BIGFUZZ: Efficient Fuzz Testing for Data

Analytics Using Framework Abstraction

Qian Zhang?, Jiyuan Wang?!, Muhammad Ali Gulzar?,
Rohan Padhye?, and Miryung Kim?

lUniversity of California, Los Angeles
2Virginia Tech
3Carnegie Mellon University

TEAM MEMBERS

Qian Zhang Jiyuan Muhammad Rohan Miryung
Wang Ali Gulzar Padhye Kim

Fuzz testing is extremely Popular and Effective.

WW Pick { } Mutate m

Add
Input’

Execute

New Branch Feedback
Program
Coverage?

5)

AFL*?! 3 popular fuzzing tool that finds numerous errors

1.2020. American Fuzz Loop. http://lcamtuf.coredump.cx/afl
2.Patrice Godefroid, Michael Y. Levin, and David A Molnar. 2008. Automated White-box Fuzz Testing. In Network Distributed Security Symposium (NDSS). 3
Internet Society. http://www.truststc.org/pubs/499.html

http://lcamtuf.coredump.cx/afl

Big data analytics (BDA) is becoming important.

val locations = sc.textFile("zipcode.csv")
.map { s => val cols= s.split(",")
(cols(@), cols(1l)) }
.filter { s => s._2.equals("New York") }

records (RDDs)

batches
processed
with tasks

e Big data analytics programs compile to Java Bytecode

e But this includes the entire framework (700K LOC for
Apache Spark)

e Dataflow implementation contributes most of the
bytecode

Naive Fuzzing is not easily applicable to BDA.

Add
Input’

New Branch

WW Pick { } Mutate m

Execute

)

Coverage?

Feedback

Challenge 1: Long latency of DISC systems prohibits the

applicability of fuzzing.

Naive Fuzzing is not easily applicable to BDA.

LE[WWW Pick { } Mutate m

Add

Input’
New Branch Feedback

Coverage?

Execute

Challenge 2: Conventional branch coverage cannot

represent equivalence classes of dataflow operators and
is unlikely to scale to DISC applications.

Naive Fuzzing is not easily applicable to BDA.

Add
Input’

Execute

Feedback
New Branch Proeram
Coverage? g

Challenge 3: Random binary mutations can hardly generate

meaningful data.

BIGFUZZ Approach Overview

Pf:;r;km Bytecode
‘l‘ ‘l‘ Automated S2S Transformation
with Specification
Framework
Abstraction
+ Joint Dataflow and UDF Coverage
Instrumentation

v

Fuzzing loop

Error Type Guided Mutation for Data Analytics

Key insights: (1) abstracting framework code and
(2) analyzing application code coverage as opposed to

framework coverage.

Novelty 1: Framework Abstraction

val locations =
sc.textFile("zipcode.csv")
.map{s =>
val cols = s.split(",")
(cols(@), cols(1) }
.filter{s => s. 2 == "New York"}

(a) Original Spark Code

Novelty 1: Framework Abstraction

val locations =
sc.textFile("zipcode.csv")
.map{s =>
val cols = s.split(",")
(cols(@), cols(1) }
.filter{s => s. 2 == "New York"}

(a) Original Spark Code

Step 1: UDF Extraction Step 2: S2S Transformation
10

Novelty 1: Framework Abstraction

val locations =
sc.textFile("zipcode.csv")
.map{s =>
val cols = s.split(","
(cols(@), cols(1) }
.filter{s => s. 2 == "New York"}

(a) Original Spark Code

public class Mapl {
static final Mapl apply(String line2)

{

String cols[]=line2.split(",");
return new Mapl(cols[@],cols[1]);
}

(b) Extracted UDF from .map{...}
is represented as Map1.java

Step 1: UDF Extraction

Step 2: S2S Transformation

11

Novelty 1: Framework Abstraction

val locations =
sc.textFile("zipcode.csv")
.map{s =>
val cols = s.split(","
(cols(@), cols(1) }
.filter{s => s. 2 == "New York"}

(a) Original Spark Code

ArrayList<Mapl> resultsl |[=LoanSpec.mapl
(inputs);
ArrayList<Mapl> results2 =LoanSpec.filter2
(resultsl)

(c) Transformed program with executable specifications

public class Mapl {

static final Mapl apply(String line2)
{

String cols[]=1line2.split(",");
return new Mapl(cols[@],cols[1]);

}

(b) Extracted UDF from .map{...}
is represented as Map1.java

Step 1: UDF Extraction

public ArrayList<Mapl>
mapl(ArrayList<String> input){
ArrayList<Mapl> output = new ArrayList<>();
for (String item: input){
output].add(Mapl.apply(item));}
return output;}

(d) Specification implementation of map operator

Step 2: S2S Transformation
12

Novelty 2: Joint Dataflow & UDF Coverage

val pair = datalfilter{ e Filter can introduce 2
:lcséséf == 96024) A; equivalence class cases
} e False * Terminating: filter
e predicate holds false
o X thus individual data
records stop at this
filter;

* Non-Terminating: filter
predicate holds true for
at least one data record.

Novelty 2: Joint Dataflow & UDF Coverage

e
val pair = data.filter(data
if (s._1 == 90024) A: _
else B;
} _.
e True filier False
—) =
“ Branch Coverage JDU Coverage
[90024, A, B ->save A, B, filter.pass -> save
90095]
[90024] A -> discard A, filter.pass -> discard
[90000, B -> discard B, filter.fail -> save
90095]

* Filter can introduce 2

equivalence class cases

* Terminating: filter

predicate holds false
thus individual data
records stop at this
filter;

* Non-Terminating: filter
predicate holds true for

at least one data record.

14

Novelty 3: Error-Type Guided Mutation

» We design six mutation operations M1-M6 to reflect their

association with each real world error type.

nmm Reflected Errors

M2

M3

M4

M5
M6

Data Distribution
Mutation

Data Type Mutation

Data Format
Mutation

Data Column
Mutation

Null Data Mutation

Empty Data
Mutation

an integer value 10 corresponding to
integer[©-30] is mutated to 25 or -1

20 corresponding to integer[0-30]
is mutated to 20.0

awn

, to

e
insert “’
remove one or more columns

mutate a random column to empty
string

Incorrect code logic, incorrect
APl usage, join-related errors

Type mismatch

Split-related errors

Split-related errors, illegal data
for UDF

Incorrect column access

Incorrect offset access

15

Study of Common Error Types

* We study the characteristics of real-world data analytics errors
posted on StackOverflow and Github.

| ErorTypes lBxample
Type mismatch .collect().foreach(pri
o)
Keywords Searched Apache Spark exceptions, llegal data for UDF Division by zero
hadoop exceptions, task Split-related errors str.split(“\t”)[1]

errors, failures, wrong

Incorrect column access str.split(“,”)[1]
outputs, SparkContext, etc.

L Incorrect offset access str.substring(1,9)
Posts Studied in total 931 posts
Incorrect code logic If(age>10 && age<9)
Common Fault Types 10
Incorrect API usage LeftOuterJoin
Join-related errors (Value, Key)
Semantic errors Spark word2vec
Framework errors one row join in spark

16
GGG,

Evaluation

RQ1: Applicability

RQ2: Speedup with framework abstraction

RQ3: JDU coverage and error detection capability

RQ4: Comparison with symbolic execution-based technique

17

RQ1: Applicability

american fuzzy lop

© days, © hrs, © min, 8 se
none seen yet

©® days, © hrs, 0 min,

none seen yet

1.00 bits/tuple
© (@ unique)

0
n/a
100.00%

AFL (9216M memory and 100s timeout)
runs at an extremely low speed 9.68 execs_per_sec on average

RQ2: Speedup with Framework Abstraction

Running time with 1000 iterations

10000000

1000000

100000

Time/s

10000

1000

B BigFuzz [RandFuzzM

P10

P11

P12

19

RQ2: Speedup with Framework Abstraction

Running time with 1000 iterations

10000000

1000000
100000
10000 I

1000
P10 P11 P12

Time/s

BigFuzz speeds up to 1477x times with framework abstraction

RQ3: JDU Coverage and Error Detection Capabilit

Coverage % Error Detection %
Subject Random BigFuzz Improvement | Random BigFuzz Improvement
FuzzA FuzzA
Word Count 50.00 100.0 2.00x 0.00 100.0 N/A
Commute Type 54.55 86.36 1.58x 62.50 87.50 1.40x
External Call 25.00 75.00 3.00x 0.00 100.0 N/A
Find Salary 42.48 75.00 1.77x 34.00 87.50 2.57x
Student Grade 23.21 86.10 3.71x 37.50 62.50 1.67x
Movie Rating 43.18 75.00 1.74x 35.71 64.30 1.80x
Inside Circle 78.57 96.43 1.20x 70.00 95.00 1.35x
Number Series 33.33 66.67 2.00x 50.00 81.25 1.63x
Age Analysis 41.67 94.44 2.27x 50.00 91.67 1.83x
IncomeAggregation 44 .44 94.44 2.12x 50.00 91.67 1.83x
Loan Type 75.00 93.33 1.24x 67.50 90.00 1.33x

21

RQ3: JDU Coverage

Coverage % Error Detection %
Subject Random BigFuzz Improvement | Random BigFuzz Improvement
FuzzA FuzzA

Word Count 50.00 100.0 2.00x 0.00 100.0 N/A
Commute Type 54.55 86.36 1.58x 62.50 87.50 1.40x
External Call 25.00 75.00 3.00x 0.00 100.0 N/A
Find Salary 42.48 75.00 1.77x 34.00 87.50 2.57x
Student Grade 23.21 86.10 3.71x 37.50 62.50 1.67x
Movie Rating 43.18 75.00 1.74x 35.71 64.30 1.80x
Inside Circle 78.57 96.43 1.20x 70.00 95.00 1.35x
Number Series 33.33 66.67 2.00x 50.00 81.25 1.63x
Age Analysis

BigFuzz provides up to a 3.71X improvement on code coverage

RQ3: Error Detection Capabilit

Coverage % Error Detection %
Subject Random BigFuzz Improvement | Random BigFuzz Improvement
FuzzA FuzzA
Word Count 50.00 100.0 2.00x 0.00 100.0 N/A
Commute Type 54.55 86.36 1.58x 62.50 87.50 1.40x
External Call 25.00 75.00 3.00x 0.00 100.0 N/A
42.48 75.00 1.77x 34.00 87.50 2.57x
Student Grade 23.21 86.10 3.71x 37.50 62.50 1.67x
Movie Rating 43.18 75.00 1.74x 35.71 64.30 1.80x
Inside Circle 78.57 96.43 1.20x 70.00 95.00 1.35x
Number Series 33.33 66.67 2.00x 50.00 81.25 1.63x
Age Analysis

BigFuzz achieves up to a 2.57X improvement on error detection

RQ4: Compared with Symbolic Execution-based
technique

Subject Programs

PL P2 PP P4 P5 P6

Injected Errors 1 6 2 4 6 7
BigTest 0 5 1 2 4 3
BigFuzz 1 6 2 4 6 7

24

RQ4: Compared with Symbolic Execution-based
technique

Subject Programs

PL P2 PP P4 P5 P6

Injected Errors 1 6 2 4 6 7
BigTest 0 5 1 2 4 3
BigFuzz 1 6 2 4 6 7

In comparison to a symbolic execution based approach

BigTest!!! , BigFuzz detects 80.6% more injected errors

1.Muhammad Ali Gulzar, Shaghayegh Mardani, Madanlal Musuvathi, and Miryung Kim. 2019. White-Box Testing of Big Data Analytics with
Complex User-Defined Functions. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and 25
Symposium on the Foundations of Software Engineering (ESEC/FSE 2019)

Acknowledgement

« NSF grants: CCF-1764077, CCF-1527923, CCF-1723773
- ONR grant: NO0O014-18-1-2037,

 Intel CAPA grant

« Samsung grant

- Google PhD Fellowship

- Alexander von Humboldt Foundation

26

BIGFUZZ: Efficient Fuzz Testing for Data Analytics

Using Framework Abstraction

Qian Zhang?, Jiyuan Wang!, Muhammad Ali Gulzar?,
Rohan Padhye3, and Miryung Kim?

YUniversity of California, Los Angeles, 2Virginia Tech, 3Carnegie Mellon University

Tool link: https://github.com/qgianzhanghk/BigFuzz

e \We adapt fuzz testing to DISC applications with long latency.
®BIGFUZZ provides a novel solution that combines:
o dataflow abstraction with specification;
o tandem monitoring of dataflow coverage with UDF branch coverage;

o application-specific mutations that reflect real world error types.

27

https://github.com/qianzhanghk/BigFuzz

