
A State Alteration and Inspection-based
Interactive Debugger

Yan Wang
CSE Department, UC Riverside

wangy@cs.ucr.edu

Min Feng
NEC Laboratories America
mfeng@nec-labs.com

Rajiv Gupta Iulian Neamtiu
CSE Department, UC Riverside
{gupta,neamtiu}@cs.ucr.edu

Abstract—Despite significant advances in automated debug-
ging, programmers still rely on traditional interactive debuggers
(e.g., GDB) to find and fix bugs. While popular, these debuggers
have major deficiencies: they do not guide the programmer in
narrowing the source of error, and they only support a limited
and low-level set of state-altering commands, hence semantic state
alteration requires recompilation and reexecution. To address
these shortcomings, we present an interactive debugger that
combines capabilities that reduce debugging effort and increase
debugging speed. The capabilities that yield these benefits in-
clude: state alteration commands for dynamically switching the
directions of conditional branches and suppressing the execution
of statements; state inspection commands including navigating
and pruning dynamic slices; and state rollback and checkpointing
commands to allow reexecution of the program from an earlier
checkpoint. Our prototype is built on top of GDB using the
Pin infrastructure; we also provide a GUI based on KDbg. Our
experience shows that our debugger handles many kinds of real
bugs effectively and efficiently.

Index Terms—debugging, dynamic slicing, state alteration

I. INTRODUCTION

Debugging is a long and laborious process which takes
up to 70% of the total time of software development and
maintenance [15]. To assist in the debugging process, pro-
grammers make use of an interactive debugger (e.g., GDB)
whose use involves: state inspection, state alteration, and code
modification. The programmer executes the program on a
failing input and uses state inspection commands to examine
program state at various points (e.g., by setting breakpoints).
After finding suspicious values, the programmer may apply
state alteration to correct these values and see how the
program’s execution is affected. Alternatively, the programmer
may perform code modification and then recompile and rerun
the program to see how the program behavior is affected (e.g.,
commenting out suspicious statements [12]). To speed up this
process, Visual Studio offers an Edit-and-Continue feature [26]
for on-the-fly changes to the program being debugged, but
code modifications such as most changes to global or stack
data are not supported.
Both state alteration and code modification techniques

help the programmer in understanding and locating faulty
code. While state alteration is a lightweight technique, code
modification slows down debugging as it requires program
recompilation and reexecution. This can take a significant
amount of time if the program runs for long before exhibiting

faulty behavior and the above process is performed repeatedly.
A debugger such as GDB supports simple state alteration com-
mands for altering values of variables. Thus the programmers
often resort to code modification to locate the bug.

In this paper we present an interactive debugger which
supports commands that reduce debugging effort and increase
debugging speed. These commands allow the programmer
to narrow his/her focus successively to smaller and smaller
regions of code. The state alteration commands allow the pro-
grammer to narrow faulty code down to a function. The state
inspection techniques allow efficient examination of large code
regions by navigating and pruning dynamic slices and zooming
in on chains of dependences. Finally, the programmer can
zoom to a small set of statements in a slice by breakpointing
at those statements and examining program state.

The commands in our debugger speed up the iterative
debugging process by reducing the need for code modi-
fications, which require recompilation and reexecution. Its
state alteration commands allow the programmer to perform
control flow alterations by switching outcomes of conditional
branches. Its execution suppression commands allow skipping
of statements during execution. That is, these commands ef-
fectively simulate the effect of code modifications without the
need for recompilation. In addition, since our debugger also
supports checkpoint and rollback, the programmer can rollback
to an earlier execution point, specify state alterations, and
then reexecute the program. A reexecution from a checkpoint
instead of from the beginning can greatly reduce the waiting
time associated with recompilation and reexecution for long
executions.

In summary, our debugger supports new features that greatly
improve bugfinding/bugfixing efficiency and speed up the
iterative debugging process. Since it is built on top of GDB, all
commands that are supported by GDB are still available. Some
GDB commands have been enhanced and/or reimplemented
for improved efficiency. Setting of breakpoints can be guided
by program slices allowing the programmer to single-step from
one statement in the slice to the next. Conditional breakpoints
allow calls of library functions to be selectively captured.
The overhead of the state rollback mechanism is reduced via
incremental checkpointing. We have integrated the debugging
back-end into the KDbg GUI, hence the new features are aug-
mented by the GUI’s visualization and navigation support. We
have evaluated our debugger using five kinds of hard-to-find978-1-4673-5739-5/13/$31.00 c� 2013 IEEE

TABLE I
MAJOR DEBUGGING COMMANDS

Summary Commands Description

State switch switch the outcome of a predicate
Alteration suppress suppress the execution of a statement

record turn on/off recording for slicing
slice perform backward dynamic slicing

State prune prune dynamic slices
Inspection sbreak create breakpoints in a slice

conditional conditionally capture memory bug
breakpoint related library calls (e.g., malloc, free)
instance print execution instance of a statement

State checkpoint set up an incremental checkpoint
Rollback rollback rollback the program state

real bugs: double free, stack smashing, heap buffer overflow,
dangling pointer dereference, and null pointer dereference.
Our experience shows that our state alteration and inspection
capabilities are effective and efficient.

II. DEBUGGING COMMANDS
We provide three kinds of debugging commands—state

alteration, state inspection, and state rollback—listed in
Table I. Of these, six commands—switch, suppress,
slice, record, prune, and instance are not found in
commonly-used interactive debuggers. Other commands are
extended to support new debugging features. State alteration
commands are used to isolate bugs and help programmers
efficiently gain comprehension of program’s faulty behavior.
State inspection commands help programmers focus on bug-
related statements and present unexpected dependences to the
programmers and allow them to navigate along dependence
edges. State rollback commands enable the quick reexecution
of the suspicious code region. Programmers use these com-
mands via the GDB command line or the GUI.
Our debugger can greatly relieve the burden of program-

mers. First, when a program crashes, it can be difficult for
the programmer to reason about the execution flow, e.g., if
the crash happens because a library call destroys an auto-
maintained stack or heap. Our debugger captures the abnormal
data dependences and presents them to the programmers in an
intuitive way. Second, it is the programmer’s responsibility
to find suspicious code and speculate about the root cause.
Our debugger enables the programmer to focus on bug-related
statements and guides the examination of values and setting
of breakpoints guided by dynamic slicing. Third, even after
discovering all the bug-related statements, the programmer
still has to understand and fix the bug. Our debugger enables
the programmer to quickly identify critical bug manifestation
condition (e.g., a critical function invocation) by leveraging
state alteration and narrowing the fault to a small code region.
Fourth, it is common that a variable use is data-dependent on a
far-away definition in a different function or a file. Navigating
across source files is burdensome. Our debugger enables the
programmer to visually navigate captured dependences and
reason about the execution.

A. State Alteration Interfaces
State alteration commands provide an easy way to alter the

program execution state dynamically and enable programmers

to avoid repetitive program compilations and executions.
1) Switching Control Flow: The command switch

file:line [all| once|n] is designed to switch the out-
come of the predicate in the lineth line in file file. Programmers
can choose to switch the outcome for every (all), next (once)
or only the nth (n) instance of the predicate.
Using switch, programmers can dynamically change the

outcome of a branch and then check the difference in program
state and result. When a program crashes or deviates from
the desired behavior, programmers use switch to invert the
outcome of the predicate dynamically. If the program behaves
correctly after inversion, the programmer can infer that there
is an error in the predicate or the predicate is critical to bug
manifestation. Otherwise the predicate is likely unrelated to the
error. If there are several predicates in the execution trace of
a failing run, all the predicates with which the program works
properly by following the inverted branch compose the critical
bug manifestation condition. That is, the bug disappears when
the outcome of any of these predicates changes, providing
valuable clues to the programmer to understand the bug.
With the aid of switch, programmers avoid source code
modification and recompilation which are time-consuming.
2) Execution Suppression: The suppress file:line

[all|once|n] command suppresses the execution of state-
ment at line line in file file. Programmers can choose to
suppress every instance (all), only the next instance (once),
or only the nth instance of the statement.
Like switch, suppress is useful for isolating a bug.

A commonly-used debugging strategy is to temporarily com-
ment out a section of code and then check whether the
remaining part works as expected [12]. This approach involves
recompilation of the source code. The suppress command
is designed to simplify this procedure. If the programmer
suspects that a statement or function is faulty, he can suppress
its execution on-the-fly without having to modify the source
code and recompile the program. For example, assume that
the programmer has forgotten to use a guarding predicate
around some statements, causing the program to crash. The
programmer can try to suppress the unguarded statements
based on his knowledge of the program. If desired results is
observed, the programmer can then focus on fixing the code.
Programmers can first suppress a function call to identify

a faulty function and then suppress statements in the function
to identify faulty code. By reducing the suppression to finer
granularities, the root cause of failure can be narrowed to a
smaller code section.

B. State Inspection Interfaces
1) Dynamic Slicing: Dynamic slicing commands include

the following.
• record file:line on|off identifies the code re-
gion where dynamic slicing is required.

• slice stmt i variable|addr [size] |
register constructs a backwards dynamic slice for
variable, memory region [addr, addr+size) or register,
starting from the ith execution instance of stmt. If
no variable is specified, we generate a slice for all

the registers and variables used in current execution
instance of stmt. Our debugger assigns unique numbers
to each generated slice and feeds this number back to
the programmer.

• prune id list is used to prune the idth slice by
eliminating from the slice all the dependence edges
related to any variable or register in list.

• sbreak id s1[,s2, ...] is used to insert a break-
point at s1

th (and s2
th,...) statements in the idth slice.

The command sbreak all id inserts a breakpoint
at each statement in the idth slice. Breakpoints for
sbreak are triggered when specific execution instances
are encountered.

• sdelete id is used to delete the idth slice.
• info slices is used to print a detailed report of all
generated slices that have not been deleted.

• instance file:line prints the execution instance
of lineth line in file file.

With traditional debuggers, programmers navigate and con-
jecture the root cause over the whole execution trace [7]. With
our debugger, programmers can infer the root cause in the
pruned slices of variables with wrong values. These slices
are much smaller. The slice command is very efficient in
locating the root causes of bugs. It is common for a failing
program to exhibit abnormal control or data dependences that
can be quickly identified by examining a slice that captures
them. For example, for a null pointer dereference bug, we
can locate where the null pointer originates by examining the
backwards slice of the null pointer. The slice may also help
determine if the pointer was mistakenly set to null.
The slice command is also very useful for double free,

heap and stack buffer overflow bugs. These memory-related
bugs are notoriously hard to find because the source code of li-
brary functions is not available and the internal data structures
(heap and stack metadata) are transparent to programmers.
Our debugger traces into library calls and captures hidden
dependences among internal data structures. For example,
when a heap buffer overflow bug destroys an internal data
structure maintained by the heap allocator, a dependence path
from the place where the error is manifested to the overflow
point is found. Since library source code is unavailable to
programmers, we do not present dependences inside a library
code. Instead, we squash the dependence edges to statements
inside the library functions to their call sites. For example,
consider a stack smashing bug inside a library call that causes
a crash when the returning statement is executed. We report a
dependence edge from the returning statement to the call site
of library function.
During debugging, programmers often have high confidence

that the program performs correctly for some execution seg-
ments. In that case, they can focus on the most suspicious
region first. The record command allows recording the
concerned code region and slicing based on the partial def-use
information. Further, programmers may have high confidence
on the correctness of some values. For example, they may
know that a loop variable i has nothing to do with the failure.

The dynamic slice can be pruned to exclude the dependences
due to such values. The prune command removes depen-
dence edges corresponding to variables or special registers in
list. Thus, the record and prune commands greatly limit
slice sizes and save programmers’ time and effort.
The sbreak command facilitates setting breakpoints ef-

ficiently. It generates a breakpoint which is only triggered
when the specific execution instance in the slice is reached.
Programmers frequently step through the program execution
to reason about the control/data flow and find faulty code.
With the help of sbreak all, the programmer is able to
only step through the statements and execution instances in
the slice. Because all the statements influencing the value of
a variable are included in the slice, stepping only through the
statements in the slice reduces programmers’ effort.
2) Conditional Breakpoints: Existing debuggers (e.g.,

GDB) provide conditional breakpoints; however, the condition
must be defined at source code level that is not available to
programmers for library functions. Thus, conditional break-
points must be set at each call site, that is time consuming and
inflexible. Therefore we provide a command breakpoint
lib_func [if condition] that triggers a breakpoint
at the call site of lib func when condition is satisfied. The
condition allows selective and efficient capture of critical
library function invocations. The condition has the forms:

• if argN|ret==value triggers a breakpoint when the
Nth argument or return value equals the given value.

• if write/read/access addr [size] triggers a
breakpoint when the function writes/reads/accesses spec-
ified memory location.

Extended conditional breakpoints are very useful for memory-
related bugs. For example, there may be three possibilities if a
program crashes at a free— double free, unmatched free (i.e.,
freeing an unallocated pointer), or heap buffer overflow. The
programmer can check for a double-free bug using breakpoint
free if arg1==fail addr to see if this memory region has been
freed before. If a previous free with the same address is caught,
this indicates a double-free bug. Otherwise, if no previous
deallocation is found, programmers can use breakpoint malloc
if ret==fail addr to see if crash is due to deallocation of
unallocated memory. Programmers can use breakpoint str-
cpy/memcpy if arg1==addr or breakpoint strcpy/memcpy if
write addr to find if the specified memory location is modified
in strcpy/memcpy, to find buffer overflow bugs.

C. State Rollback Interfaces
The checkpoint command creates a checkpoint and the

debugger assigns an id to it. The command rollback id is
used to go back to a previous checkpoint and re-execute from
that point. The command info checkpoints prints the
list of checkpoints and cdelete id deletes a checkpoint.
Traditional checkpointing [34] records/restores mem-

ory/register states and is inadequate for us. First, if the
programmer rolls back the execution when recording is turned
on, the recorded def-use information will wrongly include
the rolled-back portion of the execution, thus slices generated

Set Checkpoints

Set Record points

Set Breakpoints

from

Perform State
Inspection

Compute Slices

Examine Slices

Prune Slices

Introduce State
Alteration Commands

Switch Commands

Suppress Commands

Begin point

Enabling Commands
Put State Inspection

Enabling Commands

Modify State Inspection

Select Begin point

 Rollback Execution

 to Begin point

Begin point = Program

Start

Execute Program

Fig. 1. Typical use of our debugger.

based on this information will be incorrect. Second, rolling
back the program state to a previous checkpoint will cause
inconsistency between the statement execution instances in the
previously-generated slice and in the restored program. Our
debugger extends the traditional incremental checkpointing
mechanism to support state alteration and state inspection.
In addition to recording (restoring) the memory and register
states, we also record (restore) the execution instances. This
extension maintains the consistency between generated slices
and program state.
The checkpoint and rollback commands are partic-

ularly useful for iterative debugging. Without state rollback,
programmers have to restart the execution every time they go
over the possible faulty area or when they want to modify the
program execution (e.g., altering input, switching a predicate,
or suppressing a function call). Moreover, on systems such
as Linux, the addresses of stack- and dynamically-allocated
regions vary from run to run due to address space random-
ization for security. Therefore it is troublesome to diagnose
bugs related to dynamically allocated regions (e.g., double
free and heap buffer overflow) and stack (e.g., stack smash).
Thanks to the checkpoint command, programmers can go
back to a previous point and rerun the program from there,
while keeping all addresses of dynamically allocated regions
unchanged. The rollback command keeps the addresses the
same when programmers rerun the program from a checkpoint.

III. USAGE OF DEBUGGING COMMANDS

In this section we first describe how different types of
commands are used during the debugging process and then
demonstrate their use in context of a set of hard-to-locate bugs

from real programs.
Figure 1 overviews the debugging process based upon the

supported commands. Let us assume that the execution of
the program has failed on an input. First, the programmer
enters commands that will later allow detailed state inspection
and program reexecution. Then the program is executed from
the beginning until execution stops due to an error or a
breakpoint is encountered. The user can now perform state
inspection, starting with computing a backward dynamic slice.
The programmer can prune the slice based on the knowledge
of the program; next, internal execution states can be probed
by setting breakpoints at statements in the slice. Based upon
the insights gained, the programmer may choose to use state
inspection commands and/or apply state alteration techniques
to further understand program behavior. By rolling back
the execution to an earlier checkpoint, and reexecuting the
program from that point, the programmer can observe the
impact of state alteration by examining program state. This
is an iterative process which eventually leads to location of
faulty code. This iterative process does not require program
recompilation or reexecution from the beginning.
Next we illustrate the process of finding a bug using

our debugger. Figure 2 shows a stack buffer overflow bug
(also referred to as stack smashing) in version 4.2.4 of the
ncompress program. Line numbers are shown on the left. The
bug is triggered when the length of the input filename (pointed
to by fileptr at line 880) exceeds the size of array tempname
defined at line 884 which stores the file name temporarily. The
program crashes when the comprexx function tries to return to
its caller because the return address of comprexx is overwritten
at line 886 in the strcpy function.
Without our debugger it is extremely difficult for pro-

grammers to figure out why the program crashes when it
executes the return statement (at line 946). First, because
the program counter is corrupted, existing debuggers (e.g.,
GDB) cannot report the exact crash point. Our debugger
reports the exact location by tracking the modification to the
program counter and reporting its current and previous values.
Second, the program crashes because a library call destroys
the auto-maintained stack, neither of which are visible to
the programmer; hence it is difficult to reason about the bug
from the source code. Our debugger captures the hidden data
dependence and presents it to the programmer.
Returning to our example, with our debugger the program-

mer knows that the program crashed at line 1252 (shown
in Figure 3) and the program counter is modified at this
crash point. Next, the program can be restarted and additional
checkpoints introduced for later use. The programmer can also
enable tracing at the beginning of main and turn it off at the
crash point to later get the whole slice.
With our enhanced dynamic slicing, if the programmer

omits the slice criterion, the debugger computes dynamic slices
for all registers and variables used in a statement. This is
very useful for memory-related bugs because there is no need
for the programmer to figure out which variables or memory
regions are used at the crash point. If we use the statement

Fig. 2. The main window of our debugger.

line number (1252) and instance (1) as the slice criterion, the
generated slice is as shown in Figures 2 and 3. All statements
in the slice are highlighted in yellow (e.g., lines 1252 and 886)
so programmers can focus on them.

To further help reason about the execution flow, our de-
bugger captures and presents the concrete control/data de-
pendence relationships. Our debugger also allows program-
mers to navigate the dependence edges and quickly iden-
tify unexpected control/data flow. To get the dependence
relationships, users click on the left expansion mark of a
statement in the slice. The dependence edges from state-
ment stmt1 are shown as follows: instance1 → file2 :
line2 instance2 due to Memory/ControlDependence,
which means that the instanceth1 execution of stmt1 is
data/control dependent on the instanceth2 execution of state-
ment at line2 in file2. For example, by clicking the left
expansion mark of line 886 in Figure 2, all the dependence
edges originating from this statement in slice 0 are shown
just below the source line (in red). From the first line just
below line 886, we can see that its first execution instance
is data-dependent on the first execution instance of statement
at line 815 due to variable fileptr[0]. The programmer can
navigate backwards along the dependence edge by clicking
the “Activate dependent statement” button (e.g., jump directly
to the definition point of fileptr[0] at line 815). Source
code navigation along dependence edges can greatly enhance

programmers’ debugging efficiency.

Following the dependence edges from the crash point of
line 1252, the programmer knows that it is data-dependent on
strcpy called at line 886 due to an unexpected write access
to addresses 0xbf8a9a8c, 0xbf8a9a88, and bf8a9a84
(see the first three dependence edges below line 1252 in
Figure 3). Experienced programmers will know that there is
something wrong with the invocation of strcpy. They can
rollback the program state to a previous checkpoint, and then
use execution suppression to suppress the abnormal data flow
and verify that the root cause is strcpy invocation.

Because the crash point is also control dependent on the
statement at line 827 (see fourth dependence edge below line
1252, and line 827 in Figure 5), less-experienced programmers
may navigate along this dependence edge. If the programmer
navigates to line 828, the invocation location of comprexx,
he can quickly narrow the faulty region by either applying
suppression (line 828, Figure 4) or predicate switching (lines
825 or 827, Figure 5). In both cases the crash goes away.
Therefore, the programmer will have high confidence that
comprexx is faulty. Note that comprexx may be invoked
multiple times, e.g., when ncompress detects multiple files in a
folder. Using our debugger, the programmer can easily control
which instance to alter. With the help of state alteration,
the programmer can quickly zoom into the faulty function
comprexx. Next, the programmer can rollback to a previous

Fig. 3. Slicing from the crash point.

Fig. 4. Execution suppression.

checkpoint and rerun the program up to the beginning of this
function, and then efficiently step through comprexx with
the help of sbreak all.
When using slicing, the programmer can use the prune

command to reduce the size of slices as shown in Figure 6.
For example, by pruning the slice by fileptr, 17% of
the original statements in slice 0 are pruned away, and 37%
of the dependence edges are eliminated. Programmers can
also generate slices limited to function comprexx by simply
recording just the execution of comprexx—doing so reduces
the number of statements in slice 0 by 60% and dependence
edges by 62%. Therefore, effective use of partial logging can
greatly reduce slice sizes. The above process can be repeated
for more complicated applications.

Additional Case Studies: Our case studies are based upon
five different kinds of memory-related bugs listed in Table II,
taken from BugNet [19]. The stack smashing bug was already
discussed; we summarize the four other kinds of bugs due to
space limitation.

Tidy-34132: This version contains a double-free memory
bug which manifests itself when the input HTML file con-
tains a malformed font element, e.g., of the form <font
color="red"<?font>. The relevant code for this bug is
presented in Figure 7. The program constructs a node structure
for each element (e.g., font) in the HTML file. An element
may contain multiple attributes corresponding to the attributes
field of the node structure, which is a pointer to the attribute
structure. The program pushes a deep copy of the node
structure into the stack when encountering an inline element
(i.e., font in our test case) by calling PushInline (line 057).
The deep copy is performed by duplicating the dynamically
allocated structure pointed by each field in the node structure
as well as fields of fields recursively. However, the program
makes a shallow copy of the php field in the attribute structure
by mistake in line 033 because of the missing statement, as
shown in line 039. All the copies of node structure pushed
into the stack by PushInline will be subsequently popped out
in function PopInline (line 097), where all the allocated regions
will be freed recursively. In some situations, due to the shallow
copy, the php fields of some node structures will contain
dangling pointers. If some element in the HTML file is empty
and can be pruned out, the program removes the node from the
markup tree and discards it by calling TrimEmptyElement (line
309) which eventually calls DiscardElement on line 316. Node

Fig. 5. Predicate switching.

Fig. 6. Pruning a slice.

deletion is just a reverse process of node deep copy, i.e., free all
the dynamic allocated memory regions in the node structure in
a recursive fashion, including the structures pointed by the php
fields. With some special HTML files as input, the program
crashes when it tries to trim the empty font element because
the php field of the attributes field of the font element has
been freed in PopInline.

Since the bug is very complicated, debugging is very
time-consuming with traditional debuggers. Programmers can
identify the bug much easier with the help of our debugger.
Although a double-free bug may manifest itself far away from
the second free, the program happens to crash at the second
free in our test case. As mentioned before, a program crash
at free can be caused by three kinds of bugs—double free,
unmatched free, or heap buffer overflow. The programmer
can use breakpoint free/malloc/memcpy/strcpy if condition to
identify the exact bug type. In our test case, the command
breakpoint free if arg1==second free ptr captures the po-
sition of the first free quickly. The zoom component of our
approach now reveals its power, as the reported crash point can
be far from the second free. The programmer uses the slice
command to get the dynamic slice of the memory units used
at the crash point and then pinpoint the root cause with the
state alteration, inspection and rollback interfaces introduced
in our debugger.

As we can see, fixing this bug (line 039 in istack.c) calls for
far more program comprehension than the positions of the two
free calls (line 136 in parser.c), which is the best bug report
that existing automatic debugging tools (e.g., Memcheck [22])
can achieve. Suppose the programmer has already known the
positions of the two free calls with the help of either our
debugger or automatic debugging tools. To figure out under
which condition the bug manifests itself and then remove
the defect, the programmer still needs to resort to debuggers.
This example illustrates a normal situation where automatic
debugging techniques lag far behind the requirements raised
from practical debugging. They can only be a supplement to
debuggers rather than a substitution.

The programmer can quickly gain program understanding
and fix bugs with the help of our debugger in this case.
Suppose the programmer has known the position of the two
free’s, with the help of either our debugger or other automatic

TABLE II
OVERVIEW OF BENCHMARKS.

Program Name LOC Error Type Error Location

ncompress-4.2.4 1.4K Stack Smashing compress42.c:886
tidy-34132 35.9K Double Free istack.c:031
bc-1.06 10.7K Heap Buffer Overflow storage.c:176
ghostscript-8.12 281.0K Dangling Pointer Use ttobjs.c:319
tar-1.13.25 28.4K Null Pointer Use incremen.c:180

debugging tools. First, the programmer can generate a dynamic
slice for the two variables used in the first and second free
respectively. Then she can easily find out where the shallow
copy comes from by following the data dependence edges
related to those variables. For example, by following only
two hops along the data dependence edges in the generated
slice for the variable used in the first free, she can find out
that the shallow copy comes from line 033. However, the
DupAttrs function is expected to generate a deep copy of a
given attribute, then the programmer figures out that some
statements which should generate the deep copy is missed in
this function and she can fix this bug quickly.

Of course, the programmer can also leverage state alteration
to gain more program comprehension and then fix the bug.
For example, she can use the switch command to switch
some predicates in the dynamic slice of the crash point (the
second free) for better understanding the program behavior
and crash condition. For this particular bug, switching the
last execution instance of the predicate at line 132, 142, or
311 will make the program function properly. Hence, we
can infer that a combination of those predicate is the bug
manifestation condition and the bug will disappear with any
predicate unsatisfied. The programmer can also suppress some
functions in the slice of the crash point to isolate the bug.
Suppression of the final invocation of TrimEmptyElement,
PopInline, PushInline or DiscardElement in our test case can
eliminate the crash, which suggests that an abnormal data
flow is avoided by following any of the execution suppression.
From the result of state alteration, the programmer will know
that the program crashes if the last processed element is an
inline and prunable element. This provides valuable hints to
the programmer and helps fix the bug.

Bc-1.06: This version fails with a memory corruption error
because a variable v count is misused (instead of the correct
a count). The program performs dynamic array expansion, but
due to the misuse, the heap object arrays is overflowed and
the metadata maintained by the heap allocator is corrupted.
Because of the metadata corruption, the programmer has
difficulty getting any clue using standard debugging methods;
with our debugger, checkpointing and reexecution combined
with dynamic slicing reveal a hidden dependence in the array
expansion and then via suppression the root cause is revealed.

Ghostscript-8.12: This version contains a dangling pointer
dereference bug. Using checkpointing and suppression, users
of our debugger quickly find out that suppressing function
i free object causes the bug to go away; slicing the metadata
that is supposed to be freed by i free object reveals an illegal
write to it earlier on—the root cause of the bug.

Tar-1.13.25: This version dereferences a NULL pointer

istack.c:
025: AttVal *DupAttrs(TidyDocImpl* doc, AttVal *attrs) {
033: *newattrs = *attrs;
034: newattrs → next = DupAttrs(doc, attrs → next); ...

/* miss the following statement*/
039: newattrs → php=attrs → php? \

CloneNode(doc, attrs → php):NULL;
041:}
057: void PushInline(TidyDocImpl* doc, Node *node) {...
092: istack → attributes = DupAttrs(doc, node → attributes); }
097: void PopInline(TidyDocImpl* doc, Node *node) {
142: if (lexer → istacksize > 0) {...
147: while (istack→attributes){ ...
151: FreeAttribute(doc, av); }
parser.c:
128: Node* DiscardElement(TidyDocImpl* doc, Node *element) {
132: if (element){...
136: FreeNode(doc, element); }
140:}
309: Node *TrimEmptyElement(TidyDocImpl* doc, Node *element) {
311: if (CanPrune(doc, element)){...
316: return DiscardElement(doc, element); }

Fig. 7. Double Free example.

(variable entry) which causes a crash. Dynamic slicing of entry
indicates earlier suspicious predicates; switching one of them
suppresses the bug and reveals that the predicate is incorrect—
the root cause of the bug.
In the above case studies we have shown the benefits of

our approach in context of several widely-used applications
containing different kinds of bugs.

Remote
Debugging
Protocol

G
D

B

Program Binary

Load Symbol

Dynamic
Slicing

Switch&
Suppress

Checkpoint
&Rollback

Breakpoint

Pin

Program& Input

K
D

b
g

Fig. 8. Components of our debugger.

IV. IMPLEMENTATION

The prototype implementation of our interactive debugging
strategy, shown in Figure 8, consists of GDB-based [7] and
Pin-based [16], [33] components. The user interfaces with the
GDB component via a command line interface or a KDbg [35]
based graphical interface. The Pin-based component imple-
ments our new debugging commands. The GDB component
communicates with the Pin-based component via the remote
debugging protocol and it also interprets debug-information
in the binary. The Pin-based component implements the new
capabilities via dynamic binary instrumentation. The extended
KDbg provides an intuitive interface for switching predicates,
suppressing execution, setting breakpoints, turning recording
on/off, and inspecting and stepping through slices.

TABLE III
RUN CHARACTERISTICS

Program Test Case Description Exec. Instr. Baseline(sec)

ncompress compress a folder(148KB) 10278947 0.33
tidy check a HTML file(104 lines) 2125726 0.56
bc interpret a source file(121 lines) 1846427 0.44
ghostscript PS to PDF conversion(18KB) 3909749 0.47
tar create an archive(789K) 4654490 0.51

TABLE IV
SLICING TIME AND SPACE OVERHEAD.

Program Baseline Pay-Once Time (sec) and Space (MB) Overhead Slice Time Overhead
Time DU CD LP (sec)
(sec) Time Space Time Space Time AVG MIN MAX

ncompress 0.33 5.83 93.63 2.88 63.19 3.28 37.19 13.56 71.52
tidy 0.56 9.45 12.81 4.62 17.60 0.24 31.14 11.43 46.59
bc 0.44 5.58 11.52 2.63 13.51 0.20 14.44 11.53 21.70
ghostscript 0.47 8.28 24.43 4.93 25.58 0.53 20.44 2.95 45.04
tar 0.51 7.23 24.78 3.33 25.14 0.06 6.69 7.74 15.04

Predicate switching. Upon receiving switch commands,
we use Pin to first invalidate existing instrumentation involving
specified code regions and then reinstrument the code to switch
the results of predicates by swapping their fall-through and
jump targets.

Execution suppression. After the programmer issues a
suppress command, existing instrumentation is invalidated
and new instrumentation is added to skip over the suppressed
execution instance of the instruction. The instruction is exe-
cuted normally if it is not the suppressed execution instance.
If all instances are to be suppressed, the instruction is deleted
using Pin.

Dynamic slicing. We implement the slice command by
instrumenting the code to record the PC, dynamic instance, as
well as memory region(s) and register(s) read and written by
instructions. We instrument both user and library code. We turn
off recording when record off is encountered. For limiting
the time and space overhead of dynamic data dependence
graph construction, we use the limited preprocessing (LP)
method by Zhang et al. [31]. For accurately capturing dynamic
control dependences, we use the online algorithm by Xin
and Zhang [27]. The immediate postdominator information is
extracted using Diablo [5].

Conditional breakpoint. To implement the extended con-
ditional breakpoint command we invalidate the existing in-
strumentation and then reinstrument each function call to first
check whether the function name is the same as the specified
lib func. If so, the instrumentation code evaluates the given
condition (if any) and triggers a generated breakpoint if it is
satisfied.

Checkpointing and rollback. Undo-log based incremen-
tal checkpoints [34] are adopted to keep only the modifi-
cations between two checkpoints and save space. When a
checkpoint command is received, we first save the state
of all registers maintained by Pin. Subsequently we record the
original value of each modified memory cell by instrumenting
each memory write operation. Upon a rollback command,
we restore the logged values to their memory cells and
registers. Because Pin cannot track into system calls, we
handle system calls and I/O as follows. The system-call side-
effects are detected by analyzing commonly-used system calls
and recording the memory regions read/written by each system
call. For file I/O, whenever a checkpoint is generated, we
record the file pointer positions for all open file descriptors.
When the program is rolled-back, we restore file pointer
positions, so file reads and writes proceed from correct offsets
on reexecution. We do not handle interactive I/O specially,
but rather offer the expected semantics for reexecution. For

example, for the console, after a roll-back, the user must type
the input again, and output messages will be printed again. In
our experience, this approach works well in practice.

V. PERFORMANCE EVALUATION

Next we show that the time and space overheads for
state alteration, inspection, and rollback are acceptable for
interactive debugging. To quantify these overheads, we have
conducted experiments with the programs from Table II. Since
our objective is to measure time and space costs, we used
a passing test case to run each application to completion.
Table III shows the run characteristics including number of
executed instructions and the baseline running time under Pin
without instrumentation. All experiments were conducted on
a DELL PowerEdge 1900 with 3.0GHz Intel Xeon processor
and 3GB RAM, running Linux, kernel version 2.6.18.

Slicing overhead. The time and space overhead for slicing
are presented in Table IV. For each program, we turned on
the recording to collect definition/use information and detect
dynamic control dependences for the whole execution. We
then applied limited preprocessing (LP) to the generated def-
use information to get a summary of all downward exposed
definitions of memory addresses and registers for each trace
block. Using the generated trace and summary, we computed
slices for the last twenty statements.
The Pay-Once Time and Space Overhead columns 3–7

in Table IV show the time and space overhead which is
only incurred once and amortized over all subsequent slice
computations. The pay-once time overhead is further broken
down into time overhead for recording definition/use (DU),
control dependence (CD), and preprocessing of the generated
def-use information (LP). The pay-once space overhead is bro-
ken down into space overhead for definition/use information
recording (DU) and control dependence (CD) as the space
overhead for LP is relatively insignificant.
The average (AVG), minimum (MIN), and maximum (MAX)

slice computation times are given in the Slice Time Overhead
column. We observe that the time overhead for slice is not
greatly dependent on the position of the slice criterion. Instead,
it is dominated by the nature of slice criterion and program
behavior. Most slice computations can be done in 1 min.,

TABLE V
TIME AND SPACE OVERHEAD: DU & CD

Program MS/K instructions KB/K instructions

ncompress 0.85 15.62
tidy 6.62 14.65
bc 4.45 13.88
ghostscript 3.38 13.10
tar 2.27 10.98

average 3.51 13.65

TABLE VI
CHECKPOINTING AND ROLLBACK TIME AND SPACE OVERHEAD.

Program Num. of Time MS/K Space KB/K Rollback Time
Checkpoints (sec) instructions (KB) instructions (millisecond)

ncompress 11 8.93 0.87 28547.6 2.78 356.17
tidy 3 9.31 4.38 233.4 0.11 4.02
bc 2 6.06 3.28 45.1 0.02 0.04
ghostscript 4 8.52 2.38 788.9 0.20 12.30
tar 5 7.40 1.80 189.6 0.04 0.22

Fig. 9. Runtime savings due to rollback.

which is acceptable considering the large amount of time spent
on debugging by programmers.
The time and space overhead of both def-use information

recording and control dependence detection per 1K instruc-
tions are given in the second and third columns of Table V,
respectively. The time overhead ranges from 0.85ms to 6.62ms
per 1K instructions and the average overhead is 3.51ms per
1K instructions. The space overhead ranges from 10.98KB
to 15.62KB per 1K instructions and the average overhead is
13.65KB per 1K instructions. We believe that the pay-once
time and space overheads for dynamic slicing are acceptable.

Checkpointing overhead. The time and space overhead of
checkpointing are given in Table VI. This data corresponds
to checkpointing every one million instructions. The second
column shows the number of checkpoints generated. The total
program execution time with incremental checkpointing is
given in the third column. The fifth column presents the total
space overhead of the generated checkpoints. The time needed
to rollback a program from the end to the beginning, which
represents the largest distance the programmer can rollback
the program, is shown in the last column. The benchmarks
reveal that, the larger the size of the generated checkpoints, the
longer it takes to rollback the program; ncompress incurs the
largest space overhead for the 11 checkpoints and it requires
the longest time to rollback the program to the beginning.
The time and space overhead of incremental checkpointing

per 1K instructions is given in the fourth and sixth columns
of Table VI, respectively. As we can see, the time overhead
ranges from 0.87ms to 4.38ms per 1K instructions, while
the space overhead ranges from 0.02KB to 2.78KB per 1K
instructions. Compared to the time and space overhead of
recording and control dependence shown in Table V, the
time and space overhead per 1K instructions for incremental
checkpointing is much lower. This is because only memory
write instructions need to be instrumented for incremental
checkpointing, while both memory and register read and write
instructions need to be instrumented for recording.

Efficiency of state rollback. As mentioned in Section II-C,
our state rollback command replaces the rolled-back part of
execution by altered program execution (e.g., due to feeding
it a different input or switching control flow) in the log. Thus,
programmers have no need to rerun the program from the be-
ginning. Of course, to rollback the program state, programmers
have to pay the checkpointing overhead during the initial full
run. In this experiment, we emulate a traditional debugging
process and compare the running time with and without use of
state rollback. We consider a run of bc that takes 118 seconds

in null pin mode and executes 36.2 × 1010 instructions. A
checkpoint is made every 2 ∗ 1010 instructions leading to 19
checkpoints numbered from 0 to 18. We compare the execution
time with use of rollback to different checkpoints (CK 3, CK
11, CK 15, CK 17, CK 18) for varying number of times (1
through 6) with the execution time without use of rollback. The
execution times with rollback, normalized with respect to the
corresponding times without rollback, are shown in Figure 9.
We observe that the execution time savings due to use of
rollback are substantial and higher for more recent checkpoints
(e.g., CK 18) and the savings increase with the number of
times rollback is performed (e.g., rollback six times). However,
if the rollback is performed to an early checkpoint (e.g., CK
3), its benefit disappears.

TABLE VII
SUPPRESSION TIME OVERHEAD.

Program Baseline Suppress with Suppress with
(sec) Recording and Checkpointing

Checkpointing (sec) Only (millisecond)

ncompress 0.33 0.60 (182.13%) 3.33 (1.01%)
tidy 0.56 0.13 (22.51%) 24.00 (4.29%)
bc 0.44 0.23 (52.02%) 6.67 (1.52%)
ghostscript 0.47 0.35 (74.04%) 24.80 (5.28%)
tar 0.51 0.09 (18.21%) 1.85 (0.36%)

State alteration overhead. The time overhead of execution
suppression is given in Table VII. We consider two scenarios.
The first scenario simulates the case where the programmer
suppresses a statement with both recording and incremental
checkpointing turned on, while in the second scenario only
incremental checkpointing is turned on. The data presented
is averaged over suppressing 10 statements spread around the
middle of the execution. We observe that performing execution
suppression in the first scenario incurs substantially higher
runtime overhead. This is because in this scenario an execution
suppression command invalidates many existing instrumen-
tations, leading to more future reinstrumentation costs, and
higher runtime overhead. From Table VII, we can see that
the average time overhead incurred by execution suppression
ranges from 0.36% to 182.13% compared to the baseline.
This overhead is acceptable and a worthy trade-off for the
benefits of our approach. We omit presenting the overhead for
predicate switching as it is similar to the overhead of execution
suppression due to similarity in the implementation.

VI. RELATED WORK

Debugging Assistance. Dynamic slicing has been widely
recognized as helpful for debugging [15], [31], [27], [29]. The
Whyline [15] tool allows programmers to ask questions about
program behavior and it responds with causal chains of events.

Techniques have been developed to automatically generate
breakpoints based upon automated fault location [10], [29].
Chern et al. [3] improve breakpointing by allowing control-
flow breakpoints. The vsdb interactive debugger uses symbolic
execution to display all possible symbolic execution paths
from a program point [9]. Coca [6] allows programmers to
query the execution trace. However, none of these approaches
take advantage of state alteration.

Fault Localization. State alteration has been used to au-
tomatically localize faults [30], [13], [2]. Zhang et al. [30]
proposed predicate switching to constrain the search space of
program state changes explored during bug location. Corrupted
memory location suppression [13] attempts to identify the root
cause of memory bugs by iteratively suppressing the cause of
the memory failure. Chandra et al. [2] report repair candidates
based on value replacement. Gu et al. [8] propose a bug query
language allowing programmers to fix their bugs by referring
to similar resolved bugs.

Delta debugging [4], [28] has been applied to automati-
cally identify cause-effect chains [28] and recognize cause
transitions [4]. Renieris and Reiss [25] identify faulty code
by considering differences in statements executed by passing
and failing runs. Tarantula [14] prioritizes statements based on
their appearance frequency in failing runs versus passing runs.
In general, these approaches rely on a large test suite that may
not be available in practice. Limitations of these techniques
(e.g., commands) motivate our work.

Memory-related Fault Detection, Tolerance, and Cor-
rection. Purify [11] and Valgrind [22] detect the pres-
ence of memory bugs via dynamic binary instrumentation.
CCured [21] uses type inference to classify pointers and
applies dynamic checks according to the classfication for
memory safety. Rx [24] recovers from a crash by rolling
back execution and reexecuting after changing the execution
environment. AccMon [32] detects memory-related bugs by
capturing violations of program counter based invariants.
DieHard tolerates memory errors through randomized memory
allocation and replication [1]. Exterminator dynamically gen-
erates runtime patches based upon runtime information [23].
Nagarakatte et al. use compile-time transformation for spa-
tial [17] and temporal safety [18] of C.

VII. CONCLUSION

We have presented a novel interactive debugger that offers
powerful state alteration and state inspection capabilities. State
alteration commands enable programmers to narrow down the
potential faulty code and ascertain their conjectures efficiently.
State inspection commands enable programmers to compre-
hend program behavior and the nature of the bug rapidly. Case
studies on real reported bugs as well as performance evaluation
demonstrate the effectiveness and efficiency of our debugger.

ACKNOWLEDGMENT

This research is supported by the National Science Founda-
tion grant CCF-0963996 and a grant from Intel Corporation
to the University of California, Riverside.

REFERENCES
[1] Berger, E. D. and Zorn, B. G. DieHard: Probabilistic memory safety for
unsafe languages. PLDI, pages 158–168, 2006.

[2] Chandra, S., Torlak, E., Barman, S., and Bodik, R. Angelic debugging.
ICSE, pages 121–130, 2011.

[3] Chern, R. and De Volder, K. Debugging with control-flow breakpoints.
AOSD, pages 96–106, 2007.

[4] Cleve, H. and Zeller, A. Locating causes of program failures. ICSE,
pages 342–351, 2005.

[5] De Bus, B., De Sutter, B., Van Put, L., Chanet, D., and De Bosschere,
K. Link-time optimization of arm binaries. LCTES, pages 211–220, 2004.

[6] Ducassé, M. Coca: an automated debugger for c. ICSE, pages 504–513,
1999.

[7] GDB 2011. http://www.gnu.org/software/gdb/.
[8] Gu, Z., Barr, E., and Su, Z. Bql: capturing and reusing debugging
knowledge. ICSE, pages 1001–1003, 2011.

[9] Hähnle, R., Baum, M., Bubel, R., and Rothe, M. A visual interactive
debugger based on symbolic execution. ASE, pages 143–146, 2010.

[10] Hao, D., Zhang, L., Zhang, L., Sun, J., and Mei, H. Vida: Visual
interactive debugging. ICSE, pages 583–586, 2009.

[11] Hastings, R. and Joyce, B. Purify: Fast detection of memory leaks and
access errors. USENIX Winter Tech. Conf., pages 125–136, 1992.

[12] IBM tutorial on debugging 2011. IBM tutorial on debugging–Debugging
using comments.

[13] Jeffrey, D., Gupta, N., and Gupta, R. Identifying the root causes of
memory bugs using corrupted memory location suppression. ICSM, pages
356–365, 2008.

[14] Jones, J. A. and Harrold, M. J. Empirical evaluation of the tarantula
automatic fault-localization technique. ASE, pages 273–282, 2005.

[15] Ko, A. and Myers, B. Debugging reinvented:asking and answering why
and why not questions about program behavior. ICSE, pages 301 –310,
2008.

[16] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,
Wallace, S., Reddi, V. J., and Hazelwood, K. Pin: building customized
program analysis tools with dynamic instrumentation. PLDI, 2005.

[17] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. Softbound:
highly compatible and complete spatial memory safety for c. PLDI, 2009.

[18] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. Cets:
compiler enforced temporal safety for c. ISMM, pages 31–40, 2010.

[19] Narayanasamy, S., Pokam, G., and Calder, B. BugNet: Continuously
recording program execution for deterministic replay debugging. ISCA,
pages 284–295, 2005.

[20] ncompress 2011. Ncompress: a fast, simple lzw file compressor.
http://ncompress.sourceforge.net/.

[21] Necula, G. C., McPeak, S., and Weimer, W. CCured: type-safe
retrofitting of legacy code. POPL, pages 477–526, 2002.

[22] Nethercote, N. and Seward, J. Valgrind: A framework for heavyweight
dynamic binary instrumentation. PLDI, pages 89–100, 2007.

[23] Novark, G., Berger, E. D., and Zorn, B. G. Exterminator: Automatically
correcting memory errors with high probability. PLDI, pages 1–11, 2007.

[24] Qin, F., Tucek, J., Zhou, Y., and Sundaresan, J. Rx: Treating bugs as
allergies – a safe method to survive software failures. ACM TOCS 25, 3,
Article 7 (1–33), 2007.

[25] Renieris, M. and Reiss, S. Fault localization with nearest neighbor
queries. ASE, pages 30–39, 2003.

[26] Visual Studio Debugger 2011.
[27] Xin, B. and Zhang, X. Efficient online detection of dynamic control
dependence. ISSTA, pages 185–195, 2007.

[28] Zeller, A. Isolating cause-effect chains from computer programs. FSE,
pages 1–10, 2002.

[29] Zhang, C., Yan, D., Zhao, J., Chen, Y., and Yang, S. BPGen: an
automated breakpoint generator for debugging. ICSE, 2010.

[30] Zhang, X., Gupta, N., and Gupta, R. Locating faults through automated
predicate switching. ICSE, pages 272–281, 2006.

[31] Zhang, X., Gupta, R., and Zhang, Y. Precise dynamic slicing algorithms.
ICSE, pages 319–329, 2003.

[32] Zhou, P., Liu, W., Fei, L., Lu, S., Qin, F., Zhou, Y., Midkiff, S. P., and
Torrellas, J. AccMon: Automatically detecting memory-related bugs via
program counter-based invariants. MICRO, pages 269–280, 2004.

[33] Lueck, G., Patil, H., Pereira, C. PinADX: an interface for customizable
debugging with dynamic instrumentation. CGO, pages 114–123, 2012.

[34] King, S. and Dunlap, G. and Chen, P. Debugging operating systems
with time-traveling virtual machines. ATEC, pages 1–1, 2005.

[35] Kdbg homepage http://www.kdbg.org/.

