classical fuzz testing techniques.

2.2 Runtime Monitoring
Relying solely on branch coverage signal is insu�cient for test-
ing dynamic behaviors. To tackle this challenge, we incorporate
runtime monitoring for loadable classes and methods accessible
within the software. Based on the insight that di�erent loadable
targets may implement the same interface or method, we analyze
inheritance relations for classes and methods (e.g., Figure 3c). For
classes, we extract the class hierarchy by monitoring the AST at-
tribute childrenNodes of ClassOrInterfaceDeclaration nodes.
For methods, we determine the call graph by investigating the AST

attribute childrenNodes of MethodDeclaration nodes, because
the node of a callee method is present in childrenNodes of the
node of its caller method. For each loaded target, we monitor if its
sibling targets and sub-targets are also loaded.

3 Preliminary Evaluation
We seek to answer the following research questions.

RQ1 How e�ective and e�cient is S��T���� in generating inputs
to explore dynamic behaviors?

RQ2 How e�ective is S��T���� in revealing bugs residing in the
loadable targets?

Subjects. We evaluated S��T���� on XCorpus [13], a well-known
benchmark set of real-world Java projects [27, 32]. 71 out of its 76
projects demonstrate dynamic behaviors and thus are used as our
evaluation subjects.

Baselines. We compared S��T���� with two baselines.

• JQF�AFL�����. It is traditional coverage-guided fuzzing with the
AFL engine, which is built on top of JQF for Java programs. It
uses branch coverage as guidance and random byte replacements
as input generation. The generated inputs are arbitrary strings.

• S��T�����D���������. This option disables token tree guided
input prioritization from S��T����. It replaces the current input
with a random string selected from the token dictionary.

3.1 Exercising Loadable Targets
To evaluate the e�cacy and e�ciency of S��T���� in exploring
dynamic behaviors, we ran it for three hours and measured the
percentage of exercised targets out of all loadable targets. We also
compared S��T���� against JQF�AFL����� to assess the bene�t of
using existing tokens and against S��T�����D��������� to assess
the speedup from tree-based input prioritization.

Due to space limit, we will discuss �ve sample subjects in detail,
which re�ect the minimum, maximum, median, lower quartile, and
upper quartile lines of code (LOC) among the 71 subjects we study.
Their accumulative loadable target coverage is shown in Figure 4.

S��T���� exercised all loadable targets within two minutes for
every subject. In contrast, JQF�AFL����� failed to generate any mean-
ingful inputs, resulting in repeated ClassNotFoundExceptions and
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Figure 4: Accumulated Loadable Target Coverage of Sample Subject Programs. The y-axis indicates the percentage of coverage,
and the x-axis represents wall-clock time in minutes on a logarithmic scale.
NoSuchMethodExceptions, as shown in Figure 4 where JQF�AFL�
����’s results overlap with the x-axis.

Compared to S��T�����D���������, S��T���� achieved an av-
erage speedup of 4.18⇥ across subjects. The speedup increases as
the subject size grows. For example, on P1 with 3,456 LOC and 374
loadable targets, S��T���� is 1.33⇥ faster, while on P5 with 412,995
LOC and 3,206 loadable targets, the speedup reaches 9.72⇥.

3.2 Bug Detection
We used mutation analysis to assess S��T����’s bug detection ca-
pability in terms of the ability to discover injected bugs residing in
dynamically loaded classes and methods. We systematically created
faulty mutants by leveraging three mutation operators, i.e., Assign-
ment Statement Insertion (M1), Function Argument Replacement
(M2), and Typecast Operation Insertion (M3), to inject commonly
seen exceptions from the prior study [12] into original subjects. In
total, we injected 280 bugs into our 71 subjects. We measured the
number of bugs detected by S��T���� in three hours. Remarkably,
S��T���� uncovered all the injected bugs by generating inputs cor-
responding to loadable target names and invoking targets to reveal
the bugs within the loaded targets. On the contrary, JQF�AFL�����
failed to detect any inserted bugs, because it wasted its fuzzing time
on generating invalid string names.

4 Related Work
Analyzing Dynamic Behaviors. E�orts have been made to extend
unsound static analyses to accommodate dynamic behaviors [9, 10],
where dynamic pro�ling is often employed as a complementary
approach of unsound static analyses. However, how to e�ciently
generate tests for e�ectively exploring dynamic behaviors is over-
looked, which motivates our research.

Fuzz Testing. Instead of relying on branch coverage [3, 25], several
techniques adopt custom guidance mechanisms [21, 22, 33, 35].
However, none of them provides guidance for dynamic behaviors.
Prior work also explored token characteristics in dictionary-based
fuzzing. Salls et al. [28] construct a dictionary of all tokens from
the source code for testing JavaScript interpreters. However, they
do not consider input commonalities, such as pre�xes and su�xes,
to expedite input exploration. AFL [3] and libFuzzer [6] support
user-de�ned dictionaries that contain language keywords, multi-
byte magic values, etc. However, their mutations are not aligned
with tokens, and they still mainly rely on byte-level mutations.

Coding Conventions. Developers commonly follow coding con-
ventions such as camel casing when naming identi�ers, and these
widely used vocabularies have been leveraged in various program
analysis tasks [8, 17, 30]. However, none of these techniques are
designed or used for test generation.

5 Future Plans
Our eventual goal is to systematically study various intricate dy-
namic and nondeterministic behaviors in emerging software and
to build comprehensive reachability analysis tools for them. S���
T����’s underlying idea of leveraging commonalities to enhance
testing e�cacy and e�ciency for runtime invocation can be ex-
tended to other dynamic and nondeterministic features.

For example, nondeterminism, which often arises from proba-
bilistic implementation and randomized processes, can cause pro-
grams to diverge into multiple outcomes despite identical inputs.
We observe that there are commonalities across nondeterministic
executions, where executions sharing common pre�xes have a high
probability of producing the same outcomes. We thus hypothesize
that we can improve testing e�ciency for nondeterminism by ter-
minating executions early when common execution pre�xes are
detected, thereby shifting to other unexplored execution paths.

Speci�cally, we will (1) instrument the software to record execu-
tion traces; (2) de�ne constraints that establish early termination
conditions by comparing the current execution trace against pre-
viously recorded traces; and (3) enable early termination when
these constraints indicate that the current execution path shares a
common pre�x with any previously explored path.

6 Conclusion
In this paper, we open a research problem of generating tests for
dynamic and nondeterministic behaviors. The preliminary research
analyzes input commonalities at the token level. This idea of com-
monality analysis can be extended to other dynamic and nondeter-
ministic behaviors by incorporating a wider range of characteristics,
including test inputs, execution traces, and program outcomes.
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