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ABSTRACT

Motivated by the inherent error-resilience of emerging recog-
nition, mining, and synthesis (RMS) applications, approxi-
mate computing techniques such as precision scaling has been
advocated for achieving energy-efficiency gains at the cost of
small accuracy loss. Most existing solutions, however, fo-
cus on the approximation of on-chip computations without
considering that of off-chip data accesses, whose energy con-
sumption may contribute to a significant portion of the total
energy. In this work, we propose a novel approximate mem-
ory access technique for dynamic precision scaling, namely
ApproxMA. To be specific, by taking both runtime data pre-
cision constraints and error-resilient capabilities of the ap-
plication into consideration, ApproxMA determines the pre-
cision of data accesses and loads scaled data from off-chip
memory for computation. Experimental results with mixture
model-based clustering algorithms demonstrate the efficacy of
the proposed methodology.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems—Design studies
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1. INTRODUCTION
By trading off computation quality with computational

effort, approximate computing [1–5] is a promising energy-
efficient technique for emerging Recognition, Mining and Syn-
thesis (RMS) applications due to their inherent error-resilience
characteristics. Firstly, they are usually used to process large
amounts of data that are often noisy and redundant; Sec-
ondly, there is usually no specific “golden” output value but
rather many “acceptable” outputs; Finally, the algorithm-
s used in many of these applications are stochastic in na-
ture and often resort to error-resilient methods for solution-
finding.

Precision scaling, which decreases the operand bit-width in
computations according to application quality requirements,
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is one of the most effective approximate computing tech-
niques [6–8]. Considering the fact that the computation qual-
ity requirement may vary significantly at runtime, various dy-
namic precision scaling [9, 10] techniques have been presented
in the literature, which adaptively adjust operand bit-width
to improve energy efficiency under quality constraints.

For RMS applications that are used to process a large vol-
ume of data, there are inevitably frequent interactions be-
tween off-chip memory and on-chip computational units, and
the energy needed for such communication can be much high-
er than that of computations. Intuitively, if we could selec-
tively load certain most significant bits (instead of all the
bits) of data from off-chip under quality constraints, signif-
icant energy-efficiency gains can be achieved. Most existing
precision scaling techniques, however, only target at energy-
efficient on-chip computations without much consideration of
off-chip memory accesses.

Motivated by the above, in this work, we propose an ap-
proximate memory access framework, namely ApproxMA, for
dynamic precision scaling with emphasis on off-chip mem-
ory accesses, and we validate its effectiveness on mixture
model-based clustering problem. Mixture model-based clus-
tering [11] assumes that data were generated by a mixture
of models and tries to recover the original model from the
data, which provides great flexibility for fitting any data set
according to a particular distribution. It has a wide range
of applications [12]. For instance, it is the essential part in
grouping products and customers in massive retail dataset-
s, gene sequence analysis to find genes that work together,
and image segmentation and denoising in image/video pro-
cessing. Mixture model-based clustering problem is inher-
ently error-resilient and needs large amount of data accesses
from off-chip memory. The computation demand for this task
is usually quite high and hence how to improve its energy-
efficiency is of great interest.

The remainder of this paper is organized as follows. Section
2 provides related works and motivates this paper. Section
3 demonstrates mechanism of approximate memory access
for dynamic precision scaling. Case study of mixture model-
based clustering with ApproxMA is then presented in Section
4. Finally, Section 5 concludes this paper.

2. RELATED WORKS AND MOTIVATION
Precision scaling is a commonly used approximate design

technique, in which the bit-width (precision) of the input
operands is modulated for energy efficiency. Many research
efforts have been dedicated to precision scaling for tradeoff
energy and quality in the literature [6, 8, 9, 13–15]. For ex-
ample, QUORA [6] applies dynamic precision scaling into
processing elements (PEs) with error monitoring and com-
pensation to facilitate quality-programmable execution. A
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Figure 1: The Framework of Approximate Memory Access.

significant amount of energy is saved by adjusting the preci-
sion based on application quality constraints. Analysis of the
intermediate variables has been proposed to set the bit-width
of the input data under a given error bound of the computa-
tion [7]. In [8], word-length tunable architecture for OFDM
(Orthogonal Frequency Division Multiplexing) Demodulator
determines data word-length at runtime based on the ob-
served error of the system output. [9, 13] optimize the word-
length used in the operation according to the time-varying
environment of wireless communication systems. There were
also other works that apply precision scaling for FPGAs [14]
and GPUs [15]. All the above works only apply precision
scaling on the processing units.

In big-data era, RMS applications require to deal with ex-
tremely large size of dataset, thereby requiring frequent data
communications between off-chip memory and on-chip com-
putational units. On the other hand, due to much longer bus
length and larger on-board parasitic capacitance, the energy
consumption of loading data from off-chip memory is up to
19x comparing with that from on-chip memory [16]. There-
fore, off-chip memory accesses could be the dominant factor
of the total energy consumption for these communication-
intensive RMS applications.

Motivated by the above, we propose an approximate mem-
ory access framework for dynamic precision scaling, namely
ApproxMA. One related work is presented in [17], where-
in the authors apply lossy compression for data transferred
between the GPU and its off-chip memory, but it requires
microarchitectural changes to the system.

3. THE PROPOSED FRAMEWORK
The proposed ApproxMA framework is presented in Fig. 1,

which is comprised of runtime precision controller and mem-
ory access controller. For data accesses, runtime precision
controller firstly generates the customized bit-width accord-
ing to runtime quality requirements, and then memory access
controller loads the scaled data from off-chip for computa-
tions. Although consequent computations also bring energy
savings, our work mainly focuses on the communications with
scaled data.

3.1 Runtime Precision Controller
Our runtime precision controller works based on the prin-

ciple that it is not necessary to perform fully-accurate com-

Figure 2: Data Format in Off-chip Memory

putation with approximate computing. On the one hand,
lower precision data does not always lead to functional error.
On the other hand, as many RMS applications are inher-
ently error-resilient, certain amount of functional errors are
acceptable, which can sometimes be recovered and have no
influence on the final output quality. We denote this property
as error resilience capability of the algorithm.

By analyzing subset of data and/or intermediate compu-
tational results, runtime precision controller calculates preci-
sion constraints (when there will be a functional error) and
error resilience capability (how many functional errors are
tolerable), and then decides the required bit-width for the
current data access.

3.2 Memory Access Controller
To realize loading certain most significant bits of data from

off-chip memory, we need to reorganize the data. Bits of the
same significance in different words are combined to form new
words and stored in off-chip memory. For example, assuming
each word has 32 bits and we divide it into 8 parts, each of
which then has 4 bits. We will store them in the format
shown in Fig. 2, where A,B, . . . , H respectively represent
the eight original words. The first block in off-chip memory
stores the first 4 bits of all data, the second block stores the
second 4 bits, and so on.

Knowing the starting address of dataset, the number of
blocks and the bit-width of data to load, memory access
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Input:
startAdd (starting address of dataset),
sizeOfData (original total size of dataset

in off-chip memory),
nOfBlock (number of blocks data are

divided to),
bitwidth (bit-width of data to load for

current data access)

1 offset = sizeOfData/nOfBlock;
2 calculate nOfBlockToLoad (number of blocks to

load) with bitwidth;
3 while (nOfBlockToLoad > 0) do

4 Load data from the address startAdd to the
address startAdd+ offset− 1;

5 startAdd = startAdd+ offset;
6 nOfBlockToLoad = nOfBlockToLoad− 1;

7 end

Algorithm 1: Load Precision Scaled Data from
Off-chip Memory

controller loads the corresponding scaled data from off-chip
memory as shown in Algo. 1. For example, assuming we
are able to read m 32-bit original data words from off-chip
memory once, if the current required precision is 16 bits, we
can instead read 32 × m ÷ 16 = 2m samples once. The ac-
cess sequence is, bits [31:28] of the first 2m samples, then
bits [27:24], [23:20] and [19:16] of these 2m samples. Having
processed the first 2m samples, the processor then read the
former 16 bits of the second 2m samples, and so on.

ApproxMA can be applied to general processor/accelerator
architecture without necessarily changing the hardware, in
which case, the access control of off-chip memory is conduct-
ed at the processor side with a software-based memory man-
agement unit MMU). Data reorganization needs to be per-
formed before computation. Runtime precision controllers
and memory access controllers can be realized by many kind-
s of algorithms in our framework depending on the specific
applications and datasets. We will detail how ApproxMA
can be applied for mixture model-based clustering problem
in Sec. 4.

4. CASE STUDY FOR MIXTURE MODEL-

BASED CLUSTERING PROBLEM

4.1 Preliminaries
Data clustering is commonly used to find the structure of a

given dataset. To be specific, clustering algorithm groups a-
like samples based on certain distance metric (e.g., euclidean
distance, probability-based distance) and finally outputs k
clusters to represent the whole samples. As no pre-knowledge
on the different clusters or labels provided, clustering is a typ-
ical unsupervised learning procedure. Mixture model-based
clusterings use certain models (e.g., distributions, centroid-
s) for clusters and attempt to optimize the fitness between
the samples and the models based on an objective function
(e.g., maximize the likelihood or minimize the distances). In
practice, each model can be mathematically represented by
a parametric distribution, such as Gaussian (continuous) or
Poisson (discrete). The entire dataset is therefore modeled
by a mixture of these distributions.

Without loss of generality, let us consider Gaussian mix-
ture model-based clustering (GMM). First, with given da-
ta X = {x1, x2, ...xn}, we assume these samples are from

k Gaussians (i.e., specific model), and each of them can be
uniquely identified by Gi(μi,Σi). Then, samples will be as-
signed with different labels based on the probability (i.e.,
specific distance metric) that they belong to each Gaussian.
Next, all the parameters consisting such mixture models will
be determined by optimizing the likelihood function (i.e.,
specific objective function) in an Expectation-Maximization
(EM) manner. The algorithm is as follows:

Repeat until convergence : {

E − Step(Calculate current measurement) :

For each data t and cluster j

calculate the probability that t belongs to j

M − Step(Optimize objective function) :

For each cluster j

update μj and Σj by Maximum Likelihood

}

In the E-step, it “guesses” the values of the probabilities
(i.e., calculating the similarities for current model), and in
the M-step, it updates the model parameters by Maximum
Likelihood (i.e., optimizing objective function) based on the
E-step’s guesses. Although the distance metrics of various
models are different, the above iterative EM-based learning
procedure is the main-stream technique used for clustering.

4.2 Runtime Precision Controller
A functional error of clustering algorithm happens only if

one sample is assigned to an incorrect cluster, and thus the
computation with lower precision data does not always lead
to functional errors if the relative distances hold. Precision
constraints can be decided according to the lowest precision
with no functional errors. From the point view of error re-
silience capability, an appropriate amount of functional errors
(i.e., error rate1) are acceptable. The iterative nature of clus-
tering algorithm is to continuously correct the mixture mod-
els and re-label all the samples. Therefore, the correctness
of clustering results can be guaranteed in the later iteration
with higher data precision. Such capability is oscillating until
the convergence of clustering procedure.

4.2.1 Overview of Runtime Precision Controller

In our proposed runtime precision controller, we represent
the relationship between error rates and data precision levels
with precision constraint table, and then precision is scaled
according to the application’s error resilience capability. In
each iteration, both precision constraint table and error re-
silience capability are updated based on runtime information.
However, it is a challenging problem, because (i) constraints
and error resilience capabilities are all highly dependent on
datasets and mixture models; (ii) modern datasets usually
feature large amounts of high-dimensional data and there
will be significant overhead to analyze all of them.

Fig. 3 depicts the overall flow of our runtime precision
controller. It can be observed that precision constraint table
is constructed from a subset of all the samples, and error
resilience capability is obtained from intermediate computa-
tion results (i.e., classification membership changes between
two iterations). The precision of data is determined based
on the outputs of the above two blocks (i.e., constraint and
relaxations). In addition, a precision prediction calibration
module is applied to avoid the bit-width prediction error due

1The percentage of functional errors among all the samples
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Figure 3: Runtime Precision Controller

to the incomplete or inexact information extraction (i.e., sub-
set of samples). In the following parts, we will detail these
functional blocks.

4.2.2 Precision Constraint Table

The precision constraint table lists the data precision con-
straints and the corresponding predicted error rates.

Suppose the subset we used to construct this table is de-
noted as

x = {x1, x2, ...xm}.

For each sample, we would estimate the minimal precision
requirement (i.e., bit-width bound) to avoid functional error,
and then, construct the corresponding precision constraint
table with precision requirements of all samples in the subset.

Let us take Fig. 4 as an example to illustrate how to esti-
mate the minimal precision constraint for a single sample.

Given the number of clusters k, the clustering algorithm
first computes the distances between the current sample and
these k clusters based on the specific distance metric used in
the clustering algorithm, and then assigns it to the cluster
with the smallest distance. That is, we get

d = {d1, d2, ...dk},

where each di indicates the distance between the current sam-
ple and the ith cluster, and if ds is the smallest value in d,
the current sample will be assigned to sth cluster.

Based on the above, as long as the relative relationship
between any other di and ds is correct (i.e., ∀di > ds, i �= s),
the functional error for this sample is avoided.

Specifically, for dj > ds (j �= s), the tolerable relative error
for keeping this relative relationship can be represented as

min(
dj − ds

dj
,
dj − ds

ds
) =

dj − ds
dj

= 1−
ds
dj

, j �= s.

As there are totally k − 1 relative relationships needed to
be maintained, we get k − 1 tolerable relative errors. Given
ds must be smaller than any other di, the final relative error
bound for labeling the current sample correctly must be the
smallest one of these k − 1 values.

For specific distance metric

d = f(x),

by conducting the above procedure, we get the final relative
error bound on distance computation (i.e., bounds on d).
Then, the bit-width constraint c for the current data can be
determined accordingly. That is, as long as we load c-bit of
this sample, it will be classified correctly.

Then, for the entire selected subset, we get

C = {c1, c2, ...cm},

wherein each ci indicates the bit-width constraint for the ith
sample in the subset. After sorting these values in ascending
order, we can predict the error rate with any ci as follows:

rate =
No.(entries in C that is smaller than ci)

m

Finally, we obtain the precision constraint table.

Figure 4: Absolute Error Constraint for One Com-

parison

4.2.3 Error Resilience Capability

Membership of a sample depicts which cluster the sample
belongs to. We define the change of memberships in one itera-
tion as the percentage of samples whose membership changes
comparing with that of last iteration. The change of member-
ship tends to decrease along with the algorithm approaching
convergence and will finally reach zero. This value reflects
the converging rate of the clustering algorithm, and thus we
leverage it as the indicator of error resilience capability. For
example, if 30% samples change their memberships, the er-
ror resilience capability is set as α × 30%, which means we
can tolerate at most α× 30% functional errors, where α is a
user-defined parameter.

Error resilience capability works cooperatively with preci-
sion constraint table to select data precision. First of all, er-
ror resilience capability determines the worst case error rate.
Then, based on the precision constraint table, the most in-
accurate data precision among all acceptable configurations
is selected.

4.2.4 Precision Prediction Calibration

Sometimes the predicted precision is not good enough due
to the incompleteness of data subset and the inaccuracy of er-
ror resilience capability estimation model, leading to endless
membership vibrations for some of the samples and signifi-
cant energy consumption, which appears at the final stage of
clustering algorithm.

To avoid the above situation, we keep track of the member-
ship changes within the most recent two iterations. When-
ever similar membership changes are detected, we would up-
grade the data precision to be the next more accurate one.

4.3 Experimental Results

4.3.1 Experimental Setup

Experiments are conducted on two widely used clustering
algorithms: Gaussian mixture model-based clustering (GM-
M) and k-means clustering (which is the hard assign version
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Table 1: Applications and Datasets

Application Dataset Source Dimension Distance Metric

k-means
svmguide [19] 4

Least square distance with �2 normcodrna [19] 8
shuttle [19] 9

GMM
image noise [20] 3

Mahalanobis distance with �2 normirisflowers [19] 2
fourclasses [21] 2

Table 2: Mixture Model-based Clustering with ApproxMA

Application Datasets
Model Testing Data Energy

Deviation Error Rate Savings

k-means
svmguide 0.3 0 58.08%
codrna 1.22e-04 0 41.92%
shuttle 9.39e-05 0 56.17%

GMM
image noise 4.34e-05 0.07% 51.41%
irisflowers 1.01e-06 0 42.08%
fourclasses 4.51e-03 0.60% 59.64%

of mixture model-based clustering [11]) with various dataset-
s. Detailed information is listed in Table 1, wherein column
“Source” gives the download source of our used datasets, and
column “Dimension” indicate the dimension of features. col-
umn “Distance Metric” shows the distance metrics for each
applications, which will be used in our runtime precision con-
troller.

We apply two metrics to illustrate approximation quality
loss on the final results. The first one is named as model
deviation, which reflects distance between the approximated
model and the accurate one. Here the distance is a model-
specific metric, and we define it as follows: for k-means, De-
viation of Models is calculated with the average Euclidean
squared distance between the approximate and the accurate
centroids (denoted as capp and cacc, respectively), which is
calculated as:

D =
1

k

k∑

i=1

d(capp,i, cacc,i),

wherein k is the number of clusters; For clustering with Gaus-
sian mixtures, “Deviation of Models” is calculated with the
weighted sum of Bhattacharyya distances between approxi-
mate and accurate Gaussian mixture models, which is calcu-
lated as,

D =

k∑

i=1

weighti × d(modelapp,i,modelacc,i).

d(modelapp,i,modelacc,i) denotes the Bhattacharyya distance
betweenmodelapp,i andmodelacc,i. And weighti is the weight
of accurate model.

The second metric is named as Testing Data Error Rate,
which means the percentage of testing data that are assigned
to a wrong cluster with our calculated approximate model.
It should be noted that testing data is different from the
training data that is used to calculated the model.

4.3.2 Energy Benefits

In this work, we mainly consider the energy savings of the
proposed ApproxMA solution for memory accesses and the
values are obtained with CACTI [18]. Note that, there is s-
light increase of energy consumption due to data reorganiza-

tion before computation, but it is ignored in our experiments
due to its relatively small contribution.

Table 2 demonstrates the quality loss and energy benefit
for k-means clustering and Gaussian mixture clustering, sep-
arately. We can observe from the results that our proposed
technique is able to achieve significant energy savings (from
40% to 60%) when comparing with fully accurate off-chip
memory accesses. At the same time, the resultant quality
loss is almost negligible. One interesting phenomenon illus-
trated by dataset svmguide is that the model deviation is
as much as 0.3 while there is no testing data error detect-
ed. This is because the clusters are well separated in this
dataset so that labeling the testing samples become easy and
error-tolerant. Therefore, we are able to gain the best energy
savings in this case, which illustrates that our proposed tech-
nique is very powerful to capture error resilience capability
featured by specific dataset.

4.3.3 Comparison with Static Precision Scaling

We also conduct comparison with static precision scaling
that uses a pre-determined fixed bit-width for approximation.

Experimental results for k-means clustering are shown in
Table 3. For all the datasets, ApproxMA obtains the most
accurate result. “Model Deviation” of dynamic precision s-
caling is the smallest (9.39e-05 vs 6.13 and 49.18 in Table
3(c)). Correspondingly, “Testing Data Error Rate” is zero in-
dicating that models built with dynamic precision assign all
testing data correctly. At the same time, the energy savings
are significant, and sometimes better than the case when the
bit-width is set as 16. This is because, static precision scal-
ing with small bit-width may cause increase of iterations or
even no convergence of the algorithm and therefore consumes
more energy.

Generally speaking, the output quality decreases along with
the reduction of bit-widths with static precision scaling, and
the quality itself is not guaranteed, as shown in the unac-
ceptable results in Table 3(b) and Table 3(c), where nearly
half of the testing data are clustered incorrectly when the
bit-width is set to be 12. This is a serious problem for static
precision scaling because it has no knowledge on the actual
data set used in practice.
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Table 3: Comparison of Static and Dynamic Precision Scaling

(a) svmguide (b) shuttle (c) cod-rna

Bitwidth
Model Testing Data Energy Model Testing Data Energy Model Testing Data Energy

Deviation Error Rate Savings Deviation Error Rate Savings Deviation Error Rate Savings
16 0.45 0.13% 54.55% 1.81e-03 0.03% 50.00% 6.13 4.11% 74.44%
12 6.73 1.49% 69.32% 0.086 44.04% 53.84% 49.18 39.95% 94.17%

dynamic 0.3 0 58.08% 1.22e-04 0 41.92% 9.39e-05 0 56.17%

5. CONCLUSION
Precision scaling is an effective approximate computing

technique to improve energy-efficiency. However, most ex-
isting works focus on approximation of on-chip computations
without considering the energy consumption of off-chip mem-
ory accesses. Since emerging Recognition, Mining, and Syn-
thesis applications typically involve huge amounts of data ac-
cesses, in this work, we design an approximate memory access
framework for dynamic precision scaling, namely ApproxMA.
We apply this framework to mixture model-based clustering
as a case study. As the precision requirements can vary sig-
nificantly during runtime, we also propose a lightweight run-
time bit-width calculator by jointly considering runtime data
precision constraints and application’s error resilience capa-
bilities. Experimental results with two widely-used mixture
model-based clustering algorithms (k-means and clustering
with Gaussian mixtures) demonstrate the efficacy of the pro-
posed methodology.
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