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Abstract—Computing with memory, which stores function
responses of some input patterns into lookup tables offline and
retrieves their values when encountering similar patterns (instead
of performing online calculation), is a promising energy-efficient
computing technique. No doubt to say, with a given lookup
table size, the efficiency of this technique depends on which
function responses are stored and how they are organized. In
this paper, we propose a novel adaptive approximate lookup
table based accelerator, wherein we store function responses in a
hierarchical manner with increasing fine-grained granularity and
accuracy. In addition, the proposed accelerator provides light-
weight compensation on output results at different precision levels
according to input patterns and output quality requirements.
Moreover, our accelerator conducts adaptive lookup table search
by exploiting input locality. Experimental results on various
computation kernels show significant energy savings of the
proposed accelerator over prior solutions.

Index Terms—approximate computing, lookup table, energy
efficiency

I. INTRODUCTION

For complex functions that appear frequently in a program,

computing with memory [1], which stores function responses

of some input patterns in a lookup table (LUT) offline and

retrieves their values without conducting online computations

with processors, is able to achieve considerable energy sav-

ings and performance improvements. For example, involving

hundreds of instructions, the commonly used function sinx
has an energy consumption of about 100nJ, while energy for

read operation of a 512kB SRAM at 32nm technology is only

about 100pJ [2].

Another promising energy-efficient computing technique is

approximate computing [3, 4], which leverages the intrinsic

error resilience characteristics of emerging applications and

trades off between computation quality and computational

effort. This error resilience can be attributed to the following

factors. Firstly, many big data applications often process large

amounts of noisy and redundant data drawn from real world;

Secondly, there is usually no specific “golden” output value but

rather many “acceptable” outputs, and users are accustomed

to any result of acceptable quality; Finally, algorithms and

computation processes employed to find solution in these

applications can be stochastic in nature or resort to error-

resilient methods.

Recently, many researches on associative computing using

content addressable memory (CAM) [5, 6] explore the combi-

nation of computing with memory and approximate computing

techniques in order to achieve even larger energy efficiency

gains. The proposed CAM enables low voltage operation

and has ultra-low energy consumption. Instead of storing all

possible patterns, CAM prestores only a subset of patterns

and realizes approximation by inexact matching, i.e. finding a

similar pattern within some distance to output an approximate

result. With significantly reduced table size, the lookup table

becomes easily implemented. Also, searching a table with

much fewer entries can obtain remarkable energy savings and

performance gains.
Even for error-resilient applications, there would be certain

quality requirements on the final outputs, and the error con-

straints during computation can vary significantly at runtime

[7]. Existing methods usually prestore patterns with the highest

frequency and search for the nearest pattern in the LUT based

on hamming distance when a new input pattern comes. They

do not estimate or control the output errors, or adjust precision

for varying online quality requirements. Therefore, the output

quality is not guaranteed, and the application error resilience

capability is not used to its full potential.
Motivated by the above, in this paper, we propose an adap-

tive lookup table based accelerator for approximate computing,

named ApproxLUT and make the following contributions.

1) ApproxLUT is an effective approximate accelerator

for commonly-used computation-intensive functions,

wherein the lookup table is constructed offline con-

sidering both the features of target function and the

application error resilience capability. ApproxLUT con-

trols computation quality with worst case error or error

expectation. When the approximate results stored in the

LUT cannot satisfy the quality requirement, the function

will be calculated in fully accurate mode. More impor-

tantly, the lookup table itself is hierarchical, consisting

of subtables with different granularity and stores not

only output but also parameters for compensation. With

such design, ApproxLUT can provide light-weight com-

pensation and output results of multi-precision levels

according to online inputs and requirements.

2) We propose an online locality-based adjustment strategy

for table search. In many applications, if a particular

input operand for a certain function appears at a par-

ticular time, then it is likely that the same input or
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its nearby inputs will appear in the near future. Based

on such “input locality”, ApproxLUT adjusts priority of

subtables online to gain efficiency when searching the

whole table.

The remainder of this paper is organized as follows. Section

2 presents related works on associative computing. Section 3

details our proposed adaptive lookup table based accelerator –

ApproxLUT. In Section 4, experimental results show energy

saving and quality loss of ApproxLUT when applying to

various functions. Finally, Section 5 concludes this paper.

II. RELATED WORKS

Associative computing based on lookup table utilizes out-

puts similarity between neighboring inputs to enable compu-

tation reuse. Associative memories can be implemented on

either software or hardware. When the address of a storage

location for data can be obtained by some mapping algorithms

applied to the data contents, hash-coding can implement a

fast search by pure programming with conventional computer

memories [8]. [9] proposes a family of lookup schemes which

compactly encodes large tables and fits the associative memory

into overall memory architecture with low overhead.

Associative memory on hardware uses content-addressable

memory (CAM) to store input operands and resistive RAM

(ReRAM) to store corresponding output results. [5, 6, 10]

store only a subset of patterns and match an input pattern

with prestored ones by applying an approximate search. Rather

than exactly searching for the input pattern in the lookup table,

these works find a similar one within some distance for ap-

proximate computing. [5] stores patterns of highest frequency,

and uses voltage overscaling (VOS) to deliberately relax the

searching criteria to approximately find stored patterns within

a 1 or 2 bit Hamming distance of the search pattern. As

significant bits may have much greater weight, it can result in

large error when “important” bits of input are different from

the stored operand. [10] considers the weight of each bit and

finds the pattern that has the nearest distance by designing a

multi-stage CAM. However, as how far is the closest distance

cannot be predicted, the output error cannot be estimated and

bounded.

III. METHODOLOGY

For a given application, at offline stage, we firstly select

appropriate functions to accelerate considering both error re-

silience and computation intensity, and then apply ApproxLUT

to the target functions.

The proposed framework of ApproxLUT is presented in

Figure 1, which consists of three components, i.e., control

unit, lookup table and arithmetic logic unit. The lookup table

has two levels, and the second-level table is composed of a

set of subtables with finer granularity compared to the first-

level table. The number of levels of LUT determines how

many precision levels ApproxLUT has. In this paper, we only

discuss 2-level LUT, but it could be extended to more levels

based on the amount of online quality variations and lookup

overhead. For online calculation, given input operand and error

bound, the accelerator computes approximately with the table

and outputs an acceptable result. As mentioned earlier, the

lookup table can be stored in SRAM, non-volatile memory,

associate memristive memory, or other kinds of memory. And

control unit can be implemented at either software or hardware

level.

In this section, we first briefly introduce how to select

proper target functions. Next, we discuss how to construct the

lookup table at offline stage and perform online approximate

computation.

Control Unit
Input, Error Bound Output 

ALUTwo-Level 
Lookup Table

Fig. 1. Framework of Lookup Table Based Accelerator for Approximate
Computing

A. Function Selection

Appropriate target function should be chosen for approxi-

mation before building the accelerator. Most applications and

algorithms can be further decomposed into computational ker-

nels with different error resilience capabilities. Some kernels

are error-resilient, as small errors have little impact on the final

output quality. While other kernels are less error-resilient or

even error-sensitive, which are not suitable for approximation.

The chosen function must be in error-resilient kernels in the

target application. To obtain as much saving as possible, the

function should be computation-intensive and frequently used.

Given any input, lookup table based accelerator searches

for the pattern having the shortest distance from the input.

To control the error and make valid approximation, target

function must have similar outputs with similar inputs. Many

functions have this property, for example, continuous function

that satisfies the following Weierstrass and Jordan definitions.

Given a function f(x) and any element c of the domain of

definition I , for every ε > 0, there exists a δ > 0 such that

for all x ∈ I ,

|x− c| < δ ⇒ |f(x)− f(c)| < ε.

Therefore, assuming that xi is the nearest stored pattern from

x, output error |f(x)− f(xi)| is upper bounded.

A large set of functions and applications satisfy the above

properties and can be applied to ApproxLUT, some of which

are listed in Table I.

B. Offline Lookup Table Construction

In this section, we will explain how to construct lookup

table of the accelerator offline for certain function. There are

mainly three steps:

• Decide the formula and coefficients for light-weight com-

pensation;
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TABLE I
COMPUTATION-INTENSIVE FUNCTIONS AND CORRESPONDING APPLICATIONS

Function Application
Trigonometric Functions: cosx, tanx, arcsinx Geometry

Exponential Function: ex

Logarithmic Function: lnx
Financial

Error Function: erf(x) = 2√
π

∫ x
0 e−t2dt Statistics

Riciandenoise 3D: f(r) =
r(2.38944+r(0.950037+r))

4.65314+r(2.57541+r(1.48937+r))
Medical

• Select data points to store in the table and calculate the

error of LUT;

• Construct the lookup table level by level.

1) Formula and Coefficients for Compensation: Given

function f(x), assuming that xi is the nearest stored pattern in

the lookup table from input x, error of output is f(x)−f(xi).
To make light-weight compensation, we calculate error ap-

proximately with

f(x)− f(xi) ≈ ef(x, xi, ci1, ci2, ...),

where ef is the approximate expression for error and

ci1, ci2, ... are corresponding coefficients at xi. Formula and

coefficients of the function ef can depend on the original

function f(x), domain of interest I , the nearest pattern xi and

so on. For example, when we target function log x on [1, 2],
ef can be defined as 2(x− xi)/(x+ xi) [1].

One straightforward realization of ef for continuous deriv-

able function is using Taylor expansion. The Taylor series of

a function f(x) that is infinitely differentiable at value x0 is

the power series:

f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2 + ...

The tangent line approximation of f(x) for x near x0 is called

the first degree Taylor Polynomial of f(x) and is

f(x) ≈ f(x0) + f ′(x0)(x− x0).

And the second degree Taylor Polynomial is

f(x) ≈ f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2
(x− x0)

2.

Therefore, when using first order approximation,

ef(x, xi, ci1) = ci1(x− xi), ci1 = f ′(xi).

For second order approximation,

ef(x, xi, ci1, ci2) = ci1(x− xi) + ci2(x− xi)
2,

ci1 = f ′(xi), ci2 =
1

2
f ′′(xi).

2) Data Point Selection: Memory space of the lookup table

is limited and when there is more stored patterns, both search

and read operations have more energy consumption and longer

execution time. For example, in 45nm technology, 32-row

associate memristive memory (AMM) consumes about twice

energy compared to that of 8-row AMM for one search and

read operation [5].

Tradeoff between Error and Size of Table. Undoubtedly

larger lookup table with more information has higher precision

and there is tradeoff between error and size of table. According

to which one is the main restrictive factor, either the number

of data points to be selected is specified, or a maximum error

is defined implying least number of data points required for

approximation. [11] proposed methods for selecting a specified

number of data points and selecting data points based on an

error tolerance, which we apply to ApproxLUT.

Error Criteria for Lookup Table. Suppose f(x) is the

accurate output with input x, fo(x) is the output value of

ApproxLUT, i.e.

fo(x) = f(xi) + ef(x, xi, ci),

where xi is the nearest stored pattern, and ef and ci are

formula and coefficients for compensation. There are many

kinds of error criteria we can use for the lookup table based

on requirements of the application, and two of them are as

follows.

• Worst Case Error. Worst case error is the largest error

among all points, i.e.

error = max
x∈I

|fo(x)− f(x)|.
• Error Expectation. Error expectation is the expectation

of error for all points, i.e.

error =
∑

x∈I

|fo(x)− f(x)|p(x),

where p(x) is the probability distribution of input data x.

In fact, error expectation is the mean error when we assume

equal probability of all possible operands. With prestored data

points, we calculate errors for all possible data points and

then define precision with the error criteria for online error

bounding.
3) Level by Level Table Construction: After data point

selection, as shown in Figure 2, for every chosen pattern

xi, the table stores input operand xi, output yi = f(xi),
and compensation coefficients ci. The first-level table consists

of N patterns within the interval between x1 and xN in

ascending order, i.e. x1 < x2 < ... < xN . The second-

level table is constructed based on first-level table. When

there is N patterns in first level, the second level has N − 1
subtables. Construction process is the same and interval of

these subtables are respectively x1 to x2, x2 to x3, ..., xN−1

to xN . Therefore the second level is composed of a set of

subtables with finer granularity compared to first level.

Suppose fo(x) is the output value with input x. There are

four approximation modes using this two-level table.

Mode 1 (2nd w/ c): Second Level with Compensation.

fo(x) = f(xij) + ef(x, xij , cij),

where xij is the jth pattern in the ith second-level subtable

and is the nearest pattern from x in the whole lookup table,
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Lookup Table

1st Level Table

...

...

2nd Level Table

...

Input Output Compensation

x1

x2

...

y1

y2

c1

c2

xN-1 yN-1 cN-1

xN yN cN

x1

x2

xN-1

xN

Fig. 2. Two-Level Lookup Table of the Accelerator

and cij is the compensation coefficient of xij .

Mode 2 (1st w/ c): First Level with Compensation.

fo(x) = f(xi) + ef(x, xi, ci),

where xi is the ith and the nearest pattern from x in the first-

level table, and ci is the compensation coefficient of xi.

Mode 3 (2nd w/o c): Second Level without Compensation.

fo(x) = f(xij).

Mode 4 (1st w/o c): First Level without Compensation.

fo(x) = f(xi).
After construction of the whole table, precisions of Approx-

LUT can be calculated for all approximation modes.

C. Online Approximate Computing with ApproxLUT

1) Approximation Mode Selection: It is unnecessary to

perform fully accurate computation for error-resilient algo-

rithm. On one hand, lower precision does not always lead

to functional error. On the other hand, as many applications

are inherently error-resilient, certain amount of functional

errors are acceptable, which can sometimes be recovered and

have no influence on the final output quality. Such error

resilience capability is always varying online and decides

precision requirement for current computation. Given online

error bound, ApproxLUT compares it with errors characterized

offline and selects appropriate approximation mode.

2) Computation with Lookup Table: With input x and error

bound, the accelerator outputs acceptable result y following

the steps shown in Figure 3. Errors of four approximation

modes are denoted by e1, e2, e3 and e4 and we assume that

e1 < e2 < e3 < e4, which means e1 corresponds to the most

accurate mode. If highest accuracy level cannot satisfy the

bound, i.e. Error Bound < e1, the accelerator calculates the

function directly without the table. If Error Bound ≥ e1, con-

trol unit chooses appropriate approximation mode according to

error bound. Then control unit searches only the first level or

both levels of the lookup table and obtains the nearest pattern

x′, corresponding output y′, compensation parameters denoted

by CP and a hit flag. The hit flag is used to show whether the

exact input pattern is stored in the table, i.e whether x = x′ is

true. If this flag is true or if y′ without compensation satisfies

the precision requirement, y′ is output directly. Otherwise the

accelerator adds compensation with CPs to y′ and outputs the

final result y = y′ + ef(x, x′,CPs).

Input, Error Bound

Error Bound 
 e1

Approximation
Mode

Selection

Calculation 
without LUT

Output

Lookup Table 
Search

Hit flag = 1 or Mode 
w/o compensation? Compensation

Output

LUT Control Unit ALU
x

x’, y’,
CPs,

Hit Flag

x

y

x, x’, y’, 
CPs,

y

No

No

Yes

Yes

Fig. 3. Calculation Flow of the LUT Based Accelerator

3) Table Priority Adjustment: In many applications, input

operands of a function may show the phenomena that if a

particular input appears at a particular time, then it is likely

that the same input or its nearby inputs will appear in the near

future, and we call this phenomena “input locality”.

For example, in the discrete cosine transform used for image

impression, the n real numbers x0, ..., xn−1 are transformed

into the n real numbers X0, ..., Xn−1. DCT-II is the most

commonly used form using the formula:

Xk =
n−1∑

i=0

xi cos[
π

n
(i+

1

2
k)], where k = 0, ..., n− 1.

Function cosx is frequently used and two successive calcula-

tions cos[ πN (i+ 1
2k)] and cos[ πN (i+1+ 1

2k)] have very similar

input operands as n and k are fixed.

In this case, our accelerator for cos function has a high

probability to find the nearest patterns of these two successive

inputs in the same subtable. To utilize input locality, when

the accelerator keeps reading from the same subtable for

several successive computations, this subtable is put in a higher

priority for later table search.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In the experiment, to prove the efficacy of compensation and

multi-level table, we first compare energy consumption and

precision between multi-level table with compensation param-

eters and traditional lookup table. We then apply ApproxLUT

to various functions and evaluate its effectiveness.

For lookup table construction, we choose first degree Taylor

polynomial for light weight compensation, i.e. ef(x, xi, ci) =
ci(x − xi), where the compensation parameter ci = f ′(xi).
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Based on such compensation mechanism, methodology pro-

posed in [11] is employed for data point selection. We then

calculate errors (error expectation) and energy savings of

four approximation modes of ApproxLUT compared to fully

accurate computation. Errors of four approximation modes

are denoted by e1, e2, e3 and e4 and we assume that e1 <
e2 < e3 < e4, which means precision of mode 1 to mode 4

is decreasing and mode 1 corresponds to the most accurate

approximation mode.

We use associate memristive memory with 32-bit word size

for both input and output operands to store the lookup table.

Control unit of the accelerator is implemented at software

level. As the overhead of approximation mode selection is

ignorable compared with table operation (search and read) and

calculation for compensation, we do not take it into account

for energy consumption of ApproxLUT.

To estimate power of associative memristive memory, we

use TCAM power model proposed in [12] and obtain this

model from the website [13]. For energy consumption per

operation of basic operations (+,× for compensation) and tar-

get functions, we simulate benchmark applications on x86 64

CPU with gem5 simulator. The simulated statistics (e.g., how

many instructions executed) and micro-architecture configura-

tions are transformed to the power simulator McPAT, where

the energy consumption of the system is estimated.

B. Comparison with Traditional LUT

1) Single-Level Table with Compensation vs. Single-Level
Table without Compensation: For functions listed in Table I,

we calculate the error of a 32-row table with compensation

(32 patterns and their compensation parameters are stored).

Then we find the number of rows for table without compen-

sation which has similar precision. Number of rows in LUT

(i.e. number of patterns required) and corresponding energy

consumption are compared between these two LUTs having

the same quality loss.

As shown in Fig. 4, table without compensation needs much

more patterns, e.g., for cos function, traditional table needs

3200 rows to obtain the precision of 0.0004 while table with

compensation only needs 32 rows. Energy consumption shown

in the figure is the relative consumption compared to exact

function computation. When we use traditional table for cos,
energy for table search and read is 2.5 times, while table

with compensation (including calculation for compensation)

achieves energy saving of about 50%. For the error function

erf, compensation with gradient is not that effective, and the

size of traditional table is only 420, therefore the energy

consumption of traditional table is a little bit less than that

of table with compensation.

2) Single-Level Table vs. Multi-Level Table: To compare

single-level table and multi-level table (both are without com-

pensation), we apply these two LUTs having the same size

(256 rows in total) for function cosx to discrete cosine trans-

form (DCT) application. To show the quality degradation, we

then use accurate inverse discrete cosine transform (iDCT) and

calculate peak signal-to-noise ratio (PSNR) of approximate
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Fig. 4. Comparison of Number of Rows and Energy Consumption between
Lookup Tables with and without Compensation

and accurate results. As shown in Fig. 5, multi-level table

has multi-level precision (29dB and 18dB). The most accurate

mode can achieve similar quality with single-level table (29dB

vs. 31dB), while obtaining much more energy saving (95.7%
vs. 73.9%, denoted by Es in the figure) for calculating cos.

Es = 73.9%
PSNR = 31dB

Es = 95.7%
PSNR = 29dB

Es = 97.9%
PSNR = 18dB

Exact Single Level

2nd Level 1st Level

Fig. 5. Comparison of Energy Saving and Quality Loss between Single-Level
and Multiple-Level Lookup Tables for DCT

C. ApproxLUT for Various Functions

We apply ApproxLUT to functions listed in Table I. The

lookup table has 256 rows in total, wherein the first level has

16 rows and the second level has 240 rows (15 subtables, each

of which has 16 rows). We estimate energy saving (denoted by

Es) compared to original computation of the function and error
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TABLE II
ENERGY SAVING AND ERROR EXPECTATION OF APPROXLUT FOR VARIOUS FUNCTIONS

Approximation
Mode

cosx
[0, π

2
], [0, 1]

tanx
[0, 2π

5
], [0, 3.08]

ex

[0, 3], [0, 20.09]
lnx

[1, 10], [0, 1.61]
erf(x)

[0, 3], [0, 1]
Denoise

[0, 3], [0, 0.81]

1 (2nd, w/ c)
error 1.03e-05 1.65e-05 0.0008 7.13e-06 4.46e-05 2.51e-06
Es 49.85% 59.55% -2.76% -9.98% 99.56% 26.18%

2 (1st, w/ c)
error 0.0015 0.0033 0.1534 0.0016 0.0027 0.0006
Es 55.41% 64.03% 8.64% 2.21% 99.61% 34.37%

3 (2nd, w/o c)
error 0.0043 0.0045 0.0556 0.0022 0.0016 0.0010
Es 88.87% 91.03% 77.20% 75.60% 99.90% 83.62%

4 (1st, w/o c)
error 0.0414 0.0559 0.7912 0.0333 0.0177 0.0143
Es 94.44% 95.51% 88.60% 87.80% 99.95% 91.81%

expectation (denoted by Error) for four approximation modes,

and the results are shown in Table II. The first row of the table

lists all functions for evaluation with their definition domains

and value domains (e.g. for cosx, the definition domain is

[0, π
2 ] and the corresponding value domain is [0, 1]). Precision

is decreasing from mode 1 to mode 4. Mode 1 searches

second-level table and adds compensation (denoted by 2nd, w/

c in the table), mode 2 is first-level table with compensation,

mode 3 is second-level table without compensation and mode

4 is first-level table without compensation.

Energy savings of mode 1 and 2 (e.g. 59.6% and 64.0%
for tanx), and mode 3 and 4 (91.0% and 95.5% for tanx)

are close, while mode 3 and 4 have much more energy

savings than mode 1 and 2. This is because mode 1 and

2 conduct + and × operations for compensation, which are

more energy-consuming than table search. For function ex and

lnx, energy savings are negative for mode 1, which means

mode 1 consumes more energy than fully accurate mode.

Energy consumptions of these two functions are inherently

small and are comparable to that of + and ×. Therefore

approximation modes with compensation are not suitable for

them. For erf(x) = 2√
π

∫ x

0
e−t2dt with a much more complex

computation, ApproxLUT has the best energy savings above

99.5% while error of mode 1 is only 4e-05, which means

energy consumption for original computation is about 200

times of that for ApproxLUT.

V. CONCLUSION

This paper proposes an adaptive lookup table based accel-

erator named ApproxLUT, which can be generally applied

to computation-intensive functions in various platforms. Ap-

proxLUT stores selected function responses in a hierarchical

lookup table with light-weight compensation capability, which

is able to output results at different precision levels accord-

ing to online application quality requirements. At runtime,

ApproxLUT adjusts table search strategy by exploring input

locality to achieve high energy-efficiency. Experimental results

show that the energy savings of the proposed solution outper-

forms state-of-the-art techniques considerably.
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