
Nonintrusive Remote Healing Using Backdoors
�

Florin Sultan, Aniruddha Bohra
Department of Computer Science

Rutgers University, Piscataway, NJ 08854-8019
� sultan, bohra � @cs.rutgers.edu

Iulian Neamtiu, Liviu Iftode
Department of Computer Science

University of Maryland, College Park, MD 20742
� neamtiu, iftode � @cs.umd.edu

ABSTRACT
In this paper, we propose a remote healing approach for computer
systems based on backdoors, a system architecture that supports
monitoring and repair actions on a remote operating system or
application memory image without using the processors of the
target machine. A backdoor can be implemented using the remote
memory communication technology provided by communication
standards like Virtual Interface Architecture or InfiniBand, specifi-
cally its support for remote DMA read and write operations. We
discuss the potential and challenges of backdoor-based remote
healing and describe a preliminary prototype we developed as proof
of concept.

1. INTRODUCTION
As computer systems become more complex, tolerance to fail-
ures and recoverability without compromising performance have
emerged as guiding principles for system design [20]. The need
for such features is exacerbated by the increasing demand for
performance critical, highly available services.

Self-healing systems are becoming increasingly interesting because
they present the aforementioned features. They have been studied
in various contexts (software engineering, artificial intelligence,
machine learning, etc.) [31]. Computer vendors have already
launched initiatives and even market systems with built-in support
for hardware and firmware fault detection and containment [16,
30]. From a system viewpoint, to support healing, a system must
be capable of at least two functions: (i) monitoring, for detecting
exceptional events (failure, intrusion, policy violations, etc.), and
(ii) taking action in response to these events by recovery, repair,
fault containment, etc.

Past and recent operating systems research has examined problems
related to today’s self-healing systems. On the monitoring side,
OS-level monitors were used for run-time adaptation of an OS [24,
26]. Fault detection and containment was specifically addressed

�
This work is supported in part by the National Science Foundation

grant CCR 0133366.

in extensible operating systems [25, 23], using clever forms of
encapsulation to protect against faulty or malicious code. Despite
obvious advantages like instant access to the entire system state,
observing a system from within has limitations: (i) it has limited
effectiveness, e.g., if the machine runs out of resources or certain
components fail; (ii) cannot perform integrity checking on a
system if the integrity checking code itself is bad or corrupted;
(iii) cannot detect intrusion from within an already compromised
system; (iv) cannot recover state from a system unless checkpointed
externally to some stable device, with the incurred consistency
and performance problems. Passive OS monitoring using virtual
machine technology was proposed for intrusion detection and
analysis, or automated failover support [4, 11]. However, its use
is limited to specific problems and may incur high overhead and/or
cost.

On the action side, the common approach is to force the crash/reboot
of a system that develops a problem, without any attempt at saving
its state. Some recent designs have introduced support into the OS
for replacing an OS component dynamically [26]. However, this
involves complete re-design of the OS, and, even with it, no system
we know of is capable of repair and recovery actions after a failure.

Although the above approaches could be used to provide support
for self-healing, they critically rely on resources of a system that
may have already failed (e.g., a faulty processor, a deadlocked or
crashed OS, etc.), or use simple destructive actions (e.g., reboot)
to recover a machine, discarding useful state that could still
be repaired and/or recovered. This is not particularly helpful,
especially if the machine runs software critical to its users.

In this paper, we propose an alternative approach to self-healing
called remote healing, where monitoring, repair and recovery
actions are performed nonintrusively from a remote system. To
support remote healing, a computer system must be equipped
with a backdoor (BD), a specialized network interface that allows
external access to its resources (memory, I/O devices, etc.) without
involving its processor(s). A backdoor enables intervention on a
system even when conventional wisdom would declare it “dead”
(e.g., due to a system-wide freeze that does not allow any program
or OS code to execute) or otherwise inaccessible (e.g., due to heavy
load, DoS attack, etc.).

To perform remote healing, a BD-based architecture requires
generic support from the OS. Basic building blocks of the system
must be specifically provided with channels for remote access to
system memory. Remote access channels allow such systems to
provide rich functionality for remote healing that current systems



lack and cannot implement without major redesign, or simply
cannot support: low-overhead remote monitoring, extraction and
recovery of OS and application state out of a failed system or
application, on-line repairing or patching OS/applications, etc.

Backdoors can be implemented using remote memory communi-
cation (RMC), a technology originally developed to lower the
overhead of communication by reducing OS involvement [2, 14].
In addition to low-overhead send/receive operations that require no
OS intervention, RMC provides remote DMA (RDMA) primitives
that allow external access to the memory of a host without using
its processor(s). RDMA read and write primitives are present in
industrial standards like Virtual Interface Architecture (VIA) [12]
and InfiniBand [17]. Until now, RMC has been used mainly as a
high-performance cluster interconnect [22, 6, 32, 9, 18, 21], and to
provide efficient support for fault tolerance [33, 28].

This paper takes a novel approach on the use of RMC in system
design. We argue that the nonintrusive communication capability
of RMC is a viable and powerful building block for remote healing
systems (RHS). To our best knowledge, this is the first attempt at
leveraging RMC capabilities for nonintrusive remote healing.

Intrusive remote memory access to a computer system has been
used before, e.g., for remote debugging of system software. In this
case, the access is usually performed over a serial interface, the
debugged system is passive and, in the case of a crash, the best
another system can do is a post-mortem inspection and analysis of
the memory of the crashed system. The technique uses processor
cycles on the inspected machine and specifically requires that
critical hardware components of the possibly crashed machine are
in good shape. In contrast, BD-based remote healing allows repair
or recovery actions to be performed even when the processors of
the target system are not available.

The remainder of the paper is structured as follows. Section 2
discusses the design principles of a BD architecture. Section 3
provides background on RMC. Section 4 describes a BD imple-
mentation using RMC. Section 5 discusses BD design challenges.
Section 6 describes a prototype system we have built using the BD
idea. Section 7 reviews related work.

2. BACKDOOR PRINCIPLES
In order to support remote healing a BD-based architecture must
satisfy the following design principles:

Bidirectional access. BD must allow both input (read) and output
(write) operations on a remote target system. Read operations are
used mainly for monitoring while write operations are necessary to
perform healing actions.

Remote memory access. BD must support at least remote memory
access operations. Additional operations such as atomic remote
memory access and remote I/O are desirable in order to support
more complex healing actions.

Availability. BD must be available even after a failure of the target
system. A failed OS or hardware component that is not used in
implementing the BD should not impair its continued operation.

Nonintrusiveness. BD must enable remote access to resources
of a computer (memory, I/O controllers, etc.) without involving
processors of the target system. The processors/OS may however

OS

RMC NIC RMC NIC

REMOTE DMA WRITE
MEMORYMEMORY

CPU CPU

REMOTE DMA READ

Figure 1: Remote DMA read/write operations in RMC.

be involved in BD initialization operations.

Transparency. Remote access through a BD must not be vis-
ible/detectable on the target system by direct means, e.g., by
accessing an I/O port. Indirect detection might be possible through
fine-grained and accurate system bus performance measurements.

Access control. BD must provide a mechanism to allow the mon-
itor and target operating systems to agree on access permissions
when monitoring begins. However, the target should not be able to
close the BD or change access permissions afterwards.

Tamper resistance. The target system must not be able to change
the result of a remote access performed through the BD. The
content made visible externally must not be different from the one
transferred from/to the memory or an I/O device.

3. REMOTE MEMORY COMMUNICATION
Remote memory communication (RMC) is a communication tech-
nique that aims to significantly reduce the communication over-
head typically associated with TCP/IP networking. The basic
idea in RMC is to bypass the operating system in the common
send/receive path while providing a protected channel for com-
munication. The RMC architecture supports two communication
models: send/receive and remote DMA (RDMA).

In the send/receive model, the communicating parties can bypass
the OS and use the network interface controller (NIC) directly
for communication. However, the host processor is still involved
in such transfers. In contrast, an RDMA operation completely
bypasses the processor on the remote host. For this, the remote
NIC performs a silent DMA to/from the host memory.

RDMA write is the most common RMC operation, supported by
most RMC implementations [14, 2, 13, 19]. With RDMA write,
the sender can write into a remote memory buffer without remote
processor intervention. The completion of the RDMA write can
be determined by checking a completion queue in the network
interface or through an application specific flag in the area to
be updated. RDMA read is a more complex operation which,
until recently, has not been supported in RMC implementations,
although part of the standards [12, 17]. With RDMA read, a
node can initiate a transfer from a specified remote memory buffer
without involving the remote OS or processor.

Figure 1 illustrates the RDMA read/write operations between two



CPU

RMC
NIC

Ethernet 
NIC

Memory CPU

RMC
NIC

Ethernet 
NIC

Memory

ACTION

FRONT DOOR

BACK DOOR

REMOTE
ACCESS
HOOKS

MONITOR TARGET

MONITOR

Figure 2: An RMC-based backdoor.

machines. For initialization, both endpoints execute a one-time
register operation notifying their NICs of the memory buffers
involved in RDMA. The processor of the left node initiates the
RDMA operation (vertical solid arrow). The solid horizontal
arrows show the logical data path of the RDMA operations, while
the dotted line follows the physical data path. An RDMA write
silently transfers the contents of the source into the destination
buffer. To achieve this, the NIC bypasses the processor at the
destination and does a DMA of data it receives from the network
into the registered destination buffer. In an RDMA read operation,
the remote NIC bypasses the host processor to directly perform a
DMA operation from the remote memory.

4. BACKDOOR WITH RMC
In this section, we describe a backdoor implementation using re-
mote memory communication (Figure 2). RMC is a good candidate
to implement a backdoor because current RMC implementations
satisfy most of the BD principles outlined in Section 2.

4.1 Monitoring Using RMC
To provide support for monitoring, a system must be instrumented
to enable detection of anomalous state in the operating system
or applications running on it. Instrumentation state may include
liveness or performance statistics, integrity invariants, etc. We
next discuss monitoring alternatives and how RMC can improve
on them.

Local Monitoring. Introspection and local monitoring have been
used in extensible operating systems and in hot-swapping operating
systems to adapt to varying load/resource profiles [24, 26]. Local
monitoring has the advantage of creating/using perfect and instant
knowledge about a system, since it can directly access data struc-
tures in system memory.

Local monitoring has two major drawbacks. First, it is intrusive to
the monitored system by competing for its resources (processors,
memory, disk). Second, it is as good as the monitored system:
in the event of OS/hardware failure, overload, or attack, a local
monitor may not be able to execute and the system may lose all
its monitored state. In a distributed system, local monitoring is not
capable of accurately detecting such events.

Remote Monitoring. Monitoring can be performed remotely by
a different system using communication over a network. This
can be done either in push mode, where the monitored node
sends information (heartbeats) to its monitoring node, or in a pull

mode, where the monitoring node periodically requests information
from the monitored node. The monitored node cooperates by
generating state data through introspection and externalizing it for
remote access. Remote monitoring has two major benefits. First,
assuming a reliable network, it can detect catastrophic failures due
to hardware or software faults. Second, it enables system-wide
decisions in a distributed system, for reconfiguration or resource
provisioning.

Remote monitoring has several drawbacks. First, it suffers from
imperfect knowledge: network unreliability, resource contention
in the network and processor contention for executing protocol
software at the monitored node may cause inaccurate monitoring.
Second, it incurs overhead at both monitored/monitor nodes. Third,
it is limited in scope, since a remote monitor does not have direct
access to the state of the monitored node.

Best of Both Worlds: Nonintrusive Remote Monitoring. A BD-
based architecture can use remote access channels provided by
RMC to perform nonintrusive remote monitoring. Figure 2 shows
a monitor node accessing the memory of a target (monitored) node
through RMC.

Besides leveraging the benefits of remote monitoring, RMC allevi-
ates or eliminates its penalties. Monitoring becomes nonintrusive
to the target system, to the extent that this cannot directly detect
that it is being monitored (according to the transparency principle).
Furthermore, the high performance and reliability typical of RMC
hardware help with accurate monitoring. Finally, subject to BD
access control policies, RMC could enable access to the entire
memory of a system.

There are two clear benefits of monitoring via nonintrusive remote
access channels: (i) In practice, it does not affect the performance
of the target system as it does not compete for its processor(s).
The only contended resource is the system bus. However, in order
for this to impact performance, a memory-intensive workload on
the target system must compete with an unrealistically aggressive
monitoring (e.g., generated by continuous memory dumps via
RMC). (ii) It allows retrieval of state still present in system
memory after a failure, if the RMC interface and the memory
are available (according to the availability principle). The entire
physical memory of the system is potentially accessible, even after
some other critical components of the system have failed.

4.2 Action Using RMC
Upon detecting anomalies in the monitored node, a healing action
must be executed to bring it to a desired configuration or state. The
action component is semantically rich (depending on the trigger
event) and may affect the system at the OS or application level.

Changing a system from within has been the focus of research [24]
on automatic adaptation in extensible kernels. However, this may
not always work due to resource problems (exhaustion, critical
failures, etc.), or simply because the integrity of the module per-
forming the action has been compromised. Some of these problems
have found solutions in the context of virtual machine monitors
(VMM). VMMs were used to build backup state on different nodes
for recovery after a crash [4], and to provide a secure execution
environment for system loggers to help with intrusion detection and
analysis [11]. Theoretically, these approaches may be used in RHS
but in practice they are too expensive and/or not general enough.
Recently proposed designs like [26] provide built-in support for



complex online reconfiguration, where whole OS subsystems can
be hot-swapped. Hot-swapping may be ineffective on a heavily
loaded system, or impossible on a dead system that may not have
cycles available to execute even the hot-swapping code.

In contrast with the above approaches, a BD-based remote healing
architecture can exploit RMC to implement remote actions of fine-
grained control at the OS or application level: (i) repair data or
code on a live system; (ii) extract data from a dead system, to
be recovered on another healthy system. Moreover, an RHS can
perform these actions even after other conventional access paths
have failed due to hardware of software faults.

To support remote healing, the OS must provide remote access
hooks (shown in the target node in Figure 2). Their role is
to provide an interface for enforcing actions on the OS or the
applications running on it. The remote access hooks must be
registered with the RMC for remote access (read or write) by
another system that runs recovery or repair code.

The actual specification of a hook depends on the domain of its in-
tended action. For example, a recovery hook can be an indirection
data structure for retrieving references to critical data structures
within the target OS, for easy remote extraction or modification.
Such hooks may use OS abstractions specifically designed for
external manipulation of state by a specialized extraction protocol.

Repair hooks may control remote accesses to certain regions of OS
memory and can be used by specialized repair threads executing
on the monitor node. Through the repair hooks, the repair threads
can build a local view of the target system, analyze/diagnose the
problem, and fix damaged state through remote writes. Similarly,
application-defined repair hooks can enable remote direct writes
into an application’s memory to patch or clean-up the state of a
faulty or corrupted application.

While capable of performing nonintrusive repairs through remote
memory access, the BD can also allow a remote node to oppor-
tunistically use the processors of the target machine, if available,
to execute healing actions. In this case, the repair hooks can be
regions of memory where specialized rescue handlers may reside.
Handlers may be replaced remotely if needed, without interfering
with operation of the target system, and the system forced into
executing them. A rescue handler may implement complex actions,
e.g., testing/diagnosis of devices and drivers.

5. CHALLENGES
In this section, we discuss several challenges and open questions
that confront the proposed BD architecture for remote healing.

5.1 Monitoring Issues
The main problems faced by monitoring a system with BD are:
(i) semantics of externalized state, (ii) synchronization-free access,
(iii) fault propagation, and (iv) erroneous detection.

Semantics of externalized state. Detecting that a monitored
system is in a bad state by using only its externalized state can
be difficult due to complex state semantics. “Bad state” may
range from application-specific (e.g., deadlock in a multithreaded
program) to system-specific or system-wide state (e.g., a faulty
hardware component). A monitor must interpret it appropriately
to detect a failure.

For example, application specific monitoring requires an under-
standing of application semantics, such as application specific
invariants. Consider an application that attempts to lock a mutex it
already holds. Accurate detection of this error requires knowledge
of the expected behavior (e.g., cannot lock a mutex again in the
same thread), and cooperation on behalf of the application (e.g.,
providing information about locks currently held and the next
locking action). The code that generates such application invariants
(at the target) and the code that verifies them (at the monitor) can
be either written by the programmer or automatically generated
by compiling a set of constraints expressed in a specialized lan-
guage [10].

Correct interpretation of monitored state also depends on its cor-
rectness. For example, an OS crash or an attack may corrupt
monitored state and potentially obscure the fault to a monitor,
thereby compromising failure detection. System support is needed
for protection against corruption of critical monitored state and/or
to detect corruption after its occurrence.

Synchronization-free access. Remote monitoring of a live system
may run concurrently with updates performed on monitored data
structures. Modification of a data structure while a monitoring
access is in progress may result in inconsistent information for a
monitor. Mutual exclusion (e.g., using locks) cannot be used to
solve the problem, as it violates the BD nonintrusiveness principle.
Such complications require careful definition of monitored state
and its access protocols.

Fault propagation. For monitoring to be meaningful, the faulty
component of the monitored system must be accurately identified.
However, this is not always possible, as the fault may be propagated
to other subsystems that have dependencies to the faulty one, to
other processes in an IPC chain with a faulty process, etc. For
example, a disk error may manifest itself as memory corruption in
an application, making it impossible for a monitor to identify the
fault.

Erroneous detection. In some situations, the monitor may not be
able to differentiate between normal behavior of the system and an
error condition. For example, when monitoring the “liveness” of
a server application, idleness when there are no connected clients
may be erroneously interpreted as application failure. A conser-
vative monitor may ignore significant errors while an aggressive
monitor may cause false positives. It is a challenging task to
carefully engineer a system and program the monitoring in order
to minimize such errors.

5.2 Action Issues
The main issues for performing healing actions via BD are: (i)
intrusive actions, (ii) correctness of repair actions, (iii) correctness
of recovered state, and (iv) control of BD actions.

Intrusive actions. While monitoring should be nonintrusive,
remote healing actions may necessarily be intrusive for a “good”
purpose. For example, to retrieve consistent state for recovery, a
recovery hook may have to stop an application; or, to repair an
OS under DoS attack, a repair hook may have to kill an offending
process. The challenge is how to implement such necessary
intrusive actions on a live system.

Correctness of repair actions. Injecting incorrect state into a
system may cause irreparable damage and defeat the purpose of



remote healing. Definition and enforcement of correct repair
actions on a target system should be automated using a language-
based framework (similar to that of [10]), and by providing OS
abstractions to implement the repair actions.

Correctness of recovered state. A recovery action after a fault
may incorrectly use data potentially corrupted during the fault. For
example, an OS fault may generate wild writes that damage in-
memory state used for recovery. A system could include support for
preventing such integrity violations (e.g., protection mechanisms)
or for detecting them (e.g., by maintaining checksums over critical
data, to allow remote recovery procedures to identify and filter out
invalid state). Despite such precautions, it might be possible that
only partially correct state can be recovered from a failed system.
In such cases, a recovery procedure may at best restore the system
to a state consistent enough to permit continued operation.

Control of BD actions. Protection of a remote access channel is
important both during monitoring and while performing healing
actions over it.

At the monitor end, the monitor process/thread should be the only
trusted entity allowed to access the channel. Protecting against
unauthorized write access (e.g., for repair actions) to the memory
of the remote system requires strict and careful registration of each
remote access hook. This may reduce flexibility in actions. The
alternative is to fully trust a monitor node and register the whole
memory.

At the monitored end, a faulty system may, intentionally or not,
try to “close” the backdoor, thus making monitoring and/or healing
impossible. Closing the backdoor may amount to just brute-force
deregistration of the local endpoint of a remote access channel, or
may take subtler forms (e.g., substituting the legitimate channel by
a fake one that gives a monitor the appearance of a healthy system).
Such attacks can be prevented if the BD provides simple support for
disabling accesses after its (safe) initialization. This feature is not
currently supported by existing RMC network interface controllers.

6. CASE STUDY
We have implemented a prototype RHS for Internet services by
modifying the FreeBSD kernel and using VIA Giganet cLAN [13]
to implement the BD1. The system runs equivalent servers on
multiple machines that use VIA communication to perform moni-
toring, detect failures at three failure levels (OS, application, client
session), and salvage affected sessions.

In our system, a “failure” is defined as the impossibility of
continuing service to one client, to all clients serviced by a given
server application, or to all clients serviced by the node. Under
this definition, a failure may occur at one of the above three
levels, may reflect various degrees of “illness” and may have
multiple causes, including but not limited to hardware faults: (i)
a faulty hardware component, e.g., processor, network interface,
local hard disk, interrupt controller, etc. (ii) a faulty software
component in the OS that leads to a system-wide freeze, e.g.,
system hanging due to a locking error, a misplaced panic, etc.; (iii)
a faulty software component in the application, e.g., a deadlock
that prevents the application from servicing all or part of its clients;

1For lack of RDMA read support in our hardware, we have
emulated it through RDMA writes executed by a dedicated
processor on an SMP machine.

(iv) a wrong operator command or a misconfiguration that causes
the node/OS/application to halt or stop making progress while
servicing clients. The memory contents and the RMC hardware
are assumed available after a failure.

The system currently implements a single action in response to
a failure – recovery of affected sessions. Recovery is achieved
by dynamically migrating individual sessions out of their current
server to another healthy server. Session migration is transparent
to client, and does not affect the consistency and correctness of the
service. In addition, depending on the failure level, the system may
take other steps, e.g., reconfigure/restart a faulty application in case
of session/application failure, reboot the faulty server system, etc.

The monitoring component of the system is responsible for failure
detection. It is implemented by monitor processes using an OS
abstraction of a target node called Progress Box (PB). A PB
provides monitored entities and their monitor with a basic meter for
liveness called progress counter, a monotonically increasing scalar
value that has an associated failure detection deadline. The PB is
accessed through an API from both the target and the monitor node.
To assert its liveness, an entity running on the target node uses the
PB API to allocate a progress counter in the PB, then performs
introspection and voluntary reporting by updating its value. The
monitor process reads the PB using RDMA read operations. If
it detects that a progress counter has not been updated within its
detection deadline, the monitor considers that the corresponding
entity has failed and decides what recovery action to take.

The recovery component of our prototype provides fine-grained
recovery support for client service sessions after a failure is
detected. The recovery solution consists in migrating the active
client sessions to another server using Migratory-TCP [29]. The
session state is embedded as a service continuation (SC) [27], an
OS mechanism that we have implemented to encapsulate OS and
application state associated with a client session. Upon failure
detection, the new server reads the SC-encapsulated state from the
failed server and reinstates the session state.

7. RELATED WORK
Recent initiatives in industry [16] and academia [20] seek to shift
the thrust of future computing systems from performance to self-
managed, self-configuring, self-healing systems.

Middleware solutions have been proposed for software rejuve-
nation [15, 5], self-healing [3], and problem determination in
complex systems [7]. These systems gather statistics at run-time
through monitoring, detect anomalies using these statistics, restart
or replace software components to bring a system back to a con-
sistent/working state. In contrast, BD focuses on operating system
support for monitoring a computer system, including application
and system software, healing it and/or retrieving useful state after
failure. Our approach addresses a missing link: we reuse useful
state in the system rather than lose it by reboot or restart.

Self-adapting operating systems have been studied in the context
of extensible OS research [23] where behavior is modified by
extending OS functionality with user code downloaded into the
OS kernel. More recently, [26] proposed an OS that allows hot-
swapping components at run time. However, these systems are built
from scratch to provide an extension interface, or an object-oriented
design to allow easy replacement of hot swappable components.
Both systems monitor their state locally and adapt to current load



conditions. Neither can perform recovery after an OS or a hardware
component failure. In contrast, we describe a solution using
a slightly modified OS using remote monitoring where we can
replace components, repair state, as well as extract useful state from
a system after failure.

System/application state preserved in nonvolatile memory has been
used in [1, 8] to survive crashes. In [1], a stable region of memory
called Recovery Box is used to store system state and retrieve
it after crash. If the state is corrupted, the system falls back to
recovery by hard reboot. In [8], a reliable file cache protects
file system data during a crash and allows to warm reboot the
file system from it. Both systems focus on protection against
unauthorized accesses during a crash through controlled interfaces,
integrity checks and hardware support. BD may also rely on OS or
application state being available in system memory after a failure.
However, we propose a uniform architecture for controlled state
recovery and for repair of damaged state.

Language support for automatic error detection and repair of data
structures is explored in [10]. A BD-based architecture can be
integrated with such support to define detection/repair algorithms
on system and application data structures. It can also circumvent
local failures by being capable to detect errors and perform repairs
remotely.

8. REFERENCES
[1] M. Baker and M. Sullivan. The Recovery Box: Using Fast Recovery

to Provide High Availability in the UNIX Environment. In Proc.
Summer ’92 USENIX, 1992.

[2] A. Basu, V. Buch, W. Vogels, and T. von Eicken. U-Net: A
User-Level Network Interface for Parallel and Distributed
Computing. In Proc. 15th ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1995.

[3] G. S. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace,
R. Moreira, and N. Parlavantzas. Reflection, Self-Awareness and
Self-Healing in OpenORB. In Proc. 1st Workshop on Self-healing
Systems, Nov. 2002.

[4] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault
Tolerance. In Proc. 15th ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1995.

[5] G. Candea and A. Fox. Recursive Restartability: Turning the Reboot
Sledgehammer into a Scalpel. In Proc. HotOS-VIII, May 2001.

[6] E. V. Carrera and R. Bianchini. Efficiency vs. Portability in
Cluster-based Network Servers. In Proc. 8th ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming,
June 2001.

[7] M. Chen, E. Kiciman, E. Brewer, and A. Fox. Pinpoint: Problem
Determination in Large, Dynamic Internet Services. In Proc. DSN
2002, June 2002.

[8] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell. The Rio File Cache: Surviving Operating System
Crashes. In Proc. 7th Intl. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Oct.
1996.

[9] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck,
T. Talpey, and M. Wittle. The Direct Access File System. In Proc.
2nd USENIX FAST Conference, Mar. 2003.

[10] B. Demsky and M. Rinard. Automatic Detection and Repair of Errors
in Data Structures. In Proc 1st Workshop on Algorithms and
Architectures for Self-Managing Systems, June 2003.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay. In Proc. 5th Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[12] D. Dunning et al. The Virtual Interface Architecture. IEEE Micro,
18(2), Mar. 1998.

[13] Emulex, Inc. http://www.emulex.com.

[14] E. Felten, R. Alpert, A. Bilas, M. Blumrich, D. Clark, S. Damianakis,
C. Dubnicki, L. Iftode, and K. Li. Early Experience with
Message-Passing on the SHRIMP Multicomputer. In Proc. 23rd
Annual Symposium on Computer Architecture (ISCA), May 1996.

[15] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software
Rejuvenation : Analysis, Module and Applications. In Proc. 25th
IEEE Intl. Symposium on Fault Tolerant Computing (FTCS), June
1995.

[16] IBM Autonomic Computing.
http://www-1.ibm.com/servers/autonomic.

[17] The Infiniband Trade Association. http://www.infinibandta.org, Aug.
2000.

[18] K. Magoutis, S. Addetia, A. Fedorova, and M. I. Seltzer. Making the
Most out of Direct-Access Network Attached Storage. In Proc. 2nd
USENIX Conference on File and Storage Technologies (FAST), Apr.
2003.

[19] Mellanox, Inc. http://www.mellanox.com.

[20] D. Patterson et al. Recovery Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies. Technical Report
UCB//CSD-02-1175, UC Berkeley Computer Science, Mar. 2002.

[21] M. Rangarajan, S. Gopalakrishnan, A. Arumugam, R. Sarker, and
L. Iftode. Federated DAFS: Scalable Cluster-based Direct Access
File Servers. In Proc. 2nd Workshop on Novel Uses of System Area
Networks (SAN-2), Feb. 2003.

[22] M. Rangarajan and L. Iftode. Software Distributed Shared Memory
over Virtual Interface Architecture: Implementation and
Performance. In Proc. of The Annual Linux Showcase, Extreme Linux
Workshop, Oct. 2000.

[23] M. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
Disaster: Surviving Misbehaved Kernel Extensions. In Proc. 2nd
Symposium on Operating Systems Design and Implementation
(OSDI), Oct. 1996.

[24] M. Seltzer and C. Small. Self-Monitoring and Self-Adapting
Operating Systems. In Proc. HotOS-VI, May 1997.

[25] E. G. Sirer, D. Becker, M. Fiuczynski, C. Chambers, and S. Eggers.
Extensibility, Safety and Performance in the SPIN Operating System.
In Proc. 15th ACM Symposium on Operating Systems Principles
(SOSP), Dec. 1995.

[26] C. A. N. Soules, J. Appavoo, K. Hui, D. D. Silva, G. R. Ganger,
O. Krieger, M. Stumm, R. W. Wisniewski, M. Auslander,
M. Ostrowski, B. Rosenburg, and J. Xenidis. System Support for
Online Reconfiguration. In Proc. USENIX Annual Technical
Conference, June 2003.

[27] F. Sultan, A. Bohra, and L. Iftode. Service Continuations: An
Operating System Mechanism for Dynamic Migration of Internet
Service Sessions. Technical Report DCS-TR-508, Rutgers
University, Nov. 2002.

[28] F. Sultan, T. D. Nguyen, and L. Iftode. Scalable Fault-Tolerant
Distributed Shared Memory. In Proc. of Supercomputing Conference,
Nov. 2000.

[29] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP:
Connection Migration for Service Continuity in the Internet. In Proc.
ICDCS 2002, July 2002.

[30] Unisys ES7000 server. http://www.unisys.com/hw/servers/es7000.

[31] ACM SIGSOFT Workshop on Self-Healing Systems., Nov. 2002.
http://www-2.cs.cmu.edu/˜garlan/woss02/.

[32] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin, and
K. Li. Experiences with VI Communication for Database Storage. In
Proc. 29th Intl. Symposium on Computer Architecture (ISCA), May
2002.

[33] Y. Zhou, P. M. Chen, and K. Li. Fast Cluster Failover using Virtual
Memory-mapped Communication. In Proc. 13th Intl. Conference on
Supercomputing, June 1999.


