
ApproxEigen: An Approximate Computing Technique for
Large-Scale Eigen-Decomposition

Qian Zhang†‡, Ye Tian†, Ting Wang†, Feng Yuan†‡ and Qiang Xu†‡

†CUhk REliable Computing Laboratory (CURE)
Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

‡Shenzhen Research Institute, The Chinese University of Hong Kong
Email: {qzhang,tianye, twang, fyuan,qxu}@cse.cuhk.edu.hk

ABSTRACT
Recognition, Mining, and Synthesis (RMS) applications are ex-
pected to make up much of the computing workloads of the
future. Many of these applications (e.g., recommender sys-
tems and search engine) are formulated as finding eigenval-
ues/vectors of large-scale matrices. These applications are in-
herently error-tolerant, and it is often unnecessary, sometimes
even impossible, to calculate all the eigenpairs. Motivated by
the above, in this work, we propose a novel approximate com-
puting technique for large-scale eigen-decomposition, namely
ApproxEigen, wherein we focus on the practically-used Krylov
subspace methods to find finite number of eigenpairs. With Ap-
proxEigen, we provide a set of computation kernels with dif-
ferent levels of approximation for data pre-processing and so-
lution finding, and conduct accuracy tuning under given qual-
ity constraints. Experimental results demonstrate that Approx-
Eigen is able to achieve significant energy-efficiency improve-
ment while keeping high accuracy.

1. INTRODUCTION
The emerging Recognition, Mining and Synthesis (RMS) ap-

plications are expected to account for a significant portion of
computational resources in modern data center. Many RMS
applications (e.g., data dimension reduction [1], recommender
system [2], and search engine[3]) are formulated as large-scale
eigen-decomposition problem, i.e., finding specific eigenvalues
and eigenvectors on a sparse and high dimensional data set.
As such computation demand grows rapidly with the increase
of the data size, how to perform energy-efficient large-scale
eigen-decomposition is of great interest to the industry.

Recently, approximate computing, being able to tradeoff
computation quality (e.g., accuracy) and computational effort
(e.g., energy) by exploiting the error-resilience properties of ap-
plications, has attracted lots of attention from both academia
and industry recently [4, 5]. It is natural to apply approximate
computing to RMS applications because these applications of-
ten process noisy data sets and/or involve a human interface
with limited perceptual capability, and there is usually no spe-
cific “golden” output value that must be computed. In partic-
ular, for the above-mentioned eigen-decomposition problem,
approximating the computations for those eigenvectors corre-
sponding to smaller eigenvalues has little impact on the final
solution quality. For example, in dimension reduction (e.g.,
Principle Component Analysis), data along the eigenvectors
with small eigenvalues can be pruned without much impact on
the total information.

Motivated by the above, in this work, we propose Approx-
Eigen, a novel approximate computing technique for large-
scale eigen-decomposition, wherein we focus on Krylov sub-
space methods to find finite number of eigenvalues and eigen-

vectors for positive semi-definite symmetric matrices. The rea-
sons are as follows: (i). the computational complexity of intu-
itive methods, such as QR decomposition, to find eigenvalues
and eigenvectors is approximately O(n3), and the similarity
transformations in these methods cause fill-ins which would
destroy the sparsity and result in unaffordable memory over-
head. Consequently, Krylov subspace methods are the main
solution used in practice [6]; (ii). Most of the RMS appli-
cations are associated with positive semi-definite symmetric
matrices [7].
ApproxEigen is comprised of two stages: offline resilience

identification and online solution finding. To be specific, at
offline stage, we divide the original algorithm into a set of com-
putation kernels, which are then assigned with different quality
constraints by conducting error-resilience identification. Next,
at online stage, Krylov subspace is constructed followed by the
eigenvalue/vector calculations. Based on the fact that eigen-
vectors corresponding to larger eigenvalues contain more in-
formation than those with smaller values, we perform online
approximation tuning and employ lightweight checkers to sat-
isfy given computation qualitie constraints. The main contri-
butions of this work include:

• We propose to conduct runtime accuracy tuning for the
large-scale eigen-decomposition problem widely used in
error-resilient RMS applications, which is able to achieve
significant energy savings under given computation qual-
ity constraints;

• We propose a novel lightweight quality checker to moni-
tor the intermediate computation quality, which can be
generally used to all matrix-vector multiplication domi-
nated applications.

The remainder of this paper is organized as follows. Section
2 provides the relevant background and motivates this paper.
Section 3 outlines our overall solution. Technical details and
experimental results are then presented in Section 4 and Sec-
tion 5, respectively. Finally, Section 6 concludes this paper.

2. PRELIMINARIES AND MOTIVATION

2.1 Preliminaries

2.1.1 Eigen-Decomposition
Suppose matrix A is of n × n dimension and the nonzero

vector v lives in Rn. Then if the matrix multiplies v yields a
constant multiple of v, that is

Av = λv

the scalar λ is called eigenvalue of A and v is called eigenvector
corresponding to eigenvalue λ.

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 824

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:28:05 UTC from IEEE Xplore. Restrictions apply.

Generally speaking, finding all eigenvalues and eigenvectors
is to solve a polynomial with degree-n, which is quite compu-
tatinally expensive, and Abel-Ruffini Theorem shows there is
no general, explicit and exact algebraic formula for the roots
of a polynomial with degree 5 or above. Therefore, eigenval-
ues/vectors for large matrices can only be obtained by approx-
imate numerical methods (i.e., iterative methods).

2.1.2 Large-Scale Eigen-Problems
In big data era, RMS applications (e.g. Google PageRank)

easily face matrices with tens of thousands of dimensions, and
the computation of its complete spectrum is out of the question
with the O(n3) complexity. Fortunately, it often suffices to
compute just a few eigenpairs.

Power method can be used to find principal eigenvector for
large sparse matrices. In this method, we start from a ran-
domized vector v, and then iteratively compute

vj+1 =
Avj
‖Avj‖

, and v will finally converge to the eigenvector with the largest
eigenvalue. Although power method is very effective, it does
not utilize the information brought by middle-step computa-
tions, which can be used to find other eigenvalues and eigen-
vectors.

In practice, Krylov subspace methods are often used to find
k eigenvalues and eigenvectors simultaneously. This method
first build up Krylov subspace:

Km(A, x) = span{x,Ax,A2x, ..., Am−1x}, k < m� n

, where

{x,Ax,A2x, ..., Am−1x}

is called the Krylov sequence, and m is the largest allowable
subspace dimension given by designers.

Generally speaking, Krylov sequence forms a basis for Krylov
subspace but it is ill-conditioned. Individually normalizing
each vector of the sequence will make all these vectors con-
verge to the first eigenvector (i.e., reduced to power method).
Therefore, the sequence needs better normalization.

To tackle this problem, Lanczos algorithm effectively and ef-
ficiently builds an orthonormal Krylov basis for Hermitian ma-
trices (Arnoldi algorithm for non-Hermitian matrices). How-
ever, limited by the ill-initialization problem and/or insuffi-
cient machine precision, in Lanczos algorithm, once the cur-
rent computed j vectors lose orthogonality, the algorithm will
restart from a revised vector v′. Let Qm = [q1, q2, ...qm] be or-
thonormal basis (by Lanczos algorithm) for Krylov subspace
Km, where m is usually larger than the target number of eigen-
pairs k we want to find. Then finding m eigenpairs can be
processed by the following steps:

• Project A onto Km to get a tridiagonal matrix: H =
QTAQ;

• Find eigenpairs of H: (λ, y);

• λ is called Ritz value and provides approximation for
eigenvalue of A, y is the Ritz vector and v = Qy provides
approximation for eigenvectors of A

H =

α1 β2 0
β2 α2 β3

β3 α3

. . .

. . .
. . . βm−1

βm−1 αm−1 βm
0 βm αm

.

As the projection H is a m ×m tridiagonal matrix, meth-
ods like Givens rotation can eliminate the nonzero entries be-
low diagonal. The computation complexity of finding all H’s
eigenpairs can be as small as O(m2).

2.2 Related Work and Motivation
In the literature, there are a few low-power solutions for

specific eigen-decomposition algorithm. Liu et al. [8] proposed
architecture designs for three kinds of eigen-decomposition al-
gorithms on small matrices (from 3×3 up to 8×8). Wang and
Zambreno [9] implemented an efficient FPGA-based double-
precision floating-point architecture for eigen-decomposition,
which can handle up to 2000× 2000 matrices.

On the other hand, approximate computing (e.g., [10, 11])
has been advocated to trade off computation quality for energy
savings and/or performance improvement. While a majority
of existing approximate computing techniques were applied for
image processing applications (e.g., [12, 13]), there are some
recent research efforts to expand it to other areas. In particu-
lar, for matrix methods, Schaffner et al. [14] proposed an ap-
proximate computing technique for direct Cholesky-decompostion-
based linear system solver, which is applicable to linear sys-
tems with some specific strutures.

Given that eigenvectors corresponding to smaller eigenval-
ues contain less information than those with larger values, in-
tuitively, approximating these computations would have lit-
tle impact on the final output quality. For example, for a
face recognition application, Fig. 1 shows that the last several
eigenvectors are nearly all noises. To the best of our knowl-
edge, however, approximate computing for eigen-decomposition
have not been explored in the literature, which motivates the
proposed ApproxEigen technique in this work.

Figure 1: First Five and Last Five Eigenvectors for
Face Recognition.

3. OVERVIEW OF APPROXEIGEN
Given a positive semidefinite symmetric matrix, Approx-

Eigen, running on quality-configurable platform with several
different approximation modes, outputs a finite number of
eigenvalues and eigenvectors. As shown in Fig. 2, ApproxEigen
is comprised of two stages: offline resilience identification stage
and online solution finding stage.

ApproxEigen can be conveniently integrated into any quality-
configurable platforms (hardware or software). In this paper,
we apply ApproxEigen onto the imprecise GPGPU framework
presented in [15], based on CAD synthesis tools, GPGPU-
Sim [16], and GPUWattch [17] simulation models to quickly
evaluate the impact of ApproxEigen on the output quality
and energy consumption of the approximate GPU system. It
should be noted that our methodology can be easily ported to
other platforms as well (see Appendix).

3.1 Offline Resilience Identification
As shown in Fig. 3, we first partition the Lanczos algorithm

into several computation kernels, namely subspace construc-
tion (which includes Krylov sequence calculation and subspace

825

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:28:05 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Offline Resilience Identification.

Figure 2: The Proposed ApproxEigen Technique.

basis calculation) and eigenpair calculation. Here one compu-
tation kernel is a well-formatted segment (e.g., one procedure
performing the same operations iteratively) of the whole al-
gorithm. Among these kernels, subspace basis calculation is
error-sensitive as the loss of orthogonality with approximation
is not preferred while the other two are error-resilient. Such
identification is completed by using the error-injection based
simulation platform proposed in [5].

Next, we conduct simulation on representative workloads for
each of the resilient kernels with various approximations, then
we could get the impact of these approximation modes, and
obtain the mean error and energy benefits for each of them.
These values would be sorted and used for online reconfigura-
tion.

3.2 Online Solution Finding
At online stage, the algorithm iteratively reaches the final

solution. We briefly describe the tasks in each computation
kernel. Note that, the reconfiguration control policy of Ap-
proxEigen include incremental accuracy tuning and selective
restart for subspace construction, adpative approximation for
eigenpair calculation, and rollback mechanism with the help
of lightweight checkers. They are detailed in Section 4.

Subspace Construction: Given the dimension of Krylov
subspace and a random vector, the Krylov sequence is first
generated. This procedure itself involves restart (see Section
2.1.2) when the orthogonality of these vectors is lost, which can
be reused when approximate computing is applied (as detailed
in Section 4.1.1). Then, the algorithm will project the origi-
nal matrix onto this constructed subspace to get a tridiagonal
matrix with reduced dimension.

Eigenpair Calculation: With the projected tridiagonal
matrix (see Section 2.1.2), we first reduce it to upper diago-
nal matrix in as few as O(m) operations. Then, eigenvectors
are computed using approximate arithmetic units with differ-
ent accuracy levels. The accuracy tuning policy for this kernel
is based on the following facts: (i). eigenvectors correspond-
ing to larger eigenvalues keep more information and (ii). the
first vector in Krylov sequence will converge to the principal
eigenvector (i.e., power method), as discussed in Sec. 4.1.2.

4. RUNTIME ACCURACY TUNING UNDER
QUALITY CONSTRAINTS

In this section, we detail how ApproxEigen performs runtime
accuracy tuning and guarantees the computation quality for
the reslient kernels used in it.

4.1 Accuracy Tuning for Computation Kernels

4.1.1 Subspace Construction
Given a random vector x, lanczos algorithm first computes

Krylov sequence and then orthogonalizes these vectors to gen-
erate an orthonormal basis spanning them-dimensional Krylov
subspace corresponding to the input matrix A. It can be
proved that with ideal arithmetic operations, eigenvalues/vectors
solved by Krylov subspace with any initial vector are good ap-
proximations to those of the original matrix A [6].

However, as shown in Section 2.1.2, limited precision is likely
to affect the numerical stability (e.g., orthogonality) of this
algorithm unless the initial vector is well-conditioned. To find
such a vector, Lanczos restarts to change the random vector x
to x′ based on the runtime information, and then repeat the
whole procedure as shown in Fig. 4(a).

Suppose we want to find k eigenpairs. The algorithm re-
quires m instead of exactly k (m > k) basis vectors for the
constructed subspace (because larger dimension Krylov sub-
space has higher probability of holding good eigenvalue/vector
approximations), the standard algorithm will restart without
considering the position of the triggered restart. However,
restart is only necessary when the loss of orthogonality hap-
pens within k vectors. Therefore, we take advantage of software-
level selective restarts for energy efficiency, in which the restarts
will be performed if and only if both of the following two con-
ditions are satisfied:

• Dimension Condition: the number of vectors in the cur-
rent basis is less than k;

• Precision Condition: the current computation mode is
fully accurate.

Besides, each time the restart is triggered, the computa-
tion result becomes more accurate, therefore it is natural to

826

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:28:05 UTC from IEEE Xplore. Restrictions apply.

(a) Actual Procedure.

(b) Incremental Reconfiguration and Selective
Restart.

Figure 4: Incremental Accuracy Tuning and Selective
Restart.

gradually increase the accuracy levels of the arithmetic units.
We adopt incremental reconfiguration for the hardware MAC
units. To be specific, for a given randomized vector x, we start
the Krylov sequence computing with the least accurate mode
(obtained from offline characterzation, see Section 3.1). Once
the restart operation is triggered, we reconfigure the compu-
tation mode to the next adjacent more accurate one until we
get to the fully accurate mode. And the trigger mechanism is
exactly the restart checking in original algorithm.

By utilizing selective restart and incremental reconfiguration
in our subspace construction procedure, as shown in Fig. 4(b),
we can get the constructed l-dimensional subspace K′ (k < l ≤
m). Then, we compute the projection of the original matrix
on approximate K′ instead of on accurate K. By doing so, we
can tradeoff the accuracy of eigenvalues/vectors to get better
energy efficiency.

4.1.2 Eigenpair Calculation
With the projected approximate l−dimensional tridiagonal

matrix H ′, we can easily get all the eigenvalues by eliminating
off-diagonal entries (e.g., givens rotation). And the magni-
tude of these eigenvalues can be naturally used to guide the
accuracy tuning for computing eigenvectors, because eigenvec-
tor corresponding to larger eigenvalue keeps more information,
and hence higher accuracy level is needed.

Suppose all the eigenvalues are denoted by λ = [λ1, λ2, ...λl]
T ,

where λ1 ≥ λ2 ≥ ... ≥ λl ≥ 0, we first define the following “rel-
ative importance” function, denoted by fi, of each eigenvector.

Definition 1. For each eigenvector i,

fi =
λi∑
i λi

indicates its relative importance in terms of the ratio between
its corresponding eigenvalue and the sum of all previous ones.

For any given i-th eigenvector, we have

fi+1 − fi =
λi+1∑
i+1 λi+1

− λi∑
i λi
≤ 0 ,

because λi+1 ≤ λi while
∑

i+1 λi+1 ≥
∑

i λi. This feature
makes the relative importance function a monotonically de-

creasing function, which means the information percentage
with each eigenvector is decreasing. Based on this fact, we
can start eigenvector computing with fully accurate mode and
gradually relax the accuracy requirement at runtime to get
energy savings.

Here we define the “slope” of the function f (i.e., its change
rate), as follows

s =
fi−1 − fi
(i− 1)− i = fi−1 − fi ,

to guide the hardware reconfiguration. If s is larger than a
pre-defined threshold (e.g., tan 75◦), the information carried
by the current to-be-solved eigenvector is much less than its
previous one, so lower accuracy level is preferred to achieve
energy savings.

4.2 Rollback with Lightweight Quality
Checking

The reconfiguration policy discussed earlier, while being able
to effectively tradeoff accuracy and energy, cannot guarantee
to meet a specified computation quality constraint. In Approx-
Eigen, we resort to rollback computation to resolve this issue,
with the help of a lightweight checker design used to evaluate
whether the current accuracy level is sufficient or not.

It is very difficult, if not impossible, to design a light-weight
checker at application-level because of the diversity of appli-
cations’ characteristics. Previous works (e.g., [18]) often re-
quires to run both the exact and the approximate kernels to-
gether for quality checking, which incurs significant energy
overhead. Fortunately, lightweight quality checking is feasi-
ble for our problem as it is always possible to sample a subset
of the matrix and use it to validate the solution quality. To
be specific, in this paper, we propose a lightweight checker for
general matrix-vector multiplications because they are the ma-
jor operations used in our subspace construction computation
kernel. As the eigenpair calculation kernel is working on a pro-
jection with relatively small matrices, accurate checking (e.g.,
angle between accurate vector and the approximate one) is af-
fordable. We detail our proposed lightweight checker design as
follows.

Consider a matrix-vector multiplication Ax(= b). After get-
ting the result vector b, we could easily check the quality to
verify whether the residual b′ − b (where b′ is the output from
runtime checker) is within an acceptable range. In real life
applications, however, the matrix A could be very large. If we
use the residual directly as quality checker, the overhead would
be unaffordable. Instead, we could implement a lightweight
checker by verifying:

(cTA)x = cT (Ax)

Intuitively, the checker computes the projections of original
Ax (i.e., b) and checker’s Ax on the same vector c. If there
are any computation errors, the two projections are unlikely
to be equal. As shown in Eqn. 1, if c = 1, this computation is
equivalent to computing the vector of A’s column sums (i.e.,
cTA) and multiplying it by x.

cTAx =
(

1 1 · · · 1
) A11 · · · A1n

...
. . .

...
Ann · · · Ann

xT1
xT2
...
xTn

(1)

=
(∑

AT
1

∑
AT

2 · · ·
∑
AT

n

)

xT1
xT2
...
xTn

=
∑

(xi
∑

AT
i)

827

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:28:05 UTC from IEEE Xplore. Restrictions apply.

Table 1: Applications and Datasets

Application Dataset Source Traing Testing Feature DimensionSamples Samples

Digit Recognition Digit-0 set [19] 6,000 1,000 400(20*20 image)
Digit-2 set [19] 6,000 1,000 400(20*20 image)

Face Recognition FERET [20] 990 700 1,107(41*27 image)
The Database of Faces [21] 400 400 10,304(112*92 image)

Thus, we could perform lightweight checking over a ran-
domly sampled subset of columns, which can be easily imple-
mented by setting c to a binary vector. Considering matrices
may feature some specific characteristics, random sampling
may not be always applicable. Consequently, we propose to
categorize matrices into four categories and design lightweight
checkers for them differently, as shown in the following.

• Random Checking: select A’s columns randomly (i.e.,
make c a random vector) if the variance of A’s column
sums is low;

• Clustering Checking: perform clustering on A’s columns
and then randomly select representative one for each
cluster if the variance of A’s columns sums is high but
these sums have banded structure;

• Identity-conditioning Checking: take c that satisfied (cTA)x =

1
T
x =

∑
x if the variance of A’s column sums is high

and these sums have no obvious structure;

• Null-conditioning Checking: take c that satisfied (cTA)x =
0 if x is a high-variance vector.

By such sampling, the runtime evaluation can be done in
O(kn) (k is the number of columns to be sampled) setup time
and O(n) checking time, which is significantly cheaper than
the original O(n2) time.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
To evaluate the effectiveness of the proposed ApproxEigen

technique, we perform simulation on two representative GPGPU
applications with standard open-source datasets. Similar to [15],
we use the imprecise FPUs and SFUs, whose“precise”counter-
parts are frequently used in computing-intensive applications
and rank among the highest power consumptions in a GPU, to
get the quality-energy tradeoff. Integer ALUs are not consid-
ered given their use in address calculations and their relatively
small contribution to the total GPU power.

Table 1 describes the detailed information of these applica-
tions. The first one is a hand writing digit recognition applica-
tion with two subsets from The MNIST Database [19], while
the other is a face recognition application with two datasets.
The download sources, number of samples, and feature dimen-
sions for each dataset are also listed in Table 1. GPGPU-
Sim simulations are performed on a RedHat Linux server with
CUDA 4.0, gcc 4.4.7, and GPGPU-Sim 3.2.1 (integrated with
GPUWattch).

5.2 Results of ApproxEigen
The recognition applications used in our experiments gener-

ate eigenpairs with training samples, and then use these eigen-
pairs to conduct recognition (i.e., classification) for the testing
samples. In this subsection, we first show the differences on
eigenpairs generated by accurate computing and ApproxEigen,
followed by presenting the differences of classification results
(i.e., the impact of ApproxEigen on applications) using these
two groups of eigenpairs.

(a) Digit-0 Set. (b) Digit-2 Set.

(c) FERET. (d) The Database of Faces.

Figure 5: Comparison on Eigenvectors.

5.2.1 Quality and Energy
Our first experiment compares the eigenpairs calculated by

accurate computing and ApproxEigen, and their correspond-
ing energy consumptions.

Albeit many kinds of constraint settings are applicable, the
kernel-based constraints are used in our experiments to per-
form fine-grained quality control. For each of these kernels,
we use the ”cosine distance“ (between accurate vectors and
approximate ones) as our error metric, and ”fixed-interval cal-
ibration” in [18] to perform quality checking. Detailed con-
straint settings are generated from the off-line characteriza-
tions (on representative workloads) and listed in Table 3. Col-
umn“Application”indicates the constraint on application-level
classification. And column“kernel 1.1”and“kernel 2”represent
the constraint on each corresponding kernel.

Table 3: Constraint Settings

Dataset Constraint
Application Kernel1.1 Kernel2

Digit-0 Set 0.5% cos5◦ cos3◦

Digit-2 Set 0.5% cos10◦ cos5◦

FERET 0.5% cos15◦ cos10◦

The Database of Faces 0.5% cos10◦ cos5◦

Fig. 5 presents the several principal eigenvectors calculated
by fully accurate mode (first two lines in each subfigure) and
ApproxEigen (last two lines in each subfigure), respectively.
And the graphical differences can hardly be distinguished by
human eyes. Similar results can be also found on log-eigenvalues
in Fig. 6.

828

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:28:05 UTC from IEEE Xplore. Restrictions apply.

Table 2: ApproxEigen: Energy Savings

Application Dataset E. Savings (Arith.) E. Savings (Holistic)

Digit Recognition Digit-0 set 49.86% 22.53%
Digit-2 set 89.54% 34.82%

Face Recognition FERET 91.68% 49.83%
The Database of Faces 55.59% 24.08%

(a) Accurate. (b) ApproxEigen.

Figure 6: Comparison on FERET LogEigenvalues.

Table 2 shows the results on energy savings of ApproxEigen
(instead of whole application) for each dataset.Column “E.
Savings (Arith.)” and column “E. Saving (Holistic)” give the
energy saving percentages on arithmetic operations and the
GPU system, respectively. It should be noted that the holistic
energy consumptions reported by GPUWattch has taken the
runtime checking overheads into consideration.

First of all, our results on four standard datasets show that
ApproxEigen can bring significant 22.53% ∼ 49.83% holis-
tic energy savings. This is not a surprising result because
for eigen-decomposition, matrix-vector multiplication opera-
tions constitute the majority of runtime cycles in an linear
algebra algorithm. Second, the energy savings vary signifi-
cantly among different applications and datasets. We can get
around 22.53% energy savings on “Digit-0 set” and close to
24.08% energy savings on “FERET”. Third, arithmetic opera-
tions’ energy savings and system-level energy savings are two
different stories. Dataset “Digit-2 set” and “FERET” shares
the similar energy savings on arithmetic units, however, the
holistic energy savings are 34.82% and 49.83%, respectively.
As the portion of energy consumed by FPUs and SFUs are
similar among these datasets, such big difference is mainly
caused by the specific characteristics of dataset and its ini-
tialization. In our methodology, besides arithmetic units, we
adopt selective restart to get dramatic energy savings, and this
part is highly dependent on the randomized initial vector for
Krylov sequence. If the algorithm starts with a bad initial-
ization vector (i.e., more restarts in the original procedure are
needed), replacing the original restart by selectively reconfigu-
ration and/or restart will report significant energy savings, as
shown in “FERET”.

Table 4: ApproxEigen:Impacts on Applications

Application Dataset Differences
/Testing Samples

Digit Recognition
Digit-0 set 1/1000
Digit-2 set 4/1000

Face Recognition FERET 3/700
The Database of Faces 0/400

5.2.2 Energy Savings and Impacts on Applications
Our second experiment is performed to check ApproxEigen’s

impacts on high-level applications, i.e., the classification re-
sults on testing samples.

In Table 4, Column “Differences/Testing Samples” indicates
the number of wrongly classified samples (i.e., hamming dis-
tance) compared to the accurate classification results out of the
total number of testing samples. We can see that only 4 testing
samples are classified into wrong groups for“Digit-2 set”, while

we reach 100% correct classification result for “The Database
of Faces”. All of these testing samples demonstrate our gen-
erated eigenpairs only lead to less than 0.43% (i.e., 3/700 on
“FERET”) application-level quality loss (i.e., the proportion of
wrongly classified samples in the whole testing ones), which is
within our pre-defined constraint.

6. CONCLUSIONS
Large-scale eigen-decomposition is an energy-demanding task

and has a wide range of applications, such as recommender
systems and search engines. Motivated by the inherent error-
resilience characteristics of these applications, in this work, we
proposed an energy-efficient approximate computing technique
to solve this problem, namely ApproxEigen, wherein we focus
on the practically-used Krylov subspace methods to find finite
number of eigenpairs. Our experiments on benchmark appli-
cations show that the proposed technique is able to achieve
significant energy savings with negligible quality loss.

7. ACKNOWLEDGEMENT
This work was supported in part by the Hong Kong S.A.R.

General Research Fund (GRF) under Grant No. 418112 and
Grant No. N CUHK444/12 and in part by National Natural
Science Foundation of China under Grant No. 61432017.

8. REFERENCES
[1] I. Jolliffe, “Principal component analysis,” Wiley Online

Library, 2005.
[2] G. Adomavicius and A. Tuzhilin, “Toward the next generation

of recommender systems: A survey of the state-of-the-art and
possible extensions,” in IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 6, pp. 734–749, 2005.

[3] S. Brin and L. Page, “The anatomy of a large-scale
hypertextual web search engine,” in Computer networks and
ISDN systems, vol. 30, no. 1, pp. 107–117, 1998.

[4] J. Han and M. Orshansky, “Approximate computing: An
emerging paradigm for energy-efficient design,” in Proc. ETS,
2013.

[5] V. K. Chippa el al. “Analysis and characterization of inherent
application resilience for approximate computing,” in Proc.
DAC, pp. 113, 2013.

[6] D. S. Watkins, “The matrix eigenvalue problem: GR and
Krylov subspace methods,” in SIAM, 2007.

[7] Y.-K. Chen, et al. “Convergence of recognition, mining, and
synthesis workloads and its implications,” Proceedings of the
IEEE, vol. 96, no. 5, pp. 790–807, 2008.

[8] Y. Liu, et al. “Hardware efficient architectures for eigenvalue
computation,” in Proc. DATE, vol. 1, pp. 1–6, 2006.

[9] Y. Wang, et al., “An efficient architecture for floating-point
eigenvalue decomposition,” in Proc. FCCM, 2014.

[10] Q. Zhang, et al., “ApproxIt: An Approximate Computing
Framework for Iterative Methods,” in Proc. DAC, pp. 1–6,
2014.

[11] Q. Zhang, et al., “ApproxANN: an approximate computing
framework for artificial neural network,” in Proc. DATE,
pp. 701–705, 2015.

[12] A. B. Kahng and S. Kang, “Accuracy-configurable adder for
approximate arithmetic designs,” in Proc. DAC, pp. 820–825,
2012.

[13] R. Ye, et al. “On reconfiguration-oriented approximate adder
design and its application,” in Proc. ICCAD, pp. 48–54, 2013.

[14] M. Schaffner, et al. “An approximate computing technique for
reducing the complexity of a direct-solver for sparse linear
systems in real-time video processing,” in Proc. DAC, pp. 1–6,
2014.

[15] H. Zhang, M. Putic, and J. Lach, “Low power GPGPU
computation with imprecise hardware,” in Proc. DAC, pp. 1–6,
2014.

829

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:28:05 UTC from IEEE Xplore. Restrictions apply.

Table 5: ApproxEigen Hardware: Energy Savings and Impacts on Applications

Application Dataset Differences E. Savings
/Testing Samples (Accumulator)

Digit Recognition Digit-0 set 0/1000 21.54%
Digit-2 set 3/1000 49.82%

Face Recognition FERET 1/700 74.83%
The Database of Faces 0/400 37.09%

Figure 7: Hardware Architecture.

[16] A. Bakhoda, et al. “Analyzing CUDA workloads using a
detailed GPU simulator,” in ISPASS, pp. 163–174, 2009.

[17] J. Leng, et al. “GPUWattch: enabling energy optimizations in
GPGPUs,” in Proc. ISCA, pp. 487–498, 2013.

[18] M. Samadi, et al. “Sage: Self-tuning approximation for
graphics engines,” in Proc. of Micro, pp. 13–24, ACM, 2013.

[19] Y. LeCun, C. Cortes, and C. J.C. Burges,
“http://yann.lecun.com/exdb/mnist/”.

[20] X. Wang and X. Tang, “A unified framework for subspace face
recognition,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 9, pp. 1222–1228, 2004.

[21] AT&T Laboratories and Cambridge University,
“http://www.cl.cam.ac.uk/research/dtg/attarchive/facedata-
base.html”.

[22] A. Majumdar, et al. “A Massively Parallel, Energy Efficient
Programmable Accelerator for Learning and Classification,” in
ACM Transactions on Architecture and Code Optimization,
vol. 9, pp. 6:1–6:30, 2012.

[23] E. J. King and E. Swartzlander, “Data-dependent truncation
scheme for parallel multipliers,” in IEEE Asilomar Conference
on Signals, Systems & Computers, vol. 2, pp. 1178–1182, 1997.

9. APPENDIX
Our propsoed technique is also applicable to other approx-

imate hardware designs and/or software implementations. In
this appendix, we will show the results of ApproEigen on spe-
cific parallel hardware architecture.

9.1 Hardware Architecture
We resort to the architecture [22] shown in Fig. 7 as our

hardware platform. It contains an array of multiplier-accumulator
units (MACs) connected with its own local RAMs (mem in
the figure), wherein quality-configurable arithmetic units are
used in the MAC design. And each MAC only reads the cor-
responding vector from off-chip memory to its local memory.
By streaming the multiplier vector through each MAC, matrix-
vector multiplication is performed naturally (with each MAC
computing the dot product of two vectors).

Table 6: Hardware Configurations (130nm, 1.2V)

Config. Output Bits Power(mW) Power(%)
M 1 18 6.526 16.65
M 2 22 16.20 41.33
M 3 26 25.20 64.29
M 4 32 39.20 100

9.2 Approximate MAC Units
Given that nearly all of the computations in the proposed

method is associated with matrix-vector multiplication, with-

(a) FERET. (b) The Database of Faces.

Figure 8: Comparison on Eigenvectors.

proposed in [23] as our arithmetic units. This multiplier has
a tunable output of (n + k) bits, where n represents the bit-
width of inputs data. By using different values of parameter k,
we can tradeoff computational accuracy and energy consump-
tion. Detailed hardware configurations is presented in Table 6,
where “Power(mW)”, obtained by Synopsys PrimeTime, is the
power on running dot product of two 10-entry vectors (i.e.,
the power of MAC with inexact multipliers), and “Power(%)”
is the percentage of power value with respect to our fully accu-
rate mode. Note that, we do not consider to use approximate
adders in ApproxEigen due to their small energy impact.

9.3 Results of ApproxEigen
Quality and Energy.

Similar to the experiments on GPU platform, we first com-
pare eigenparis computed by ApproxEigen with the accurate
ones. It showes that the proposed ApproxEigen can also get
notable case-by-case energy savings with minor quality loss on
specific hardware platform.

Fig. 8 presents the graphical comparison on eigenvectors and
human eyes can hardly distinguish the differences between the
accurate ones and approximate ones.

After performaing simulation based on 45nm standard cell
library with 1V supply voltage by commercial Synopsys EDA
tools, we get the energy saving percentages listed in the right-
most column “E. Savings (Accumulator)” of Table 5. We can
get 21.5390% energy savings on“Digit-0 Set”, but for“FERET”,
it can reach about “78.83%”.

Impacts on Applications.
We then check ApproxEigen’s impacts on high-level appli-

cations by comparing the classification results using accurate
and our approximate eigenpairs based on the testing samples.
Column“Differences/Testing Samples” in Table 5 indicates the
number of wrongly classified samples compared to the accurate
classification results out of the total number of testing samples.
Our results on four standard datasets show that our generated
eigenpairs only lead to less than 0.3% (i.e., 3/1000 for “Digit-2
set”) quality loss.

830

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 14,2023 at 23:28:05 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20150527105016
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

