
HeteroFuzz: Fuzz Testing to Detect Platform Dependent
Divergence for Heterogeneous Applications

Qian Zhang
University of California, Los Angeles

USA
zhangqian@cs.ucla.edu

Jiyuan Wang
University of California, Los Angeles

USA
wangjiyuan@g.ucla.edu

Miryung Kim
University of California, Los Angeles

USA
miryung@cs.ucla.edu

ABSTRACT

As specialized hardware accelerators like FPGAs become a promi-
nent part of the current computing landscape, software applications
are increasingly constructed to leverage heterogeneous architec-
tures. Such a trend is already happening in the domain of machine
learning and Internet-of-Things (IoT) systems built on edge devices.
Yet, debugging and testing methods for heterogeneous applications
are currently lacking. These applications may look similar to reg-
ular C/C++ code but include hardware synthesis details in terms
of preprocessor directives. Therefore, their behavior under hetero-
geneous architectures may diverge significantly from CPU due to
hardware synthesis details. Further, the compilation and hardware
simulation cycle takes an enormous amount of time, prohibiting
frequent invocations required for fuzz testing.

We propose a novel fuzz testing technique, called HeteroFuzz,
designed to specifically target heterogeneous applications and to
detect platform-dependent divergence. The key essence of Hetero-
Fuzz is that it uses a three-pronged approach to reduce the long
latency of repetitively invoking a hardware simulator on a hetero-
geneous application. First, in addition to monitoring code coverage
as a fuzzing guidance mechanism, we analyze synthesis pragmas in
kernel code and monitor accelerator-relevant value spectra. Second,
we design dynamic probabilistic mutations to increase the chance
of hitting divergent behavior under different platforms. Third, we
memorize the boundaries of seen kernel inputs and skip HLS simu-
lator invocation if it can expose only redundant divergent behavior.
We evaluate HeteroFuzz on seven real-world heterogeneous appli-
cations with FPGA kernels. HeteroFuzz is 754X faster in exposing
the same set of distinct divergence symptoms than naive fuzzing.
Probabilistic mutations contribute to 17.5X speed up than the one
without. Selective invocation of HLS simulation contributes to 8.8X
speed up than the one without.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Computer systems organization→ Heterogeneous.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468610

KEYWORDS

Fuzz testing, heterogeneous applications, platform-dependent di-
vergence

ACM Reference Format:

Qian Zhang, JiyuanWang, andMiryung Kim. 2021. HeteroFuzz: Fuzz Testing
to Detect Platform Dependent Divergence for Heterogeneous Applications.
In Proceedings of the 29th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE

’21), August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3468264.3468610

1 INTRODUCTION

There is a growing interest in computer architectures to incorporate
heterogeneity and specialization to improve performance [11, 13,
14, 17]. FPGA is re-programmable hardware that often exceeds
the performance of general-purpose CPUs by several orders of
magnitude [6, 22, 46] and offers lower cost across a wide variety of
domains [5, 10, 15]. To support heterogeneous computing, hardware
vendors provide CPU+FPGA multi-chip packages such as Intel
Xeon [23, 47], and cloud providers support virtual machines with
FPGA development frameworks such as Amazon F1 [1]. In the
context of this paper, we use a term, heterogeneous applications to
refer to software that consists of both host code and kernel code and
can offload its computation-intensive kernel from CPU to FPGA
under heterogeneous architectures.
Platform Dependent Divergence. Although FPGAs are becom-
ing commercially available to a broad user base, they are associated
with a high development cost [50]. There has been work on high-
level synthesis (HLS) [16], which takes C/C++ kernel code as input
and automatically synthesizes a corresponding FPGA accelerator.
With HLS, programmers can implement their heterogeneous ap-
plications in C/C++; however, such C/C++ programs can produce
different results on heterogeneous architectures compared to CPU
due to various platform-dependent characteristics—bitwidth, avail-
able resources, memory access, recursion depth, dataflow mode,
etc. For example, because an optimized FPGA kernel uses a custom
bitwidth for integers and floating points, it could lead to overflows
on FPGA. Thus, detecting platform-dependent divergent behavior
is important because even when the application runs correctly on
CPU, it could still crash or produce a wrong output silently when
the kernel is executed on the FPGA accelerator [40, 41]. In fact,
our investigation of Xilinx’s forum—a popular online Q/A forum
for FPGA HLS development—shows numerous examples of such
platform-dependent divergence. Table 1 illustrates several such ex-
amples [65]. Programmers ask, “why is there a difference between

C-code, RTL-simulation, and the hardware test runs?” [58]. In this

242

https://doi.org/10.1145/3468264.3468610
https://doi.org/10.1145/3468264.3468610

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Qian Zhang, Jiyuan Wang, and Miryung Kim

Table 1: Examples of Behavior Divergence Between CPU and FPGA

ID Description Time

894069 [57] Segmentation fault when allocating a big array int x[1920][1080] on FPGA yet no error on CPU 8.5h
595225 [58] Different outcome caused by HLS dataflow directive 47.7h
438446 [59] Different outcome caused by FPGA fetching incorrect struct vector training_set[MAXSZ] 10.6h
754676 [60] Different outcome caused by bitwidth typedef ap_fixed<25,1,AP_RND> s25f24_type 2.3h
785019 [61] Getting all zeros when shifting an array caused by #pragma HLS RESET 3.1h
907213 [62] Undecided output when overwriting a same variable within the loop yet no error on CPU 79.4h

1166264 [63] EMFILE error when loading 2048 files with #pragma HLS ARRAY_PARTITION yet no error on CPU 11.7h
1126600 [64] The 25-tap FIR filter bypassess some input multiplications with #pragma HLS PIPELINE 93.2h

post 894069 [57], due to limited stack size, running an image process-
ing application with HLS simulation leads to a segmentation fault,
but no such error happens on the CPU Linux platform. Though
this programmer expressed a desire to test this platform-dependent

divergence, no tool exists to meet such needs.
Current Practices of TestingHeterogeneous Applications. In
practice, programmers often execute heterogeneous applications
with a given input set on CPU and then compare against the results
on heterogeneous architectures. However, where do such inputs

come from? The most common sources include (1) test inputs hand-
crafted by an FPGA expert; (2) randomly generated tests by a data
generator—widely used in hardware accelerator industry [25]; and
(3) systematically enumerated inputs [29]. Unfortunately, these
sources of inputs are unlikely to account for platform characteristics
and thus are inefficient in revealing behavior divergence between
FPGA and CPU. In recent years, fuzz testing has emerged as an
effective test generation technique for large software systems [39].
Most fuzzing techniques, such as AFL [69], start from a seed input,
generate new inputs by mutating the previous input, and add new
inputs to the queue if they improve a given guidance metric such
as branch coverage. They are also based on two inherent yet over-
sighted assumptions: (1) it takes a minuscule amount of time in
the order of milliseconds to execute a target application, and (2)
arbitrary mutations are likely to yield meaningful inputs.

Our experience suggests that neither of the two assumptions
holds for heterogeneous applications. Compilation and hardware
simulation takes several minutes (even hours), not milliseconds,
and random mutations cannot account for hardware synthesis as-
sumptions, crucial for detecting platform-dependent behavior. As
shown in Table 1, we estimate an AFL-like technique that repeti-
tively invokes an HLS simulator would require at least 11.7 hours to
generate an input to detect the same error from the post 894069 [57].
Our three-pronged approach to reduce the long latency of

naive fuzzing. HeteroFuzz targets testing of heterogeneous appli-
cations with the goal of generating inputs to demonstrate divergent
behavior between CPU and FPGA. Our key insight is three-folds:

First, different from traditional fuzzing, whose guidance mecha-
nism is driven by code coverage [69] or performance metrics [32]
only, HeteroFuzz directly analyzes synthesis pragmas from kernel
code and monitors accelerator-relevant value spectra: e.g., bitwidth,
memory access, recursion depth, loop bound, and FIFO queue size.
Any input that achieves either new code coverage or increases ac-
celerator value spectra feedback are saved for further mutation. For
example,HeteroFuzz can detect platform-dependent errors from the
two posts [58, 59] in Table 1 within only six minutes by monitoring
the fullness of a FIFO queue and the ranges of variable values.

Second, we design dynamic probabilistic mutations to increase
the chance of exposing platform-dependent behavior. HeteroFuzz
gradually increases the activation probability of the current muta-
tion if a new accelerator value spectrum is achieved. For example,
when a programmer uses #typedef ap_uint<x> bitx to declare
a custom integer type with x bits, we instrument the kernel code
to monitor how many bits have been actually used. If a particular
mutation leads to a new bitwidth range, we label this mutation as a
favored mutation and increase its activation probability.

Third, we reduce the long latency involved in the repetitive
invocation of a hardware simulator. HeteroFuzz memorizes the
boundary values of seen kernel inputs and selectively invokes a
hardware simulator only if the current input goes beyond the pre-
viously seen range. This is based on the insight that accelerator
synthesis is determined and optimized by kernel input values [30],
and multiple invocations within the already seen range may only
expose redundant divergence behavior of the same kind.

We evaluate HeteroFuzz’s effectiveness on seven publicly avail-
able heterogeneous applications with FPGA kernels [3, 30, 71].
We compare HeteroFuzz against four alternatives: (1) HeteroFuzz
without accelerator spectra monitoring, (2) HeteroFuzz without
probabilistic mutations, (3) HeteroFuzz without selective invoca-
tion, and (4) naïve fuzzing, where we estimate the time based on the
number of invocations to anHLS simulator.Wemeasure speedup en-
abled by each of HeteroFuzz’s three-pronged optimizations, while
comparing the total number of errors (i.e., # of unique divergence
symptoms) found within the same amount of time. In summary,
this work makes the following contributions:

(1) To our knowledge, HeteroFuzz is the first fuzz testing tech-
nique to target heterogeneous applications and to detect
platform-dependent differential behavior.

(2) To reduce the long latency of simulating heterogeneous ap-
plications, we designed a three-pronged approach that in-
corporates multi-dimensional accelerator feedback, dynamic
probabilistic mutations, and selective invocations. Hetero-
Fuzz achieves 754X speedup when finding the same number
of distinct divergence symptoms.

(3) Each of the three-pronged optimizations is necessary to
achieve significant speed-up without sacrificing fault detec-
tion potential: 7.78X more divergence-inducing inputs with
accelerator-spectra monitoring, 17.5X speed-up by dynamic
probabilistic mutations, and 8.8X speed-up by selective invo-
cation, compared to HeteroFuzz without each optimization
respectively.

(4) With the same 24-hour budget, HeteroFuzz would find 61.8X
more divergence-inducing inputs compared to naive fuzzing.

243

HeteroFuzz: Fuzz Testing to Detect Platform Dependent Divergence for Heterogeneous Applications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Figure 1:HeteroFuzz’s three-pronged approach:multi-dimensional guidance, probabilisticmutations, and selective invocation

As the current need and prevalence of developing heterogeneous
applications are rising significantly in the new era of cloud-based
hardware accelerator microservices [4], the software engineering
community must design a new automated testing technique to
improve efficiency and effectiveness for this emerging category of
heterogeneous applications. To our knowledge, HeteroFuzz is the
first end-to-end approach that re-invents and adapts traditional
fuzzing to heterogeneous applications. It speeds up differential
testing under heterogeneous hardware platforms, and overcomes
the limitation of long hardware simulation latency during fuzz
testing, while finding significantly more divergence errors.

2 BACKGROUND

2.1 Heterogeneous Computing with FPGA HLS

Heterogeneous architectures with FPGAs have shown the potential
to improve performance under strict energy constraints [16]. A het-
erogeneous application can be decomposed into host code executed
on CPU and kernel code executed on accelerators.
High-Level Synthesis (HLS).HLS tools for FPGAs, such as Xilinx
Vivado HLS [66], have raised the abstraction of hardware develop-
ment by automatically generating RTL (Register-Transfer Level)
descriptions from C/C++ code. During HLS, the frontend schedules

each operation from the kernel code to certain clock cycle time
slots. Next, it allocates the number and type of hardware unit re-
sources used for implementing functionality. Finally, the binding
stage maps all operations to the allocated hardware units. This en-
tire HLS process can take several minutes for simulation and several

hours for synthesis, depending on the complexity of kernel logic.

To achieve good quality-of-results (QoRs), HLS developers must
insert synthesis directives and pragmasmanually [19]. This requires
having inter-disciplinary expert knowledge and knowing obscure
platform-dependent details. TestingHLS code is difficult because the
resulting FPGA may produce an outcome different from CPU due
to the assumptions specified during accelerator synthesis. Below,
we describe a few examples of how HLS directives and pragmas
can produce a different execution outcome.
Custom Bitwidth. On-chip resource efficiency yields a higher
level of parallelization. HLS supports arbitrary bitwidth for integers
because reducing a variable’s bitwidth could lead to resource reduc-
tion in FPGA directly. While the instruction set architecture (ISA)

for CPU defines integer arithmetics at 32 bits by default, individual
bitwidths could be programmed in FPGA. For example, if an inte-
ger variable 𝑎𝑔𝑒 has a maximum value of 83—it only needs 7 bits
instead of 32 bits. The programmer can insert a pragma #typedef
ap_uint<7> bit7 to declare an arbitrary precision integer of 7
bits. With custom bitwidth, FPGA accelerators have much more fre-
quent overflows that would not happen on CPU, leading to failures
or wrong outputs in the host code.
Memory Management. FPGA has no capability of on-chip mem-
ory management. Function calls to memory allocation are replaced
by pre-allocating a static array with an estimated size andmanaging
data elements manually. Similarly, recursions must be converted
into iterations using a stack with a finite estimated size [52, 67, 68].
When an input or recursion depth exceeds the pre-estimated size,
the FPGA kernel could crash or return a completely wrong output
to the host code by accessing an unexpected address.
Parallelization. Reprogrammable hardware provides an inherent
potential for parallelizing computation. Such parallelization can
be done through pipelining of different computation stages and by
duplicating processing elements or data paths to achieve an effect
similar tomulti-threading. To guide such parallelization, a developer
must write HLS pragmas such as #pragma HLS unroll—creating
multiples copies of the loop body which allows some or all loop
iterations to occur in parallel or #pragma HLS dataflow—enabling
task-level pipelining, which allows functions to overlap their oper-
ations. Such parallel execution can produce an outcome different
from sequential execution on CPU, especially when a feedback path
exists in two different functions or modules.

As described above, testing HLS code is different from C/C++ be-

cause HLS directives can cause differential behavior on accelerators.

2.2 Fuzz Testing

Without loss of generality, the procedure of fuzzing [39, 69] can be
described as follows. Starting with an initial set 𝐼 of seed inputs, the
fuzzing procedure randomly selects one input from 𝐼 , and generates
new inputs by mutating several bits or bytes of the current input. In
terms of whichmutations to apply, it selects an available mutation
from a given set of mutation operators. Commonly used input
mutations are either bit-level or byte-level mutations in which
random bits (or bytes) are flipped. It then collects the guidance
feedback such as branch coverage by executing the instrumented

244

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Qian Zhang, Jiyuan Wang, and Miryung Kim

1 int main(int argc, char
*argv[]){

2 int data[] =
gradient(argv[1]);

3 int sum;
4 float th = argv[2];

5 for(i = 0 to data.

6 size())

7 sum+=data[i];

8 for(i = 0 to data.size()){
9 data[i] /= sum;
10 if(data[i] > th)

keep(argv[3]);
11 else discard(argv[4]);}}

(a) Original Application

1 int main(int argc, char
*argv[]){

2 int data[] =
gradient(argv[1]);

3 int sum;
4 float th = argv[2];
5 int size = data.size();

6 accumulate(

7 data[size],int size);

8 for(i = 0 to data.size()){
9 data[i] /= sum;
10 if(data[i] > th)

keep(argv[3]);
11 else discard(argv[4]);}}

(b) Host in Heterogeneous Ap-

plication

1 #include "ap_int.h"

2 int accumulate(

3 int data[size],int size);

4 typedef ap_uint<8> bit8;

5 typedef ap_uint<9> bit9;

6 #define M 400;

7 #pragma HLS INTERFACE

8 m_axi port=data

9 offset=slave bundle=gmem

10 #pragma HLS INTERFACE

11 s_axilite port==data

12 bundle=control

13 #pragma HLS INTERFACE

14 m_axi port=size

15 offset=slave bundle=gmem

16 bit8 data_fpga[M];
17 bit9 i;
18 bit8 sum;
19 for (i = 0 to size) {

20 #pragma HLS unroll

21 data_fpga[i] = (bit8)data[i];}
22 SUM_LOOP: for (i = 0 to size)

23 #pragma HLS unroll factor=2

24 data_fpga[i] = (bit8)data[i];
25 sum + = data_fpga[i];}
26 sum = (int) sum;
27 return sum;}

(c) Kernel in Heterogeneous Appli-

cation

Figure 2: Example Program Showing Divergence: Bitwidth

program with new inputs [32, 39, 69]. All inputs that enhance a
guidance metric—e.g., exercising a new branch or leading to a
unique crash—are then saved to the working set, 𝑆 . Then, with 𝑆 ,
the fuzzing procedure moves onto the next step of selecting an
input from 𝑆 and applying mutations to the input.

This fuzzing procedure is based on two inherent yet over-sighted
assumptions: (1) it takes a minuscule amount of time to execute
the target program, and (2) arbitrary mutations are likely to yield
meaningful inputs. Such assumptions do not hold for heterogeneous

applications because hardware simulation takes several minutes and

random mutations cannot account for hardware synthesis intricacies.

3 MOTIVATING SCENARIO

This section presents motivating examples for why testing platform-
dependent behavior is necessary. Suppose that Bob writes an image
denoising application shown in Figure 2a. This application filters
the gradients based on their percentages with respect to the sum of
all gradients. Line 2 calculates the gradient vector of an input image
by taking the absolute difference between two adjacent pixels. Line
4 defines the filtering threshold. Lines 5-7 aggregate the gradients
across the entire vector. Lines 10-11 filter out the gradients less
than the filtering threshold. Bob runs this C application on CPU
and finds that the loop at lines 5-7 is a hot code path responsible
for a significant execution time.

Therefore, Bob decides to convert this original application in
C to a heterogeneous application. He refactors the loop at lines 5-7
in Figure 2a into an HLS kernel function accumulate in Figure 2c.
The original application is then converted to host code in Figure 2b
that still runs on CPU and communicates directly with a hardware
accelerator generated from the kernel code in Figure 2c.

1 #include "ap_int.h"
2 void kernel{
3 #pragma HLS dataflow
4 fifo a; fifo b;
5 funX(a,b);
6 funY(a,b);}
7 void funX{
8 typedef ap_uint<1> bit1;
9 bit1 exist = b.read_nb(temp_b);

10 if (exist and temp_b == 3){

11 a.write(1);}

12 else{a.write(0);}}
13 void funY{
14 temp_a = a.read();
15 b.write(temp_a+3);}

Figure 3: Example Kernel Program Showing Diver-

gence: Dataflow Mode

As discussed in Section 2, when writing kernel code, HLS devel-
opersmust insert directives and pragmas to expose layout regularity
and parallelism for FGPA accelerator synthesis. After analyzing
the values of sample data sent to the kernel, Bob includes the ap_-
int header file at line 1 in Figure 2c to use custom bitwidths of 8
and 9 respectively in lines 4 and 5 instead of using 32-bit integers.
He also pre-defines the max array size as 400 in line 6. Lines 7-15
define the data transfer interface between CPU and FPGA. Lines
19-21 offload data from CPU to data_fpga on FPGA. To exploit
hardware-level parallelization, Bob inserts #pragma HLS unroll in
line 23 to make two copies of the SUM_LOOP body. After compiling
this heterogeneous application using Vivado HLS, CPU-side host
code in Figure 2b will invoke the kernel accumulate at lines 6-7,
send data to the synthesized FPGA, and wait for the returned result.

After converting this original application to a heterogeneous
application, Bob may want to test it by using handcrafted inputs
or randomly generating data. Bob must check whether this het-
erogeneous application produces divergent behavior on the same
input. For example, when the kernel inputs [1,1,1,253] are sent
to FPGA, Bob finds a divide-by-zero error in the host code at line 9
of Figure 2b, which does not happen when running on CPU only.
When the kernel inputs [2,1,1,253] are sent to FPGA, the FPGA
accelerator will return the sum as 1, instead of the correct sum 257
computed by CPU, leading to a completely wrong filtering output
in lines 10-11 of Figure 2b. Finding such divergence-inducing inputs
is extremely challenging—suppose Bob uses an AFL-like technique
in an attempt to find such divergence-inducing inputs. AFL cannot
distinguish the above two inputs that produce distinct divergence
symptoms because no such errors happen using 32-bit integers on
CPU and these two inputs are identical in terms of their branch
coverage in host code.

Figure 3 describes another kernel example. In line 9, read_nb()
is a Boolean type HLS read function which returns false if data is
unavailable. When executing on CPU only, funX is executed before
funY sequentially, so fifo b is always empty and line 11 can never
be executed. As a consequence, fifo a is full of 0 and fifo b
becomes empty. However, when executing on FPGA, #pragma HLS
dataflow in line 2 enables parallel execution of funX and funY.
Therefore, fifo b is not empty and the if condition at line 10 can
evaluate to true, if the current data in b is 3.

HeteroFuzz is motivated by such challenge of testing heteroge-
neous applications described above. HeteroFuzz directly analyzes
HLS pragmas in kernel code, monitors accelerator spectra and

245

HeteroFuzz: Fuzz Testing to Detect Platform Dependent Divergence for Heterogeneous Applications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: Mapping from HLS Pragmas to Accelerator Value Spectra

FPGA-Relevant

Category HLS Directive /Pragma Description of Pragma Value Spectra

Data Type typedef ap_uint<x> bitx Define an unsigned Integer with a custom bitwidth The actual variable values
typedef ap_int<x> bitx Define a signed Integer with a custom bitwidth with this type
#pragma HLS array_partition Partition an array into smaller arrays or individual elements

Memory #pragma HLS array_reshape Combine array partitioning with vertical array mapping The set of accessed offsets
#define size M Define the estimated array size

Recursion N/A N/A The actual used size of
a stack and the number of iterations

Parallelization #pragma HLS dataflow Enable task-level pipelining The FIFO queue size
#pragma HLS pipeline Allow concurrent execution of operations if feedback path exists
#pragma HLS unroll Create multiples copies of the loop body

Loop #pragma HLS loop_tripcount Specify the total number of iterations The actual number of iterations
#pragma HLS loop_flatten Allow nested loops to be flattened into a single loop hierarchy
#pragma HLS loop_merge Merge consecutive loops into a single loop to reduce overall latency

Interface/ #pragma HLS INTERFACE Perform input and output operations using a specific I/O protocol N/A
Configuration etc. in the design interface

branch coverage in host code, adjusts the activation probabilities of
mutation operations, and reduces unnecessary simulations to find
divergence errors.

4 APPROACH

HeteroFuzz contains three novel components that work in con-
cert to detect platform-dependent differential behavior for hetero-
geneous applications. Figure 1 describe its overall architecture:
multi-dimensional guidance feedback based on accelerator spectra
(Section 4.1), (B) dynamic probabilistic mutations (Section 4.2), and
(C) selective invocation to reduce the latency of repetitively invok-
ing a hardware simulator (Section 4.3). Its three-pronged approach
is based on two key insights: platform-dependent behavior can be
exposed by monitoring accelerator-relevant spectra and accelera-
tor synthesis is optimized based on kernel input values; therefore
multiple invocations within the same value range may expose re-
dundant divergence symptoms. Although HeteroFuzz is designed
for FPGA accelerators, its key idea can be easily extended to other
heterogeneous platforms by monitoring platform-specific spectra.

4.1 Accelerator Spectra Monitoring

Inputs with the same branch coverage can still have distinct impacts
on hardware characteristics; HeteroFuzz augments branch cover-
age feedback with hardware-dependent characteristics to detect
divergence symptoms when running host and accelerator together.
Prior studies [40, 41] find that numerous severe security problems
originate from such host-accelerator interaction.
Coverage Feedback in Host Code. HeteroFuzz instruments the
host program based on its extracted control flow graph (CFG) using
LLVM [36]. Each node in a CFG represents a basic code block and
each edge (𝐴, 𝐵) represents a transition between two blocks 𝐴 and
𝐵 in the CFG. Similar to AFL, HeteroFuzz initializes an array with
binary bits called trace_bits, with zeros, in each fuzzing iteration.
Iteration here means one execution of a target program with a
generated test input. Each bit represents a branch in the program. If
an edge (𝐴, 𝐵) is exercised, HeteroFuzz updates the corresponding
entry from 0 to 1 in trace_bits.
Accelerator Value Spectra. Tracing branch coverage in a syn-
thesized hardware kernel is infeasible, because HLS takes kernel
code as input but implements branching logic using a pipeline of

multiplexers at the hardware level. Each branch in the synthesized
hardware is executed in parallel as long as prior signals are ready;
however, the output being produced by the hardware logic for an
untaken branch is never used. Thus, branch coverage cannot be
derived directly from the synthesized hardware [29]. Branch cover-
age collected from the host code only is ineffective as a guidance
feedback due to its inability to detect errors in heterogeneous ap-
plications, because inputs with the same coverage in the host code
may exhibit different behavior, as discussed in Section 3.

HeteroFuzz analyzes the inserted HLS pragmas and traces their
associated FPGA-relevant spectra as accelerator feedback. It cur-
rently supports five kinds of value spectra, shown in Table 2. These
mappings are user-extensible by modifying a configuration file.

Figure 2c is an accumulation FPGA kernel with ten HLS di-
rectives. It uses typedef ap_uint<8> bit8 and typedef ap_-
uint<9> bit9 to customize 32-bit integer data into 8 and 9 bit
integers respectively. HeteroFuzzmonitors the actual values of vari-
ables declared with these types, such as data_fpga, sum, and i in
lines 22-24 of Figure 2c. HeteroFuzz ignores the pragmas in lines
7-21 as HLS data transfer interface has no impact on kernel logic.
The pre-allocated array data_fpga in line 22 is declared with a
maximum size of 400. HeteroFuzz monitors the accessed offsets in
case an unexpected address is accessed. The unroll pragma in line
29 makes two copies of the loop body. HeteroFuzz records the ac-
tual iteration counts, which can be used together with array access
offsets to detect potential divergence when the size of offloaded
data is not multiple of 2. Then HeteroFuzz instruments the kernel
to record these three types of values spectra for Figure 2c: (1) the
value range of fpga_data, output variable sum, and intermediate
variable i; (2) the set of accessed offsets in array data_fpga; and
(3) the actual number of loop iterations.

Similar to how AFL [69] keeps track of a single test’s branch
coverage and cumulative branch coverage for all tests, HeteroFuzz
keeps track of value spectra for each test execution and cumulative
value spectra. In each test execution, it initializes an array acc_-
feedback, where each entry has four fields: <value spectra type,
name, min value, max value>. It then updates total_feedback
to record cumulative value spectra for all seen inputs that can safely
execute on the synthesized FPGA. For example, when the kernel
inputs are [1,1,1,253] , the tracked hardware feedback is shown
in column FPGAAccelerator Spectra in Table 3.While coverage-guided

246

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Qian Zhang, Jiyuan Wang, and Miryung Kim

Table 3: Example Execution of Generated Inputs

Act. Program Kernel FPGA Accelerator Spectra New Mutation Memorization

ID Mut. Inputs Inputs Invoke Type Name Min Max Branch Overflow Probability Range Size

seed N/A [1,2,1,2,11] [1,1,1,9] yes input_value fpga_data 1 9 yes no [0.17,0.17,0.17, (1,9) 4
variable_value i 0 3 0.17,0.17,0.17]
variable_value sum 2 12

mem_offset fpga_data [0,1,2,3]
loop SUM_LOOP N/A 2

1 M6 [1,2,1,2,2] [1,1,1,0] no N/A N/A N/A N/A no N/A [0.17,0.17,0.17, (1,9) 4
0.17,0.17,0.17]

2 M3 [1,2,1,2,255] [1,1,1,253] yes input_value fpga_data 1 253 no yes [0.16,0.16,0.22, (1,9) 4
variable_value i 0 3 0.16,0.16,0.16]
variable_value sum 0 3

mem_offset fpga_data [0,1,2,3]
loop SUM_LOOP N/A 2

3 M3 [0,2,1,2,255] [2,1,1,253] yes input_value fpga_data 1 253 no yes [0.16,0.16,0.22, (1,9) 4
variable_value i 0 3 0.16,0.16,0.16]
variable_value sum 1 4

mem_offset fpga_data [0,1,2,3]
loop SUM_LOOP N/A 2

4 M1 [1,2,1,2,11,36] [1,1,1,9,25] yes input_value fpga_data 1 25 no no [0.21,0.15,0.21, (1,25) 5
variable_value i 0 5 0.15,0.15,0.15]
variable_value sum 2 37

mem_offset fpga_data [0,1,2,3,4,5]
loop SUM_LOOP N/A 3

fuzzing would discard the inputs for not achieving new branch
coverage, HeteroFuzz saves them for increasing the value spectra
of fpga_data and sum. Based on the collected branch coverage
feedback and monitored FPGA accelerator spectra, an input will be
kept in the generated tests, if it increases either kind of feedback.

4.2 Probabilistic Mutations

Designing mutations to detect platform dependent behavior in
heterogeneous applications is challenging because: (1) mutations
modify the inputs of a host program, not just those host inputs
related to kernel inputs, and (2) different mutations contribute to
divergence-inducing inputs in different degrees.

We propose dynamic probabilistic mutations to increase the
chance of detecting hardware-dependent behavior. These mutations
represent input modifications to explore the input space during fuzz
testing, as opposed to code modifications used in mutation testing.
Input mutations are directly applied to inputs in host code. We clas-
sify those inputs into kernel-sensitive inputs and kernel-irrelevant

inputs. Kernel-sensitive inputs refer to a subset of host program
inputs that will be offloaded to an FPGA kernel, and all other inputs
are kernel-irrelevant inputs. To identify kernel-sensitive inputs,
HeteroFuzz uses static backward slicing [53, 55] of the argument
names, data and size of the kernel function, accumulate all the
way to the original input arguments in the host code. For example,
in Figure 2b, starting from the invocation of accumulate at lines 6
and 7, we use backward slicing on its arguments, data and size,
in turn marking line 5 and line 2 where data and size are defined
respectively. Starting from line 2, it then marks argv[1], which
is an input to the host code’s main function in line 1. A gradient
threshold argv[2] is used in in line 4, argv[3] is used at keep in
line 10, and argv[4] is used at discard in line 11, making them
irrelevant to accumulate in Figure 2c. Therefore, we label the input
argument argv[1] as a kernel-sensitive input. HeteroFuzz initial-
izes the selection probability of individual host inputs to be mutated
as follows:

𝑃𝑖 =

{
1 if i is a kernel-sensitive input;
𝑎 otherwise

(1)

That is, the kernel-sensitive inputs are always selected and mutated.
𝑎 is the probability of selecting a non-kernel input, as it is still
necessary to mutate all inputs in the host code to exercise diverse
behavior and increase branch coverage in the host code. In our
experiments, we use 𝑎 = 0.10 as default.

Considering that data offloaded to a hardware kernel is often an
array or a matrix, HeteroFuzz uses six basic mutations extended
fromAFL to generate new inputs, shown as follows. Scala values are
treated as one element array. The reason why we focus on arrays
and matrices is that hardware accelerators are designed to batch
process multiple elements in parallel. All divergence errors that
can be found by naive fuzzing should be all found by HeteroFuzz as
well because HeteroFuzz ’s input mutations are a superset of naive
input mutations.

• Data Size Mutation (M1) inserts/deletes one or several
random elements if the input data is an array: e.g., from
[1,2,3] to [1,2,3,4] or [1,3]

• Data DimensionMutation (M2) adds/removes one or sev-
eral columns if the input data has multiple dimensions: e.g.,
from [[1,2,3],[3,2,1]] to [[1,2,3]] .

• Data Element Mutation (M3) mutates the value of one
element based on its type: e.g., from [1,2,3] to [1,2,4] .

• Type Mutation (M4) modifies the type of a selected entry,
while keeping the same value: e.g., from Integer to Float.

• Bit Mutation (M5) flips one or several bits.
• Byte Mutation (M6) flips one or several bytes.

While conventional fuzzing does not update the activation proba-
bilities of mutations and generally keeps them uniform, HeteroFuzz
assigns different activation probabilities to individual mutations and
updates their probabilities based on accelerator spectra feedback. If
a new child input generated by mutation𝑚 increases the monitored
accelerator spectra,𝑚 will be labeled as a favoredmutation. Favored

247

HeteroFuzz: Fuzz Testing to Detect Platform Dependent Divergence for Heterogeneous Applications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Subject Programs

Subject # of Symptoms % of Div-inducing Inputs

ID Program Kernel Description HF WithoutSpectra HF WithoutSpectra
P1 Median Filter Bubble Sort Blur an image by replacing the pixel value to a median 6 1 68.2% 6.8%
P2 Median Filter Merge Sort Blur an image by replacing the pixel value to a median 6 1 37.3% 4.5%
P3 Image Denoising Accumulation Denoise an image based on analyzing image gradients 5 0 71.0% 0%
P4 KNN L2norm Finds the top-k most relevant elements 5 2 72.9% 14.5%
P5 Signal Transmission RGB2YUV Transform RGB signals to YUV signals 7 2 40.0% 4.5%
P6 3D Rendering Rendering Render an image based on 3D information 9 2 56.0% 10.0%
P7 Face Detection Detection Detect human faces in an image 9 2 52.2% 5.0%

mutations will then have higher activation probabilities. Given the
activation probabilities of 𝑙 mutations 𝑃 = {𝑃0, 𝑃1, ...𝑃𝑙−1}, they will
be updated dynamically:

𝑃𝑚 =

𝑃𝑚 + 𝛼 if𝑚 is chosen and it

increases spectra
𝑃𝑚 − 𝛼

𝑙−1 otherwise
(2)

𝑙 is the number of mutations. Since we have six mutations, here 𝑙
is 6. Every 𝑃𝑚 is initialized as 1/𝑙 and 𝛼 is the update factor that
is pre-defined as 0.05. In column Mutation Probability of Table 3,
the activation probability for each mutation is initialized to 1/𝑙 =
0.17. In the second execution (ID 2), inputs created by mutation M3
increase the spectra of input_value and variable_value. Het-
eroFuzz consequently increases M3’s activation probability from
𝑃𝑚 = 0.17 to 𝑃𝑚 + 𝛼 = 0.22, and adjusts the probabilities of other
mutations to 𝑃𝑚 − 𝛼

𝑙−1 = 0.16.
4.3 Selective Invocation

To reduce the long latency of repetitive hardware simulation, Het-
eroFuzz maintains the range of seen kernel input values that run
correctly on FPGA Memorization/Range in Table 3, and their data
size,Memorization/Size in Table 3. We use a global variable enable_-
sim to indicate whether hardware simulation should be invoked or
not. This variable is set to be true if the range or the data size of
seen kernel inputs grow beyond the current records. Suppose that
HeteroFuzz had seen a set of concrete values [2,3,5] for an integer
array x, we maintain the range of x as (2, 5). It is safe to record only
the range (2, 5) instead of considering combinations of concrete
values as a set {2, 3, 5} for the purpose of finding a new, distinct
divergence error symptom. If an error were to happen for an unseen
combination such as {2, 4, 5}. This error symptom will be identical
to the error symptoms that one would get for executing a value
less than 2 or greater than 5. This is due to the unique property of
FPGA synthesis, where an integer or fixed-point variable maps to
a contiguous range of values.

In Table 3, for ID seed, column Memorization/Range is updated
to (1,9) for variable fgpa_data, as the smallest item is 1 and the
largest item is 9 and its execution does not lead to any error on
FPGA execution. For ID 1, since the kernel input [1,1,1,0] is still
within the range of (1,9), HeteroFuzz skips hardware simulation.
For ID 2, since the kernel input [1,1,1,253] now includes a value 253
that goes beyond the range of (1,9), HeteroFuzz invokes hardware
simulation and finds that an overflow signal is captured on FPGA,
indicating unsafe accelerator execution. Though the max value of
this input is 253, HeteroFuzz keeps the range of safe execution as
(1,9).

As Memorization/Range is updated for FPGA-safe executions, it
is guaranteed to be narrower than or equal to the range of data

that the accelerator designer uses to optimize the FPGA data type.
Therefore, FPGA executionwith inputs that fit thememorized range
can either be fully correct or only report a redundant divergence
symptom arising from trying out a new value exceeding the safe
range. Thus, we can safely obviate such executions to speed-up the
input generation process. What we mean by “safely obviate" is that,
for the purpose of finding a new divergence symptom, it does not
matter because you will get the same kind of divergence error.

5 EVALUATION

We evaluate following research questions:

RQ1 How effective is HeteroFuzz’s accelerator spectra monitoring
in generating divergence-inducing inputs?

RQ2 How much speed-up is enabled by HeteroFuzz’s dynamic
probabilistic mutations?

RQ3 How much speed-up is enabled by HeteroFuzz’s selective
invocation?

RQ4 How effective and efficient would HeteroFuzz be, in compari-
son to naïve fuzzing using an AFL-like technique?

RQ5 Can input range checking obviate the need of fuzz testing
and still find platform-dependent errors?

Benchmarks. Our benchmarks include seven real-world and pub-
licly available heterogeneous applications written in C/C++ with
FPGA kernels, listed in Table 4. P1-P3 are from OpenCV [42] ex-
amples, P4-P5 are from [30], and P6-P7 are from Rosseta [71]. Our
subject selection criteria is based on whether the programs cover
different synthesis optimizations, and whether a diverse set of HLS
pragmas is used for detecting platform-dependent divergence be-
havior. Seven programs in Table 4 cover all twenty four kinds of
pragmas (e.g., custom bitwidth, parallelization, memory manage-
ment, etc.), and thus activate different kinds of synthesis optimiza-
tions.

These subject programs may look small in size, but they are actu-

ally larger than kernel benchmarks the FPGA community uses [24,

49, 71] and real-world heterogeneous applications described in Xilinx

posts [57–59]. Building a hardware accelerator is similar to design-
ing a new instruction type in CPU instruction set architecture (ISA).
Most kernel code is in order of tens of lines, as it maps directly to
hardware circuits. In fact, in a usual FPGA development workflow,
developers instrument software on CPU, find out its hot code path
corresponding to tens of lines of code, and extract it as a separate
kernel for FPGA synthesis. Therefore, our work cannot be judged
under the same scalability standard used for pure software research
(e.g., handling GitHub projects with millions of lines of code). Sim-
ply put, the current landscape of heterogeneous platforms cannot
handle FPGA synthesis of such large kernel size.

248

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Qian Zhang, Jiyuan Wang, and Miryung Kim

0 50 100 150
0
2
4
6
8
10

Time (min)

P1

0 50 100 150
Time (min)

P2

0 50 100 150
Time (min)

P3

0 50 100 150
Time (min)

P4

0 50 100 150
Time (min)

P5

0 50 100 150
Time (min)

P6

HeteroFuzz WithoutSpectra WithoutMutation WithoutSelective NaiveFuzz

0 50 100 150
Time (min)

P7

Figure 4: Number of Unique Divergence Symptoms

0 50 100 150
0
20
40
60
80
100

Time (min)

P1

0 50 100 150
Time (min)

P2

0 50 100 150
Time (min)

P3

0 50 100 150
Time (min)

P4

0 50 100 150
Time (min)

P5

0 50 100 150
Time (min)

P6

HeteroFuzz WithoutSpectra & WithoutMutation WithoutSelective NaiveFuzz

0 50 100 150
Time (min)

P7

Figure 5: % Cumulative Branch Coverage in Host Code

To answer the research questions above, we create the following
four baseline versions by downgrading HeteroFuzz.

• WithoutSpectra: This option disables accelerator spectra
monitoring from HeteroFuzz to measure how effectively
HeteroFuzz can find more divergence errors by monitoring
accelerator-relevant feedback.

• WithoutMutation: This option disables dynamic probabilis-
tic mutations from HeteroFuzz to measure how fast Hetero-
Fuzz can find the same divergence errors by increasing the
probabilities of divergence-inducing mutations.

• WithoutSelective: This option disables selective invocation
from HeteroFuzz to measure how fast HeteroFuzz can find
the same divergence errors by obviating the need to invoke
an HLS simulator that finds redundant errors.

• NaiveFuzz: This option enables only branch coverage as guid-
ance and invokes an HLS simulator for every input. We
estimate its running time by multiplying the number of invo-
cations required for WithoutSpectra with the average HLS
simulation time.

Experimental Environment. All experiments are done by lever-
aging Vivado Design Suite 2018.03 to simulate kernel execution on
Xilinx Virtex UltraScale+ XCVU9P FPGA.

5.1 RQ1: Benefit of Accelerator Spectra

To evaluate HeteroFuzz’s guidance strategy that monitors accel-
erator spectra in addition to branch coverage, we generate inputs
for P1-P7 by running HeteroFuzz and WithoutSpectra for three
hours. With the generated inputs, we execute the program on CPU
versus a heterogeneous platform that runs host on CPU and kernel

on the FPGA/HLS similuator. We then measure the percentage of
divergence-inducing inputs and the number of unique divergence
symptoms. This experiment is done over ten independent runs and
the rightmost two columns in Table 4 report the results (HeteroFuzz
in column HF). On average, 56.8% of inputs generated by Hetero-
Fuzz is divergence-inducing, while 6.48% of inputs generated by

WithoutSpectra is divergence-inducing. This is because Without-
Spectra takes the FPGA accelerator as a black box and enlarges the
covered branches in host code only. On the contrary, HeteroFuzz
monitors branches and accelerator spectra in tandem, leading to
7.78X more divergence-inducing inputs.

We then group divergence-inducing inputs into a set of unique
symptoms, because different inputs may exhibit the same kind of
a divergence error. In Figure 4, Y axis is the average cumulative
number of detected symptoms. Within the same time budget,With-
outSpectra detects 10 unique symptoms in total, while HeteroFuzz
detects 47, almost 3.7x more divergence symptoms. It is also impor-

tant to note that existing inputs shipped with the original benchmark

do not find any divergence errors; in other words, HeteroFuzz has the

potential to detect real-world platform-dependent errors proactively.

We also assess speed-up enabled by HeteroFuzz by measuring
the time taken to find the same set of divergence symptoms found
by WithoutSpectra. Across seven applications, WithoutSpectra
takes total 21 hours to find 10 unique symptoms, while HeteroFuzz
takes only 0.52 hours, demonstrating 40X speed-up.

Table 5 lists five sample symptoms found in P3. We describe why
these divergent behavior appear between CPU and FPGA and how
HeteroFuzz finds them in detail below.

First, as with most hardware designs, the kernel in P3 uses op-
timized bitwidths for data offloaded from CPU to FPGA and its
intermediate variables. When a large number 2147483600 is sent to
the kernel, it only keeps eight most significant bits or least signifi-
cant bits in the binary representation of 2147483600 and cuts off
the others, leading to a wrong result. When the inputs [1,1,1,253]

and [2,1,1,253] are executed on FPGA kernel, runtime overflow
happens with variable sum in line 25 of Figure 2c, leading to a divide-
by-zero error in host code and a wrong returned result respectively.
Although integer overflow can happen in CPU as well, it shows up
much more frequently in accelerators, and it is not easy to predict
the consequent impact. HeteroFuzz monitors the value ranges of

249

HeteroFuzz: Fuzz Testing to Detect Platform Dependent Divergence for Heterogeneous Applications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 5: Example Divergence Symptoms for P3

Input

ID Symptom Description Checking

S1 Unexpected Memory overflow happens ×
Endless when FPGA attempts to write
Loop data_fpga at an unexpected

address in line 21 of Figure 2c.
S2 Kernel Host is offloading a large ✓

Offloading number 2147483600 to FPGA
Error in line 21 of Figure 2c, leading

to a wrong returned result.
S3 Kernel The value of intermediate ×

Runtime variables in line 25 of Figure 2c
Overflow exceeds its bitwidth capacity,

leading to a wrong result.
S4 Divide by FPGA returned result leads to ×

Zero in Host divide-by-zero error
in line 9 of Figure 2.

S5 Incorrect CPU and FPGA produce ✓
Loop different results when the input
Unrolling array size is not multiple of 2.

inputs and intermediate variables to increase the chance of showing
differential behavior caused by accelerator integer overflows.

Second, when a program attempts to access an invalid or illegal
address in CPU, the memory management unit can give excep-
tion signals such as Segmentation Fault. However, in FPGA, all
memory accesses are mapped to a legal physical address on BRAM,
which can result in severe security problems and unexpected accel-
erator behavior.HeteroFuzz generates input [1,...,0] wherein the
401st element is 0. Line 21 in Figure 2c then writes this over-ranged
data_fpga[400] to the address of a loop iterator i, leading to an
endless loop execution of lines 19-21.

Third, to further complicate the difficulty of finding divergence
errors, because P3 makes two copies of the loop body during FPGA
synthesis to enable parallelization, a wrong result happens only if
the size of an input array is not multiples of the unroll factor 2.

HeteroFuzz and WithoutSpectra achieve similar coverage, as
shown in Figure 5. The Y-axis indicates the percentage of covered
branches in host code. For all applications except P7, HeteroFuzz’s
coverage grows slightly slower than WithoutSpectra. This is be-
causeHeteroFuzz increases the activation probabilities of mutations
that lead to a new accelerator feedback, pushing the fuzz engine to
explore more platform-dependent divergence rather than enlarging
branch coverage in host code.

Summary 1

HeteroFuzz finds 7.78X divergence-inducing inputs (3.7X
unique divergence symptoms) by monitoring accelerator
spectra in addition to the branch coverage of host code.

5.2 RQ2: Benefit of Probabilistic Mutation

To evaluate the benefit of dynamic probabilistic mutations, we
create a downgraded version WithoutMutation that disables prob-
abilistic mutations from HeteroFuzz. We assess how fast Hetero-
Fuzz andWithoutMutation detect divergence symptoms within the
three-hour limit. We repeat the experiments ten times and report
average results in Figure 4.

In total, HeteroFuzz detects 47 unique symptoms, while With-
outMutation reports 18, given the same time limit. Compared to

P1 P2 P3 P4 P5 P6 P7

104

105

In
pu

tT
ria

ls

HeteroFuzz HFWithoutInvocation

Figure 6: Number of Input Trials.

WithoutMutation, HeteroFuzz finds the same 18 divergence symp-
toms reported by WithoutMutation 17.5 times faster, taking only
1.2 hours as opposed to 21 hours. For example, in P3, while Hetero-
Fuzz finds five divergence errors, WithoutMutation finds only one
divergence error by generating input [1,1,1,311] that leads to
an error, because the max value to be offloaded to FPGA is 255. The
other four errors are not found by WithoutMutation, because it
wastes most fuzzing time on generating type-invalid data for the
FPGA kernel, such as [1,1,1#] , when an integer array is expected.
HeteroFuzz leverages probabilistic mutations to increase the chance
of hitting divergence behavior by isolating kernel-sensitive inputs
and prioritizing divergence-inducing mutations such as modifying
the value of a specific element in the array. The achieved branch
coverage of WithoutMutation is the same with the coverage of
WithoutSpectra, as shown in Figure 5, because no accelerator spec-
tra monitoring implies that dynamic mutations cannot be enabled.
(However, when turning off dynamic mutations, HeteroFuzz can
still use accelerator spectra as a guidance feedback.)

Summary 2

HeteroFuzz achieves 17.5X speed-up in detecting the same
set of errors by dynamically adjusting the activation prob-
ability of divergence-inducing mutations.

5.3 RQ3: Benefit of Selective Invocation

To assess speed-up enabled by selective invocation of a hardware
simulator, we compare HeteroFuzz with a downgraded version
WithoutSelective. We measure the number of inputs the tools can
explore within the same 24-hour budget.

In Figure 6, the Y-axis is the average number of input trials over
ten independent runs. In P2, WithoutSelective can invoke a simu-
lator with 5760 inputs only, while HeteroFuzz can attempt over 51k
inputs, achieving 8.8X speedup. HeteroFuzz achieves such speedup
by skipping the repetitive simulation calls when inputs hit the mem-
orized value range of seen kernel inputs. This selective invocation
saves time but does not sacrifice fault detection capability, because
kernel inputs contained within already seen ranges can lead to
either correct FPGA executions or already discovered divergence
error symptoms. Collecting kernel input values does not incur ad-
ditional hardware level instrumentation, as such information can
be extracted from HLS simulation results.

Summary 3

By reducing unnecessary hardware simulation calls, Het-
eroFuzz speeds up differential testing by 8.8X without sac-
rificing fault detection capability.

250

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Qian Zhang, Jiyuan Wang, and Miryung Kim

5.4 RQ4: Comparison against Naive Fuzzing

Fuzz testing is often built on an implicit assumption that the pro-
gram under test can be executed millions of times within a matter of

hours. However, such assumption does not hold for heterogeneous
applications due to the long latency of hardware simulation. We
estimate the time required for NaiveFuzz by multiplying the number
of iterations required to find the same kind of divergence symp-
tom using WithoutSpectra (—where one iteration means running
a program on a new input) with an average hardware simulation
time for each program. Figure 4 shows comparison between the
running time of HeteroFuzz and the estimated time of NaiveFuzz.
Please note that though we report an estimated time not an actual
running time, because HW simulation time does not vary much for
each input (the standard deviation 𝜎 = 1.62), this estimated should
be highly similar to the actual time of using an AFL-like technique
that directly invokes an HLS simulator with a new input. Within
three hours, NaiveFuzz finds only one divergence symptom for P4,
P5 and P7, but could not find any in other programs. For P2, Naive-
Fuzz requires at least 2262 hours to detect all symptoms detected
by HeteroFuzz within three hours, leading to 754X speed-up. In
addition to the results in Figure 4, we ran HeteroFuzz for 24 hours
and compare against what NaiveFuzz would find within the same
time budget. HeteroFuzz detects 61.8X more error-inducing inputs
with the same budget of 24 hours, compared to NaiveFuzz.

Summary 4

Using an AFL-like technique to repetitively invoke a hard-
ware simulator would be too slow and insufficient to reveal
platform-dependent errors in heterogeneous applications.

5.5 RQ5: Comparison against Input Checking

One may question whether input validity checking on the side
of the host code is feasible and adequate for preventing platform-
dependent errors in kernel code to be executed on a hardware
accelerator. Unlike pure software systems where a caller function
can prevent errors by checking the pre-condition of its callee prior
to invocation, such input validity checking is not always feasible in
heterogeneous applications [30, 40]. The reason is that it is nearly
impossible to identify the precise pre-condition in advance due to the

difficulties of modeling individual FPGA devices [12, 28, 70], because
the pre-condition is dependent on the resource availability on a
specific platform. For example, when a merge-sort kernel requires
a 5MB array for dynamic block memory, Xilinx-Zynq-7030 with
9.3MB BRAM will work fine, but Xilinx-Zynq-7020 with 4.9MB
BRAM will produce an incorrect sorting result silently.

To further substantiate this argument, we conducted a case study
on several divergent symptoms found byHeteroFuzz in the example
application shown in Figure 2. Table 5 summarizes a divergence
symptom, a detailed error description, and whether input range
checking could have prevented such error. After analyzing the
HLS pragmas in line 4, line 6, and line 23, we manually extract
the pre-condition of kernel code in terms of a range check and
insert it an input guard: an integer array whose size is multiple of

two but no larger than 400, and each element in this array should

be less than 256. After inserting this guard into the original host
code, divergence symptoms S2 and S5 are prevented because the

accelerator is trying to process data with an invalid value or size.
However, such input checking is still inadequate and does not
prevent the platform-dependent error S1 and kernel runtime errors
S3 and S4. For example, S4 is caused by inputs that satisfy the
guard condition, [1,1,1,253] . In other words, assertions inserted
by a defensive developer in the host code may not fully prevent
runtime errors coming from hardware accelerators due to varying
resource availability of individual FPGA devices. To our knowledge,
HeteroFuzz is the only testing tool that can detect such platform-
dependent errors missed by input checking in host code.

Summary 5

Our case study shows evidence that even if a developer
manually constructs and inserts assertions in host code,
kernel errors from accelerators cannot be fully prevented.

6 THREATS TO VALIDITY

We discuss the threats to validity as follows.
Device Dependence.We simulate all the kernel executions on a
single Xilinx Virtex UltraScale+ XCVU9P FPGA, which is currently
the widely used FPGA. This setup may restrict the generalizability
of our results to other devices, because the detected divergence
symptoms could vary for different platforms, e.g. Intel’s Altera.
Though the absolute numbers of execution time and symptoms are
dependent on a detailed configuration, we believe that HeteroFuzz
would retain the overall benefits of speedup and divergence-finding
capabilitywhen it is applied to different platforms. SinceHeteroFuzz
uses FPGA simulation, it does not find mechanical failures caused
by temperatures, aging of devices, and radiation on FPGA. Such
hardware in-field testing is often done by device physicists.
Time Limit. We empirically set three hours as the time limit for
fuzzing. Longer execution time may expose more divergence errors
or more execution paths as suggested in [27]; however, this time
limit is reasonable, as we did not see any increase in new types of
divergence errors with a higher time limit for subjects P1-P7.
Input Mutations. In terms of mutations, HeteroFuzz refers to in-
put modifications to explore the input space during fuzz testing, as
opposed to injecting code faults in mutation testing. HeteroFuzz
not only is faster than naive fuzzing but is safe—i.e., HeteroFuzz
can find all errors that can be found by naive fuzzing, as Hetero-
Fuzz’s input mutations are a super-set of low-level input mutations.
Designing new kinds of input mutations could affect the efficiency
of fuzz testing. Currently, there are no equivalent high-level input
mutations in HeteroFuzz. Low-level bit or byte mutations retained
by HeteroFuzz could subsume other high-level input mutations, be-
cause combinations of low-level mutations could map to high-level
mutations.

7 RELATEDWORK

Fuzz Testing. Fuzzing has gained popularity in both academia and
industry due to its black/grey box approach with a low barrier to
entry [43]. The key idea of fuzz testing originates from random
test generation where inputs are incrementally produced with the
hope to exercise previously undiscovered behavior [18, 20, 44]. For
example, AFL mutates a seed input to discover previously unseen
coverage profiles [69]. To carefully explore a vast space of inputs

251

HeteroFuzz: Fuzz Testing to Detect Platform Dependent Divergence for Heterogeneous Applications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

and unbounded program paths, Lemieux et al. create custom muta-
tions so that the generated inputs gravitate toward exercising rare
branches [33]. Other approaches incorporate symbolic execution
with fuzzing to guide selection and mutation of the inputs to invoke
unique program paths [7, 51]. Padhye et al. incorporate the seman-
tic validity of input mutations in Zest [45] to reduce the search
space of inputs by mapping low-level, bit-level mutations to valid
structural changes in the high-level input representation. All these
fuzzing techniques are built on the assumption that the program
under test can be executed millions of times within a matter of
hours. However, in the domain of heterogeneous applications, a
single invocation of a hardware simulator may take several minutes,
which is the exact problem that HeteroFuzz addresses.

Instead of using coverage as guidance, several techniques have in-
vestigated how to use custom guidance mechanisms. PerfFuzz [32]
uses the execution counts of exercised instructions together with
branch coverage as fuzzing guidance to explore pathological perfor-
mance behavior. UAFL [54] incorporates typestate properties and
information flow analysis to detect the use-after-free vulnerabilities.
MemLock [56] employs both coverage and memory consumption
metrics to guide the fuzzing process. AFLgo [2] extends AFL to
direct fuzzing towards user-specified target sites. However, none
explicitly monitors hardware-level accelerator spectra and metrics
to reveal platform-dependent divergence like HeteroFuzz.

Another angle to optimize fuzz testing is to update which muta-
tion operations to apply. SymFuzz [8] uses symbolic execution to de-
termine the number of bits to be mutated in a seed input. Angora [9]
updates mutation operations to be aware of taint-level observations.
SDF [35] uses seed properties to guide mutation in web-browser
fuzz testing. In grammar-based fuzzing, Saffron [31] repairs the
given grammar based on whether the program accepts unexpected
inputs outside of the provided grammar, and then it adaptively re-
fines the probabilities of every production rule. MOPT [38] finds an
optimal probability distribution for mutation operators to discover
vulnerabilities more efficiently. To our knowledge, none designs
probabilistic mutations by associating monitored accelerator spec-
tra with the probability of activating specific mutation operators.
Testing inHLS andHardwareAccelerators.HLS tools automat-
ically generate RTL descriptions from C/C++ programs. Yann et
al. [25] test HLS by randomly generating programs and verifying
the equivalence between the synthesized design and the original
code. Christopher et al. [34] investigate many-core compiler fuzzing
in the context of heterogeneous computing with OpenCL kernels.
They report more than 50 OpenCL compiler bugs. Silver [37] pro-
poses a single end-to-end correctness theorem about running a
verified compiler on a verified FPGA platform. It generates ma-
chine code for Silver based on a high-level executable specification,
and the synthesized FPGA hardware will have the observable be-
havior of the original high-level specification. Different from HLS
compiler testing that finds bugs in compilers, HeteroFuzz detects
platform-dependent behavior in heterogeneous applications.

HeteroFuzz focuses on testing software applications with host
code and kernel code combined together. In other words, Hetero-
Fuzz’s problem concerns C-like code testing, where a sub region of
code could be offloaded to FPGA accelerators. On the other hand, the
hardware design community targets circuit verification in the form
of bitstream and/or hardware description languages (HDL) such

as Verilog, VHDL, etc., using formal verification [26, 48] and run-
time verification [29]. For example, RFUZZ [29] is a circuit runtime
verification tool for FIRRTL IR (UC Berkeley’s own version of RTL
language). RFUZZ invents a new notion ofMUX toggle cooverage for
circuit testing at gate level and employs a rapid memory resetting
on FPGA for RTL circuit verification. As another example, Qin and
Mishra [48] present a scalable test generation technique [48] for
hardware kernels in Verilog by interleaving concrete and symbolic
execution to bridge the gap between model checking and testing.
As opposed to these techniques that find crashes on kernels only,
HeteroFuzz targets end-to-end application code testing and reveals
differential behavior of the entire heterogeneous application (i.e.,
host and accelerator together) under different platforms. In other
words, it is not feasible to directly compare HeteroFuzz against
these circuit testing techniques [29, 48], because they do not have
capability to test host code together with kernel code, and their
input languages are Verilog variants, not C variants.
Revealing Precision Errors. FPGen [21] uses symbolic execution
to generate inputs to trigger large numerical floating-point errors.
It defines inaccurate precision loss checks and injects these checks
at strategic program locations to construct specialized branches to
induce floating-point errors. Different from FPGen that focuses on
floating-point overflows and errors, HeteroFuzz has such a broad
scope in generating inputs that lead to variable overflow on kernels,
kernel exceptions, incorrect returned result, etc.
MediatingHost-Accelerator Interactions. Interaction and com-
munication between accelerators and the host can pose severe secu-
rity problems.Crossing Guard [40] is a coherence interface between
the host and accelerators. It prevents potential bugs caused by host-
accelerator communication. Border Control [41] is a sandboxing
mechanism that guarantees that the memory access permissions
are respected by accelerators, regardless of design errors or ma-
licious intent. While the above work focuses on preventing bugs
caused by host-accelerator interactions, HeteroFuzz on the other
hand is a test generation tool to detect bugs when running host
and hardware accelerator together.

8 CONCLUSION

As hardware specialization, energy efficiency, and flexible re-program-
mability are becoming increasingly important, a new type of cloud-
based hardware acceleratormicroservices based on FPGAhas emerged.
Major service providers such as Amazon F1 and Microsoft Azure
have begun to support heterogeneous application development to
enable acceleration with customizable hardware.

HeteroFuzz makes three key contributions in automated testing
of heterogeneous applications by incorporating multi-dimensional
guidance, dynamic probabilistic mutations, and selective invocation.
In total, the speed-up achieved by HeteroFuzz’s three-pronged
approach in finding the same set of errors is up to 754X, compared
to using an AFL-like technique naively. HeteroFuzz is the first end-
end technique that significantly improves testing effectiveness and
efficiency for this new breed of heterogeneous applications.

ACKNOWLEDGMENTS

The participants of this research are in part supported by NSF grants
CHS-1956322 CCF-1764077, CCF-1723773, ONR grant N00014-18-1-
2037, and Intel CAPA grant.

252

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Qian Zhang, Jiyuan Wang, and Miryung Kim

REFERENCES

[1] Amazon.com. 2021. Amazon EC2 F1 Instances: Run Custom FPGAs in the AWS
Cloud. https://aws.amazon.com/ec2/instance-types/f1.

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, David Evans, Tal Maklin,
and Dongyan Xu (Eds.). Association for Computing Machinery (ACM), United
States of America, 2329–2344. https://doi.org/10.1145/3133956.3134020 ACM
Conference on Computer and Communications Security 2017
, CCS 2017 ;
Conference date: 30-10-2017 Through 03-11-2017.

[3] Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer vision with

the OpenCV library. O’Reilly Media, Inc.
[4] Mary Branscombe. 2017. FPGAs and the New Era of Cloud-based Hardware

Microservices. https://thenewstack.io/developers-fpgas-cloud/.
[5] Jared Casper and Kunle Olukotun. 2014. Hardware Acceleration of Database

Operations. In Proceedings of the 2014 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA ’14).
Association for Computing Machinery, New York, NY, USA, 151–160. https:
//doi.org/10.1145/2554688.2554787

[6] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium

onMicroarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783710
[7] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive

Mutational Fuzzing. In Proceedings of the 2015 IEEE Symposium on Security and

Privacy (SP ’15). IEEE Computer Society, USA, 725–741. https://doi.org/10.1109/
SP.2015.50

[8] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In 2015 IEEE Symposium on Security and Privacy. 725–741.
https://doi.org/10.1109/SP.2015.50

[9] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In 2018 IEEE Symposium on Security and Privacy (SP). 711–725. https://doi.org/
10.1109/SP.2018.00046

[10] Zhe Chen, Hugh T. Blair, and Jason Cong. 2019. LANMC: LSTM-Assisted Non-
Rigid Motion Correction on FPGA for Calcium Image Stabilization. In Proceedings

of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery,
New York, NY, USA, 104–109. https://doi.org/10.1145/3289602.3293919

[11] Andrew A Chien, Allan Snavely, and Mark Gahagan. 2011. 10x10: A general-
purpose architectural approach to heterogeneity and energy efficiency. Procedia
Computer Science 4 (2011), 1987–1996.

[12] Young-Kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and
Peng Wei. 2019. In-Depth Analysis on Microarchitectures of Modern Hetero-
geneous CPU-FPGA Platforms. ACM Trans. Reconfigurable Technol. Syst. 12, 1,
Article 4 (Feb. 2019), 20 pages. https://doi.org/10.1145/3294054

[13] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. 2010. Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic, FPGAs, and
GPGPUs?. In 2010 43rd Annual IEEE/ACM International Symposium on Microar-

chitecture. 225–236. https://doi.org/10.1109/MICRO.2010.36
[14] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik

Gururaj, and Glenn Reinman. 2014. Accelerator-rich architectures: Opportunities
and progresses. In 2014 51st ACM/EDAC/IEEE Design Automation Conference

(DAC). 1–6. https://doi.org/10.1145/2593069.2596667
[15] Jason Cong, Licheng Guo, Po-Tsang Huang, Peng Wei, and Tianhe Yu. 2018.

SMEM++: A Pipelined and Time-Multiplexed SMEM Seeding Accelerator for
DNA Sequencing. In 2018 IEEE 26th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM). 206–206. https://doi.org/10.
1109/FCCM.2018.00040

[16] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-Level Synthesis for FPGAs: From Prototyping to De-
ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 30, 4 (2011), 473–491. https://doi.org/10.1109/TCAD.2011.2110592
[17] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. 2011. Customizable

Domain-Specific Computing. IEEE Design Test of Computers 28, 2 (2011), 6–15.
https://doi.org/10.1109/MDT.2010.141

[18] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic robust-
ness tester for Java. Software: Practice and Experience 34, 11 (2004), 1025–1050.

[19] Jeferson Santiago da Silva, François-Raymond Boyer, and JM Langlois. 2019.
Module-per-Object: a Human-Driven Methodology for C++-based High-Level
Synthesis Design. arXiv preprint arXiv:1903.06693 (2019).

[20] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of Software Engi-

neering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery,
New York, NY, USA, 416–419. https://doi.org/10.1145/2025113.2025179

[21] Hui Guo and Cindy Rubio-González. 2020. Efficient Generation of Error-Inducing
Floating-Point Inputs via Symbolic Execution. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 1261–1272.
https://doi.org/10.1145/3377811.3380359

[22] Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong. 2019. Hard-
ware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing:
A Race Between FPGA and GPU. In 2019 IEEE 27th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM). 127–135.
https://doi.org/10.1109/FCCM.2019.00027

[23] Prabhat Gupta. 2021. Xeon+FPGA Platform for the Data Center. https://www.
archive.ece.cmu.edu/~calcm/carl/lib/\exe/fetch.php?media=carl15-gupta.pdf.

[24] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya
Ishii. 2008. CHStone: A benchmark program suite for practical C-based high-
level synthesis. In 2008 IEEE International Symposium on Circuits and Systems.
1192–1195. https://doi.org/10.1109/ISCAS.2008.4541637

[25] Yann Herklotz and John Wickerson. 2020. Finding and Understanding Bugs
in FPGA Synthesis Tools. In The 2020 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA ’20). Association for
Computing Machinery, New York, NY, USA, 277–287. https://doi.org/10.1145/
3373087.3375310

[26] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whitte-
more, Sudhindra Pandav, Anna Slobodová, Christopher Taylor, Vladimir Frolov,
Erik Reeber, and Armaghan Naik. 2009. Replacing Testing with Formal Verifica-
tion in Intel® CoreTM I7 Processor Execution Engine Validation. In Proceedings

of the 21st International Conference on Computer Aided Verification (Grenoble,
France) (CAV ’09). Springer-Verlag, Berlin, Heidelberg, 414–429.

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. https://doi.org/10.
1145/3243734.3243804

[28] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and K. Oluko-
tun. 2016. Automatic Generation of Efficient Accelerators for Reconfigurable
Hardware. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA). 115–127. https://doi.org/10.1109/ISCA.2016.20
[29] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.

2018. RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs. In Proceedings

of the International Conference on Computer-Aided Design (San Diego, California)
(ICCAD ’18). Association for Computing Machinery, New York, NY, USA, Article
28, 8 pages. https://doi.org/10.1145/3240765.3240842

[30] Jason Lau, Aishwarya Sivaraman, Qian Zhang, Muhammad Ali Gulzar, Jason
Cong, and Miryung Kim. 2020. HeteroRefactor: Refactoring for Heteroge-
neous Computing with FPGA. In Proceedings of the ACM/IEEE 42nd Interna-

tional Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). As-
sociation for Computing Machinery, New York, NY, USA, 493–505. https:
//doi.org/10.1145/3377811.3380340

[31] Xuan-Bach D. Le, Corina S. Pasareanu, Rohan Padhye, David Lo, Willem Visser,
and Koushik Sen. 2019. Saffron: Adaptive Grammar-based Fuzzing for Worst-
Case Analysis. ACM SIGSOFT Software Engineering Notes 44, 4 (2019), 14. https:
//doi.org/10.1145/3364452.3364455

[32] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 254–265. https://doi.org/10.1145/3213846.3213874

[33] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, ASE 2018, Montpellier,

France, September 3-7, 2018, Marianne Huchard, Christian Kästner, and Gordon
Fraser (Eds.). ACM, 475–485. https://doi.org/10.1145/3238147.3238176

[34] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-Core Compiler Fuzzing. In Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Portland, OR,
USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA,
65–76. https://doi.org/10.1145/2737924.2737986

[35] Ying-Dar Lin, Feng-Ze Liao, Shih-KunHuang, and Yuan-Cheng Lai. 2015. Browser
fuzzing by scheduled mutation and generation of document object models. In
2015 International Carnahan Conference on Security Technology (ICCST). 1–6.
https://doi.org/10.1109/CCST.2015.7389677

[36] LLVM. 2021. https://llvm.org/.
[37] Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael

Norrish, Oskar Abrahamsson, and Anthony Fox. 2019. Verified Compilation
on a Verified Processor. In Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). Association for Computing Machinery, New York, NY, USA, 1041–1053.
https://doi.org/10.1145/3314221.3314622

253

https://aws.amazon.com/ec2/instance-types/f1
https://doi.org/10.1145/3133956.3134020
https://thenewstack.io/developers-fpgas-cloud/
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3289602.3293919
https://doi.org/10.1145/3294054
https://doi.org/10.1109/MICRO.2010.36
https://doi.org/10.1145/2593069.2596667
https://doi.org/10.1109/FCCM.2018.00040
https://doi.org/10.1109/FCCM.2018.00040
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/MDT.2010.141
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/3377811.3380359
https://doi.org/10.1109/FCCM.2019.00027
https://www.archive.ece.cmu.edu/~calcm/carl/lib/\exe/fetch.php?media=carl15-gupta.pdf
https://www.archive.ece.cmu.edu/~calcm/carl/lib/\exe/fetch.php?media=carl15-gupta.pdf
https://doi.org/10.1109/ISCAS.2008.4541637
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/ISCA.2016.20
https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1145/3377811.3380340
https://doi.org/10.1145/3377811.3380340
https://doi.org/10.1145/3364452.3364455
https://doi.org/10.1145/3364452.3364455
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1109/CCST.2015.7389677
https://llvm.org/
https://doi.org/10.1145/3314221.3314622

HeteroFuzz: Fuzz Testing to Detect Platform Dependent Divergence for Heterogeneous Applications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[38] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th

USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1949–1966. https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

[39] Valentin Manes, HyungSeok Han, Choongwoo Han, sang cha, Manuel Egele,
Edward Schwartz, and Maverick Woo. 2019. The Art, Science, and Engineering
of Fuzzing: A Survey. IEEE Transactions on Software Engineering PP (10 2019),
1–1. https://doi.org/10.1109/TSE.2019.2946563

[40] Lena E. Olson, Mark D. Hill, and David A.Wood. 2017. Crossing Guard: Mediating
Host-Accelerator Coherence Interactions. SIGARCH Comput. Archit. News 45, 1
(April 2017), 163–176. https://doi.org/10.1145/3093337.3037715

[41] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. 2015. Border Con-
trol: Sandboxing Accelerators. In Proceedings of the 48th International Symposium

on Microarchitecture (Waikiki, Hawaii) (MICRO-48). Association for Comput-
ing Machinery, New York, NY, USA, 470–481. https://doi.org/10.1145/2830772.
2830819

[42] OpenCV. 2021. https://opencv.org/.
[43] Alessandro Orso and Gregg Rothermel. 2014. Software Testing: A Research

Travelogue (2000–2014). In Proceedings of the on Future of Software Engineering

(Hyderabad, India) (FOSE 2014). Association for Computing Machinery, New
York, NY, USA, 117–132. https://doi.org/10.1145/2593882.2593885

[44] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the 29th Interna-

tional Conference on Software Engineering (ICSE ’07). IEEE Computer Society,
USA, 75–84. https://doi.org/10.1109/ICSE.2007.37

[45] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIG-

SOFT International Symposium on Software Testing and Analysis (Beijing, China)
(ISSTA 2019). Association for ComputingMachinery, New York, NY, USA, 329–340.
https://doi.org/10.1145/3293882.3330576

[46] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2016. A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services. Commun. ACM 59, 11
(Oct. 2016), 114–122. https://doi.org/10.1145/2996868

[47] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank
Chang, and Jason Cong. 2018. High-Throughput Lossless Compression on Tightly
Coupled CPU-FPGA Platforms. In 2018 IEEE 26th Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM). 37–44. https:
//doi.org/10.1109/FCCM.2018.00015

[48] Xiaoke Qin and Prabhat Mishra. 2014. Scalable Test Generation by Interleaving
Concrete and Symbolic Execution. In Proceedings of the 2014 27th International

Conference on VLSI Design and 2014 13th International Conference on Embedded

Systems (VLSID ’14). IEEE Computer Society, USA, 104–109. https://doi.org/10.
1109/VLSID.2014.25

[49] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for accelerator design and customized
architectures. In 2014 IEEE International Symposium onWorkload Characterization

(IISWC). 110–119. https://doi.org/10.1109/IISWC.2014.6983050
[50] Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. 2011. A study of high-level

synthesis: Promises and challenges. In 2011 9th IEEE International Conference on

ASIC. 1102–1105. https://doi.org/10.1109/ASICON.2011.6157401
[51] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. https:
//doi.org/10.14722/ndss.2016.23368

[52] David B. Thomas. 2016. Synthesisable recursion for C++ HLS tools. In 2016 IEEE

27th International Conference on Application-specific Systems, Architectures and

Processors (ASAP). 91–98. https://doi.org/10.1109/ASAP.2016.7760777
[53] Frank Tip. 1994. A survey of program slicing techniques. (1994).
[54] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao

Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-Guided Fuzzer for Discovering
Use-after-Free Vulnerabilities. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association
for Computing Machinery, New York, NY, USA, 999–1010. https://doi.org/10.
1145/3377811.3380386

[55] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[56] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. MEMLOCK: Mem-
ory Usage Guided Fuzzing. In 2020 IEEE/ACM 42nd International Conference on

Software Engineering (ICSE). 765–777. https://doi.org/10.1145/3377811.3380396
[57] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Dynamic-

memory-allocation-in-Vivado-HLS-and-segmentation-faults/td-p/894069.
[58] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Problems-

with-simple-program-and-dataflow-directive/m-p/595225.
[59] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-

design-problem-The-result-of-CSim-and-C-RTL-cosimulation-is/m-p/438446.
[60] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Fixed-

point-arithmetic/m-p/754676.
[61] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-

Synthesis-Difference-in-C-Simulation-and-C-RTL-Cosimulation/m-p/785019.
[62] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Issue-

about-overwrite-in-a-loop-HLS-coding-style/m-p/907213.
[63] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-error-

with-co-sim/m-p/1166264.
[64] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Simple-

top-function-skipping-inner-loop-logic-entirely/m-p/1126600.
[65] Xilinx. 2021. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/bd-p/hls.
[66] Xilinx. 2021. Vivado High-Level Synthesis. https://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html.
[67] Zeping Xue and David B. Thomas. 2015. SysAlloc: A hardware manager for

dynamic memory allocation in heterogeneous systems. In 2015 25th International

Conference on Field Programmable Logic and Applications (FPL). 1–7. https:
//doi.org/10.1109/FPL.2015.7293959

[68] Zeping Xue and David B. Thomas. 2016. SynADT: Dynamic Data Structures
in High Level Synthesis. In 2016 IEEE 24th Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM). 64–71. https:
//doi.org/10.1109/FCCM.2016.26

[69] Michał Zalewski. 2021. American Fuzz Loop. http://lcamtuf.coredump.cx/afl/.
[70] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng

He. 2017. COMBA: A comprehensive model-based analysis framework for high
level synthesis of real applications. In 2017 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD). 430–437. https://doi.org/10.1109/ICCAD.
2017.8203809

[71] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen
Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,
WenpingWang, and Zhiru Zhang. 2018. Rosetta: A Realistic High-Level Synthesis
Benchmark Suite for Software Programmable FPGAs. (2018), 269–278. https:
//doi.org/10.1145/3174243.3174255

254

https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3093337.3037715
https://doi.org/10.1145/2830772.2830819
https://doi.org/10.1145/2830772.2830819
https://opencv.org/
https://doi.org/10.1145/2593882.2593885
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/2996868
https://doi.org/10.1109/FCCM.2018.00015
https://doi.org/10.1109/FCCM.2018.00015
https://doi.org/10.1109/VLSID.2014.25
https://doi.org/10.1109/VLSID.2014.25
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/ASICON.2011.6157401
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1109/ASAP.2016.7760777
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380396
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Dynamic-memory-allocation-in-Vivado-HLS-and-segmentation-faults/td-p/894069
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Dynamic-memory-allocation-in-Vivado-HLS-and-segmentation-faults/td-p/894069
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Problems-with-simple-program-and-dataflow-directive/m-p/595225
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Problems-with-simple-program-and-dataflow-directive/m-p/595225
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-design-problem-The-result-of-CSim-and-C-RTL-cosimulation-is/m-p/438446
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-design-problem-The-result-of-CSim-and-C-RTL-cosimulation-is/m-p/438446
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Fixed-point-arithmetic/m-p/754676
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Fixed-point-arithmetic/m-p/754676
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-Synthesis-Difference-in-C-Simulation-and-C-RTL-Cosimulation/m-p/785019
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-Synthesis-Difference-in-C-Simulation-and-C-RTL-Cosimulation/m-p/785019
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Issue-about-overwrite-in-a-loop-HLS-coding-style/m-p/907213
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Issue-about-overwrite-in-a-loop-HLS-coding-style/m-p/907213
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-error-with-co-sim/m-p/1166264
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/HLS-error-with-co-sim/m-p/1166264
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Simple-top-function-skipping-inner-loop-logic-entirely/m-p/1126600
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Simple-top-function-skipping-inner-loop-logic-entirely/m-p/1126600
https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/bd-p/hls
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://doi.org/10.1109/FPL.2015.7293959
https://doi.org/10.1109/FPL.2015.7293959
https://doi.org/10.1109/FCCM.2016.26
https://doi.org/10.1109/FCCM.2016.26
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1145/3174243.3174255
https://doi.org/10.1145/3174243.3174255

	Abstract
	1 Introduction
	2 Background
	2.1 Heterogeneous Computing with FPGA HLS
	2.2 Fuzz Testing

	3 Motivating Scenario
	4 Approach
	4.1 Accelerator Spectra Monitoring
	4.2 Probabilistic Mutations
	4.3 Selective Invocation

	5 Evaluation
	5.1 RQ1: Benefit of Accelerator Spectra
	5.2 RQ2: Benefit of Probabilistic Mutation
	5.3 RQ3: Benefit of Selective Invocation
	5.4 RQ4: Comparison against Naive Fuzzing
	5.5 RQ5: Comparison against Input Checking

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

