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ABSTRACT
Predicting bug-fix time is useful in several areas of software evolu-
tion, such as predicting software quality or coordinating develop-
ment effort during bug triaging. Prior work has proposed bug-fix
time prediction models that use various bug report attributes (e.g.,
number of developers who participated in fixing the bug, bug sever-
ity, number of patches, bug-opener’s reputation) for estimating the
time it will take to fix a newly-reported bug. In this paper we take a
step towards constructing more accurate and more general bug-fix
time prediction models by showing how existing models fail to val-
idate on large projects widely-used in bug studies. In particular, we
used multivariate and univariate regression testing to test the pre-
diction significance of existing models on 512,474 bug reports from
five open source projects: Eclipse, Chrome and three products from
the Mozilla project (Firefox, Seamonkey and Thunderbird). The
results of our regression testing indicate that the predictive power
of existing models is between 30% and 49% and that there is a
need for more independent variables (attributes) when constructing
a prediction model. Additionally, we found that, unlike in prior re-
cent studies on commercial software, in the projects we examined
there is no correlation between bug-fix likelihood, bug-opener’s
reputation and the time it takes to fix a bug. These findings indicate
three open research problems: (1) assessing whether prioritizing
bugs using bug-opener’s reputation is beneficial, (2) identifying at-
tributes which are effective in predicting bug-fix time, and (3) con-
structing bug-fix time prediction models which can be validated on
multiple projects.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids; D.2.9 [Software Engineering]: Management—Time es-
timation

General Terms
Economics, Experimentation, Human Factors, Management, Mea-
surement

Keywords
Bug report triage, issue tracking, statistical model, bug-fix time
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1. INTRODUCTION
Predicting bug-fix time is useful in several areas of software evo-

lution, such as predicting software quality [9] or coordinating effort
during bug triaging [8]. To this end, prior efforts have constructed
bug-fix time prediction models, based on machine learning algo-
rithms, 1 on both open source and commercial projects.

Prior studies on open source projects [8, 5, 1] have used various
bug report attributes (e.g., number of developers involved in fixing
the bug, bug severity, number of comments) as features for building
predictors. On commercial software, an empirical study by Guo et
al. [6] has found that the likelihood that a bug reported would be
fixed, and the time taken to fix it, are highly correlated with the
bug-opener’s reputation in the project community—in other words,
a bug opened by a developer who has been successful in fixing
bugs she/he has reported in the past has a higher likelihood of be-
ing fixed, and is fixed faster. Hooimeijer et al. [8] also used bug-
opener’s reputation to build a linear model for predicting bug-fix
time for Mozilla Firefox, in addition to other attributes, like bug
severity. However, they did not perform an analysis to show if
there is a correlation between bug-fix time and bug-opener’s rep-
utation. In summary, all these previous studies have focused on
feature-based classification models for predicting bug-fix time. To
find out the predictive power of existing models, in this paper we
measure the significance of the attributes these models use; we per-
form both univariate and multivariate regression analyses to capture
the significance of the features selected in building prior models.

We used a total of 512,474 bug reports from Chrome, Eclipse and
three products from the Mozilla project (Firefox, Seamonkey and
Thunderbird) for our analysis. We chose these projects because (1)
they are active, real-world projects with a sizable code base, and
large numbers of users and developers, and (2) bug reports from
these projects have been used previously in several studies involv-
ing bug report analyses [3, 13, 2, 4]. We used multivariate regres-
sion testing to point out the low predictive power of existing mod-
els; we found that goodness of fit varied from 0.30 to 0.49, which
indicates that additional attributes are needed to increase prediction
accuracy (Section 4.2.1). We found, via univariate regression test-
ing, that most bug report attributes are not correlated with the like-
lihood of a bug getting fixed, or with bug-fix time (Section 4.2.2).
Similarly, we tested whether there exists any relationship between
the bug-opener’s reputation, the likelihood of the bug getting fixed,
and the bug-fix time (i.e., whether the bug-fix time is shorter when
the bug-opener has a higher reputation) in open source projects.
We found that in open source projects each bug receives equal at-

1A machine learning algorithm (or a classifier in this case) can be
trained using input attributes and desired output classes; after train-
ing, when presented with a set of input attributes, the classifier pre-
dicts the most likely output class.
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tention, regardless of bug opener’s reputation (Section 4.2.3).
The results of our empirical investigation put forward three open

research questions: (1) is prioritizing bugs based on bug-opener’s
reputation, as observed in commercial projects, beneficial for main-
tenance?, (2) can we find attributes which correlate highly with
bug-fix time?, and (3) can we construct bug-fix time prediction
models that can be validated on multiple projects?

2. RELATED WORK
Guo et al. [6] performed an empirical study to characterize fac-

tors that determine which bugs get fixed in Windows Vista and
Windows 7. They found that bugs reported by people with higher
reputation were more likely to get fixed, as were bugs opened by
people on the same development team and working in geographi-
cal proximity; we tested whether reputation has any influence on
bug-fix likelihood in open-source software. We found that there
is no linear relationship between a bug-opener’s reputation and the
likelihood of a bug being fixed.

Hooimeijer et al. [8] designed a model that uses bug report at-
tributes such as bug severity and bug-opener’s reputation to predict
whether a bug report will be triaged within a given amount of time.
They used bug reports from the Mozilla Firefox project to test their
model, and report around 75% prediction accuracy. Panjer [12]
used several different data mining models to predict Eclipse bug
lifetimes by training the models using various bug report attributes.
We use a wider range of open source projects and show that bug-
opener reputation and other attributes used in these prediction mod-
els do not correlate highly with bug-fix time, which suggests there
is room for improving the prediction accuracy of prior models [7].

Anbalagan et al. [1] presented results from an empirical study on
72,482 bug reports from nine releases of Ubuntu, a popular Linux
distribution. They found that there is a strong linear relationship
between the number of people participating in a bug report and bug-
fix time, and proposed a linear regression model to predict bug-fix
time; they report an R2 of up to 0.98. Kim et al. [9] computed
the bug-fix time of files in ArgoUML and PostgreSQL by identi-
fying when bugs are introduced and when they are fixed. They
reported two bug-fix time statistics: average bug-fix time, and files
whose bug-fix time were above average and suggested that the files
which took above average time to fix should be refactored. Giger et
al. [5] studied six projects: Eclipse JDT, Eclipse Platform, Mozilla
Core, Mozilla Firefox, Gnome GStreamer and Gnome Evolution.
They found that using post-submission data of bug reports (i.e.,
number of comments made to a bug and number of developers in-
volved) improves bug-fix time prediction accuracy. Additionally
their model could predict how promptly a new bug report will re-
ceive attention. We measured how attributes used by these predic-
tion models correlate with bug-fix time, and found correlation val-
ues to be low. Mockus et al. [11] performed an empirical study to
report the bug-fix time trends in Apache and Mozilla. For Mozilla,
their bug reports cover the period July 1998–July 2000, whereas our
Mozilla analysis covers the period May 1998–March 2010. They
found that on average, bugs of priority 1 or 3 are resolved in 30
days or less, bugs of priority 2 are resolved in 80 days or less, while
the median resolution time of bugs of priority 4 and 5 exceeds 100
days. In our study we look at a wider range of bug history, and
more projects, to test how various factors affect bug-fix time.

3. DEFINITIONS
Developer reputation. Similar to Hooimeijer et al. [8] and
Guo et al. [6], we used the following metric to quantify reputation:

Reputation(D) =
Opened(D) ∩ Fixed(D)

Opened(D) + 1
(1)

As shown in Equation 1, the reputation of a developer is measured
as the ratio of the number of bugs a developer D has opened and
fixed to the number of bugs that D has opened, plus one. The sig-
nificance of the “+1” in the denominator is to help prevent develop-
ers who have fixed fewer bugs achieve artificially high reputations.

Bug severity. To indicate the urgency of a bug, bugs are assigned
a severity. For example in Mozilla and Eclipse, bug severity is
a number from 1 to 7 which corresponds to “blocker,” “critical,”
“major,” “normal,” “minor,” “trivial,” and “enhancement.”

Number of developers. If more developers are involved in the
bug-fix process, i.e., the bug is tossed from one developer to another
before it is finally resolved, the bug-fix time increases, as shown in
previous work [3].

Attachments. An increase in number of attachments (patches
submitted by developers to fix a bug) should increase the bug-fix
time, as each patch has to go through the review process before the
bug status can be confirmed to be resolved.

Dependencies. When a bug depends on other bugs, e.g., bug
B1 manifests itself only if bugs B2 and B3 are present in the source
code, it is important to resolve B2 and B3 in order to completely
resolve B1. This will therefore increase the time taken to fix B1.

4. EXPERIMENTS
We now present our data set, hypotheses, and results.

4.1 Data Set
For conducting our experiments we used bug reports from May

1998 to March 2010 for three Mozilla projects: 129,053 bug re-
ports from Firefox, 19,885 bug reports from Seamonkey and 7,276
bug reports from Thunderbird. For Eclipse, we considered bugs
numbers from 1 to 306,296 (October 2001 to March 2010). For the
Chrome project, we studied 49,964 bug reports (August 2008 to
November 2010). We used bug reports from all projects for quan-
tifying the effect of bug-opener’s reputation on the bug-fixing pro-
cess (Section 4.2.3). We used bug reports from Mozilla and Eclipse
only 2 for the remaining experiments (Section 4.2.1 and 4.2.2).

4.2 Hypotheses and Results
In this section we test the relationship between bug report at-

tributes (that were used in prior work for building bug-fix time pre-
diction models) and bug-fix time, via univariate and multivariate
regression testing. We then test the influence of the bug-opener’s
reputation on the bug-fix process.

4.2.1 Multivariate Regression Testing
Multivariate regression is a technique that estimates how well a

collection of independent variables can predict a dependent vari-
able. Multivariate regression testing yields the coefficient of deter-
mination (R2) that provides a measure of how well future outcomes
are likely to be predicted by the model, an F -value which indicates
the accuracy of the model, and a corresponding p-value (derived
from the F -value). In addition, each independent variable has an
associated t-value that indicates its statistical significance (for uni-
formity, instead of t-values we report corresponding p-values).

Results. We performed a multivariate regression test where the
dependent variable was bug-fix time, in days, and the indepen-
2Mozilla and Eclipse use Bugzilla as bug tracker, while Chrome
uses the Google Code bug tracker. Bugzilla archives information
about patches and the list of developers that the bug was assigned
to, sorted by date, which contains the data required for our regres-
sion testing; Google Code does not provide this information.
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Project Adjusted R2 F -Value p-value p-value for independent variables
Number of Severity Attachments Dependencies
developers

Firefox 0.401 1857.51 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Thunderbird 0.498 985.11 <0.0001 <0.0001 <0.0001 <0.0001 0.0292
Seamonkey 0.366 2473.95 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Eclipse 0.301 7079.16 <0.0001 <0.0001 <0.0001 <0.001 <0.0001

Table 1: Multivariate regression results; the dependent variable is bug-fix time, in days.

Attribute Correlation with attribute
(FF=Firefox, SM=Seamonkey, TB=Thunderbird, EC=Eclipse)

Number of developers Severity Attachments Dependencies
FF SM TB EC FF SM TB EC FF SM TB EC FF SM TB EC

Days 0.625 0.601 0.692 0.526 -0.186 -0.178 -0.207 -0.253 0.125 0.164 0.153 -0.001 0.121 0.115 0.157 0.035
Developers -0.187 -0.210 -0.197 -0.235 0.304 0.324 0.371 0.144 0.271 0.243 0.308 0.194
Severity -0.066 -0.134 -0.132 -0.009 -0.061 -0.039 -0.08 -0.056
Attachments 0.394 0.211 0.398 0.128

Table 2: Univariate regression results.

dent variables were: bug severity, number of attachments (patches),
bug dependencies and number of developers involved in the bug-fix
process. In Table 1 we present the results of our multivariate regres-
sion testing; the first column contains the project name, the second
column shows goodness of fit, the third column shows the F -value,
and the remaining columns contain the p-values, for the model and
for each independent variable. We find that the R2 ranges between
30% and 49% for the projects we consider, which denotes the low
predictive power of the models. For example, for Firefox (row 2)
the R2 value is 0.4016, which means that the independent variables
used in building the regression model only contribute to 40.16%
of accurate prediction. However, the low p-values associated with
the independent variables indicate that all features contribute to the
prediction model, but more features (independent variables) would
need to be incorporated to increase the goodness of fit.

Conclusions. In summary, the variables used in prior work for
building prediction model are useful, however the low R2 values
indicate that more independent variables need to be used for im-
proving the prediction accuracy of the model.

4.2.2 Univariate Regression Testing
Machine learning research [7] has shown that effective feature

sets should contain features that are highly correlated with (predic-
tive) of the output class, but are uncorrelated with (not predictive
of) each other. Moreover, prior efforts [1] have used linear univari-
ate prediction models. Therefore, in addition to multivariate regres-
sion testing, we also perform univariate regression testing to find
out how features selected in prior classification-based bug-fix time
prediction models correlate with each other and with bug-fix time.
Univariate regression analyses (e.g., Pearson and Spearman’s) re-
turn correlation values and an associated |t|-value with each cor-
relation, to show the statistical significance of the correlation. For
brevity, we present Pearson correlation coefficients only.3

Results. In Table 2 we present the results of our univariate re-
gression testing. For brevity, we omit presenting the p-values for
correlations, but we found all of them to be less than 0.0001, indi-
cating that they are valid at the 1% significance level. The results
indicate that features such as bug severity, number of attachments
or bug dependencies, do not correlate well with bug-fix time, which

3The Spearman’s correlation results have the same trend for our
data sets as Pearson correlation results.

calls into question the use of these attributes for building univariate
linear prediction models. However, similar to Anbalagan et al. [1]’s
observation for the Ubuntu project, we found that bug-fix time in-
creases when more developers are involved in a bug fix (see the
higher values in the “Days-Developers” cells).

Conclusions. The results of the univariate regression testing show
that most of post-submission bug report features, such as number
of attachments or bug severity, do not exhibit high correlation with
bug-fix time. Therefore, we suspect that the successful predictions
made in prior work might be due to a combination of data set choice
and feature selection, a problem known as “optimistic bias” in ma-
chine learning [10]. To confirm that there is no such bias in the
prediction, two steps can be taken for designing prediction models
in the future: (1) training the model with larger data sets, preferably
with the entire bug history of an application, and (2) choosing mul-
tiple applications to verify the generality of the prediction model.

4.2.3 Influence of Bug-opener’s Reputation on Bug-
fix Likelihood

Guo et al. [6] have found that for two Microsoft products, Win-
dows Vista and Windows 7, bugs reported by developers with higher
reputation were (1) more likely to get fixed, and (2) fixed faster.
They found that there is a linear relationship between a bug-opener’s
reputation and the number of bugs he/she has fixed. Hooimeijer et
al. [8] also used bug-opener’s reputation to predict whether a new
bug report will receive immediate attention or not. Therefore, we
verified whether, in the five projects we considered, a bug-opener’s
reputation correlates with bug-fix time or with the probability of
the bug being fixed. In Figure 1 we plot the bug-opener’s reputa-
tion (x-axis) versus the percentage of the bugs he/she opened that
eventually got fixed (y-axis); as we can see, there is no clear re-
lation between these two variables. For completeness, in Table 3
we show the results of two correlation analyses: (1) the correlation
between the bug-opener’s reputation and the percentage of the bugs
he/she opened that eventually got fixed, and (2) the correlation be-
tween the bug-opener’s reputation and the average time taken to
fix a bug reported by him/her. As can be seen in the table, for the
projects we considered, we found low correlation values between
a bug-opener’s reputation and bug-fix likelihood or bug-fix time.
We also found that the bug-fix time is independent of whether the
bug-opener is involved in the bug-fixing process or not.
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Figure 1: Bug-opener’s reputation v. percentage of bugs reported by him/her that eventually got fixed.

Attribute Correlation with bug-opener’s reputation
Firefox Seamonkey Thunderbird Eclipse Chrome

Percentage of bugs eventually fixed 0.0559 0.0568 0.0471 0.0185 0.1507
Average bug-fix time 0.0023 0.1646 0.3278 0.4837 0.0878

Table 3: Correlation between bug-opener’s reputation, percentage of bugs fixed and average time taken to fix a bug.

5. FUTURE WORK
The results of our investigation point to three significant future

research problems and directions:
Quantifying the importance of bug-opener’s reputation
in the bug-fixing process. Empirical studies on commercial
software have demonstrated how the reputation of the bug-opener’s
influences whether a bug gets fixed [6]. In our study we found that
no such influence drives the bug-fixing process in widely-used open
source software. The first research question we pose is: is there an
advantage in prioritizing bugs based on bug-opener’s reputation, as
observed in the commercial software development process?
Selecting attributes that correlate with bug-fix time to
design prediction models. We found that most attributes used
by prior work to predict bug-fix time do not correlate with bug-fix
time when analyzed in isolation. Feature-selection research in ma-
chine learning has shown the importance of correlation of attributes
with the predicted variable for improving accuracy [7]. Therefore,
the next research challenge that follows from our results is: which
attributes should we choose so that they correlate with bug-fix time
when tested in isolation, to improve existing prediction models?
Building generalized prediction models. We found that
existing prediction models are based on assumptions that do not
generalize well to other projects; this is particularly problematic as
Mozilla and Eclipse have been used as bug study and prediction
benchmarks in prior work. The challenge is to build bug-fix time
prediction models that can be validated on a wider range of soft-
ware projects. Additionally, validation on multiple projects would
discard the chances of bias in feature selection.

6. CONCLUSIONS
Bug-fix time prediction is useful in software evolution, espe-

cially for coordinating the development effort during bug triaging.
In this paper we demonstrate that, unlike in commercial projects,
the bug-fix time in open source projects is not influenced by the
bug-opener’s reputation. We also show, using regression analysis,
that various bug report attributes which have been previously used

to build bug-fix time prediction models do not always correlate with
bug-fix time. These findings put forward the research challenges
of finding additional attributes for designing more general bug-fix
time prediction models, and assessing the advantage of using bug-
opener’s reputation in the bug-fixing process.
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