
Collateral Evolution of Applications and Databases

Dien-Yen Lin Iulian Neamtiu
University of California, Riverside

Riverside, CA 92521, USA
{dienyen,neamtiu}@cs.ucr.edu

ABSTRACT
Separating the evolution of an application from the evolution
of its persistent data, or from the evolution of the database
system used to store the data can have collateral effects,
such as data loss, program failure, or decreased performance.
In this paper, we use empirical evidence to identify chal-
lenges and solutions associated with the collateral evolution
of application programs and databases. We first perform an
evolution study that identifies changes to database schemas
in two popular open source applications. Next, we study
the evolution of database file formats for three widely-used
database management systems. We then investigate how ap-
plication programs and database management systems cope
with these changes, and point out how collateral evolution
can lead to potential problems. Finally, we sketch solutions
for facilitating and ensuring the safety of application and
database evolution, hence minimizing collateral effects.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering; version control ; H.2.4 [Database Manage-
ment]: Systems—Relational databases; H.2.1 [Database
Management]: Logical Design—Schema and subschema

General Terms
Measurement, Reliability

Keywords
Collateral evolution, coupled software transformation, soft-
ware evolution, empirical study, schema evolution, schema
migration, Mozilla, SQLite

1. INTRODUCTION
An increasing number of applications are shifting from

storing data in custom file formats towards storing data us-
ing a database management system (DBMS). This enables

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE-Evol’09, August 24–25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-678-6/09/08 ...$10.00.

an application to manage data in a more flexible and safe
manner, while at the same time rendering the data easier to
query. An example of migration towards using a DBMS as
storage back-end is SQLite. SQLite is a lightweight, zero-
config, server-less SQL engine encapsulated into a library
that can be simply linked into an existing application and
used via the SQL API. This lightweight yet powerful ap-
proach has proved to be very successful, and, as a result,
SQLite is now used in software products from Apple, Google,
Adobe, and Mozilla, as well as cellphones, PDAs, and MP3
players [5]. However, when evolving applications that use a
DBMS instead of custom file formats, the developers are now
tasked with having to evolve not only the application, but
also its database schema, and the DBMS file format. When
the evolution of these three components is not synchronized,
the result is a potentially incorrect system.

The problem of maintaining global (system) consistency
when its coupled subcomponents evolve is known as coupled
transformation; a general characterization of coupled soft-
ware transformations, broader than the scope of our work,
has been provided by Lämmel [17]. Padioleau et al. [23] use
the term collateral evolution in the context of the Linux ker-
nel: since device drivers use services provided by the kernel
and kernel support libraries, whenever the kernel or support
library interfaces change, device drivers must change too, to
adapt to the newest interface; if device drivers fail to do so,
the result is potentially incorrect behavior.

Taking a cue from these prior works, we use the term
collateral evolution to denote potential inconsistencies that
arise when a database and the application programs using
that database do not evolve in sync. We have access to a rich
evolution history for both application programs and DBMSs,
but we are missing studies that identify how these entities
evolve, what the challenges of collateral evolution are, and
what are some possible solutions. Therefore, we are now in
a good position to study and tackle this problem.

In prior approaches, application and database evolution
have usually been studied separately, i.e., software evolu-
tion in software engineering research and schema evolution
in database research. In this work we make the case for an
integrated approach to application and database evolution.
While in this paper we only focus on relational databases,
we believe the results presented here can be generalized
and applied to other database models, e.g., object-oriented
databases.

In Section 2 we provide a formal definition of the collateral
evolution problem for applications and databases, in terms
of incompatibilities between data formats expected by a data

client and the format provided by a data server. This will
permit us to exploit the analogy between schema and file
format evolution, and phrase the associated challenges and
solutions within the same framework.

In Section 4 we consider collateral evolution of applica-
tions and database schemas in the context of two applica-
tions, Mozilla and Monotone. We perform an empirical evo-
lution study and find that database schema changes (e.g., ta-
ble addition/deletion/renaming, or attribute addition/dele-
tion/type change) are frequent. Our study points out that
the source code of applications does not always evolve in
sync with changes to the database schema, or it makes as-
sumptions about schemas that can easily be violated.

In Section 5 we consider the collateral effects introduced
by changes to database file formats. We consider the evolu-
tion of three widely-used DBMSs (SQLite, PostgreSQL and
MySQL) over their entire lifetimes. We find that albeit rela-
tively infrequent, database file format changes are a reality.
We also find that DBMSs are less application-friendly than
we would think, since a significant amount of manual effort
is still required for updating the database to the new file
format.

In summary, this paper makes the following contributions:

• A schema evolution study on two realistic, widely-used
applications.

• A database format evolution study over the complete
lifetime of three major DBMSs.

• A presentation of challenges and solutions associated
with changes to database schemas and database file
formats.

2. A FORMAL DEFINITION OF COLLAT-
ERAL EVOLUTION

At a high level, the fundamental problem with collateral
evolution is due to different expected formats for the under-
lying data between a data client and a data server.

Example 1. Suppose we use Mozilla version 1.145 to
access a bookmarks database created with Mozilla version
1.144; in this case, Mozilla is the data client, and the book-
marks database is the data server. This operation might
or might not succeed, depending on the database schema
employed by two Mozilla versions, 1.144 and 1.145, respec-
tively.

Example 2. Suppose we use SQLite version 3.0 to open
a database file created with SQLite version 2.0; in this case,
SQLite is the data client, and the file is the data server.
Again, this operation might fail if the database file formats
used in SQLite 2.0 and 3.0 are incompatible.

We now generalize these examples to formulate the col-
lateral evolution problem. We use D to denote the data
and F(D) to denote the data format, i.e., its type. For the
Mozilla example, the data type F(D) is the schema for the
bookmarks database. For the SQLite example, the data type
F(D) represents the file format used to store the database
on disk. We use FC(D, X) to denote the format expected
by client C, version X, and similarly, FS(D, Y) to denote
the format provided by the server S, version Y . Whenever
the data client or the data server evolves, we might end up
with a potentially incorrect collateral evolution if the data
type expected by the client differs from the type provided

Application Start End
programs date date
Mozilla November 2005 May 2009
Monotone April 2003 May 2009

Database Start End
management date date
systems
SQLite May 2000 May 2009
MySQL May 1995 May 2009
PostgreSQL May 1995 March 2009

Table 1: Time span for the schema evolution study.

by the server. Formally, the incorrect evolution is captured
by the following definition:

Definition (Potentially incorrect collateral evolution) Let
X and Y be the data client and data server versions that re-
sult from collateral evolution. Let FC(D, X) be the format
expected by the data client C, and let FS(D, Y) be the for-
mat provided by the data server S. The collateral evolution
is potentially incorrect if FC(D, X) 6= FS(D, Y).

Note that prior works have used similar terminology and
notation, e.g., our correctness condition is related to Visser’s
A ∼= B condition [29] (where A is a called a source type and
B is called a target type). Similarly, Lämmel and Lohmann [18]
use the d ` x notation and condition, akin to our FC(D, X) =
FS(D, Y), to express validity of evolution in the context of
XML and DTDs.

In Sections 4 and 5 we discuss how application programs
and DBMSs cope with collateral evolution. While the cor-
rect approach is to use a migration function MY→X to render
the client and server formats compatible, this is not always
the case for the programs we considered, and, as a conse-
quence, collateral evolution can lead to errors.

3. APPLICATIONS AND METHODOLOGY
We studied schema evolution for two open source applica-

tions: the Mozilla project and the Monotone version control
system. We chose these applications because they have long
release histories and employ large database schemas, com-
prising dozens of tables. Mozilla stores browsing history,
input forms, cookies, etc. into the database. Monotone uses
the database to store file revisions, deltas, and branch infor-
mation. Both Monotone and Mozilla hard-code the database
schemas in the application’s C++ source code. Therefore,
each new source code release has to evolve in sync with, or
migrate, the on-disk database.

Older versions of Mozilla had been using Berkeley DB for
data storage. Due to license problems, the lack of query fa-
cilities and limitations on multi-process access, the Mozilla
developers have gradually phased out Berkeley DB and phased
in SQLite. Monotone has been using SQLite from the very
start (release 0.1).

In March 2007, Mozilla switched the version control sys-
tem for Mozilla 2 development from CVS to Mercurial; we
used both CVS and Mercurial to extract the last 42 months’
worth of source code revisions (see Table 1). For Monotone
we downloaded all the releases from the project’s website

(0.1–0.44), which corresponds to its entire six-years lifetime.
For each Mozilla revision (and Monotone version, respec-
tively), we extracted the associated database schemas, i.e.,
the tables and their attributes, from the C++ source code.
With the tables and schema at hand, we manually com-
puted all the changes to data tables and attributes. Next, for
those changes we considered problematic, we examined the
Mozilla and Monotone application code by hand, to identify
the mechanisms used for (1) making changes to database
schemas, and (2) ensuring that application and database
schema evolve in a synchronized manner.

We also investigated changes to database file formats.
While these changes come from the DBMS provider, rather
than being introduced by application programs, they can
nevertheless be problematic. We studied the official man-
uals and migration guides that come with SQLite, MySQL
and PostgreSQL. Based on these documents, we character-
ized the evolution of file format changes over the entire life-
times of each of the three DBMSs (Table 1), as well as the
mechanisms the DBMSs use for accessing and migrating the
on-disk files when file formats change.

4. SCHEMA CHANGES
In the relational database model, a database consists of

tables, also known as relations. Each table is structured
into attributes (named columns) and records (rows). A table
schema consists of a table name and the set of its attributes,
and a database schema is the union of all the table schemas
in the database [6].

Following the conventions introduced in Section 2, we use
F(D) to denote the schema of a database D; we investi-
gate potentially-incorrect collateral evolution of an appli-
cation program’s schema definition FC(D, X) relative to a
database’s schema definition FS(D, Y).

While traditional database applications were designed with
a fixed schema in mind, (i.e., future versions of an applica-
tion will keep the schema unchanged) this assumption is no
longer valid today. All major DBMSs allow the adminis-
trator to alter a database schema via table- and attribute-
level operations such as additions, deletions and renamings.
Moreover, specialized migration and integration tools such
as Prism [4], South [2], Django [1] and DB-MAIN [26] can
facilitate schema changes. These programs help describe
database schema changes, assess the impact of changes, and
help migrate the data from the old database into the new
database.

In the remainder of this section, we first present the results
of an empirical study on how database schemas change over
time in Mozilla and Monotone, and then talk about chal-
lenges and solutions associated with each possible change.

4.1 Empirical Study
Tables 2 and 3 show a summary of table and attribute

changes in Mozilla and Monotone. As we can see in Table 2,
the most frequent table-level modifications are table schema
changes, followed by table additions, table deletions and ta-
ble renamings. Similarly, as shown in Table 3, the majority
of attribute changes consist of additions and deletions.

In Table 4 we present a detailed account of changes for
each table used in Mozilla and Monotone; empty cells cor-
respond to the value 0. The first column contains the table
name; if the table has been renamed over the period we
considered, we show the old and new names, e.g., moz anno

Program Table changes
schema change add delete rename

Mozilla 42 20 4 5
Monotone 11 9 8 1

Table 2: Table changes.

Program Attribute changes
add delete other

Mozilla 58 30 3
Monotone 11 9 4

Table 3: Attribute changes.

has been renamed to moz annos. The second column con-
tains the number of changes to a table schema, and an
empty table cell signifies no changes to that table’s schema;
for example, moz bookmarks folders had one change to its
schema, while moz bookmarks roots had no schema change.
An entry ‘1’ in the third column indicates that the table
was not present in Mozilla from the beginning, but rather
was added at some point in the time frame we studied; for
instance moz cache owners was added, while moz cache was
present in the initial version. Similarly, an entry ‘1’ in the
fourth column indicates that the table was deleted at some
point during our study, e.g., moz chunks. An entry ‘1’ in
the fifth column indicates that a table was renamed, and
the new name appears on the next row. Finally, columns
6–11 show the number of attribute changes for a certain ta-
ble, e.g., the roster deltas table in Monotone has undergone
one attribute addition, one attribute deletion, two changes
to attribute initializers, one key change, zero attribute type
changes and zero attribute renamings.

4.2 Challenges and Solutions
We now proceed to presenting challenges associated with

application and database co-evolution using concrete exam-
ples from Mozilla and Monotone. While the developers ad-
dress some collateral evolution challenges, many issues still
remain unsolved; these issues can lead to data loss, applica-
tion crash or performance degradation.

4.2.1 Mozilla
The handling procedures for schema changes in Mozilla

differ from subsystem to subsystem, reflecting Mozilla’s de-
centralized development process. Based on our study, Mozilla
subsystems use two main approaches for dealing with schema
changes; we term these approaches version-oblivious and
bidirectional.

Version-oblivious evolution. The first standard mech-
anism used in Mozilla is to simply ignore the collateral evo-
lution problem and assume that, if a database exists, its
schema version matches the schema version of the applica-
tion. We illustrate this approach in Figure 1. The nsNavBook
marks :: Init routine is in charge of initializing (or creating,
if it does not exist) the moz bookmarks folders table. In
revision 1.28 of module nsNavBookmarks, the table schema
contains two attributes, id and name. In revision 1.29, the
schema changes: a new attribute, type is added. As we can
see on line 5, Mozilla creates the table if it doesn’t exist
already, e.g., if this is the first Mozilla run for this user.
However, if the table does exist, the if condition on line 7

Table Table changes Attribute changes
name schema add delete rename add delete type rename init key

change change change change

Mozilla
metaData 1
moz anno 3 1 6 3
(ren. to moz annos)
moz anno attributes 1
moz anno name 1 1
moz bookmarks assoc 7 1 14 8 1
(ren. to moz bookmarks)
moz bookmarks folders 1 1 1 1
moz bookmarks roots 1
moz cache
moz cache owners 1
moz chunks 1 1
moz classifier 3 1 7 5
moz cookies 5 1 3 2
moz downloads 7 1 10 3
moz formhistory
moz history 6 1 4 2 1
(ren. to moz places)
moz historyvisit 1 1 1 1
(ren. to moz historyvisits)
moz hosts 1
moz inputhistory 1
moz items annos 1 1 2
moz keywords 1 1 1 1 1 1
moz memhistory
moz sub chunks 3 1
moz subs 3 1 9 6
moz tables2 1
moz webappsstore 1 1 1 1
(ren. to webappsstore)
password 1 1

Monotone
branch epochs 1
db vars 1
file Certs 1 1 1
(ren. to revision certs)
file deltas
files
heights 1
incoming queue 1
manifest certs 1 1
manifest deltas
manifests
merkle nodes 1
netserver manifests 1
next roster node number 1
posting Queue 2 1 2 5
privateKeys 1 1 1
publicKeys 1 1
revision ancestry 1
revision roster 1 1
revisions 1
roster deltas 2 1 1 1 2 1
rosters 1 1 1
schema version 1
sequence Numbers 2 1 2 3 1

Table 4: Schema changes details for Mozilla and Monotone.

1 nsNavBookmarks::Init(DBConn)
2 {
3 ...
4 nsresult rv ;
5 DBConn−>TableExists(”moz bookmarks folders”,
6 &exists) ;
7 if (! exists) {
8 rv = DBConn−>ExecuteSimpleSQL(
9 ”CREATE TABLE moz bookmarks folders (”

10 ”id INTEGER PRIMARY KEY, ”
11 ”name LONGVARCHAR, ”
12 ”type LONGVARCHAR)”);
13 NS ENSURE SUCCESS(rv, rv);
14 }
15 ...
16 rv = DBConn−>CreateStatement(
17 ”SELECT id, name, type
18 FROM moz bookmarks folders
19 WHERE id = ?1”,
20 getter AddRefs(mDBGetFolderInfo));
21 NS ENSURE SUCCESS(rv, rv);
22 }

Figure 1: Mozilla: version-oblivious (incorrect) evo-
lution.

is false, and Mozilla will not re-create the table or migrate
the schema. Further down, on line 16, Mozilla tries to run
a query assuming the new schema (note the presence of at-
tribute type on line 17). If the query fails because the at-
tribute does not exist, Mozilla returns an error. Note that
the query is guaranteed to fail if the on-disk table is in the
old format, e.g., if Mozilla has just been updated.

Bidirectional schema migration. A second approach
for coping with collateral evolution is to determine, prior to
accessing the database, both the version X of the applica-
tion and the version Y of the database schema, and then
perform the schema migration MY→X . Note that we make
no assumption on whether X > Y or Y > X, i.e., the mi-
gration can be either an upgrade or a downgrade.

In Figure 2 we illustrate bidirectional migration with a
code snippet from the nsNavHistory module. In this ap-
proach, each application program version defines a PLACES
SCHEMA VERSION macro that corresponds to the current
application-level schema version X (line 1). The nsNavHistory
:: InitDB routine then reads the database-level schema ver-
sion Y (line 7). If the database schema is older than the
application schema, i.e., X > Y , the routine brings it up
to date using step-wise migration (lines 12–31) consisting of
a suite of transformations Y → Y + 1 → . . . → X. The
step-wise migration approach is similar to that employed
in the O2 object-oriented database system [15] and the Gin-
seng dynamic updating system [21]. If, however, X < Y , the
routine will perform a backward schema migration (lines 33-
39). This situation occurs when the application program is
older than the database schema, i.e., when trying to open a
database created with a newer version of Mozilla.

To illustrate how schema migration is actually performed,
we present a simplified version of the MigrateV6Up routine.
When table moz places evolves from revision 1.144 (July
21, 2007) to 1.145 (July 26, 2007), the attribute user title
is deleted. In Figure 3 we show the migration code that
updates the old version, 1.144, to version 1.145. We see

1 #define PLACES SCHEMA VERSION 8
2

3 nsresult nsNavHistory :: InitDB(DBConn)
4 {
5 ...
6 PRInt32 DBSchemaVer;
7 rv = DBConn−>GetSchemaVersion(&DBSchemaVer);
8

9 if (PLACES SCHEMA VERSION != DBSchemaVer) {
10 if (DBSchemaVer<PLACES SCHEMA VERSION) {
11 // Upgrading
12 // Migrate up to V3
13 if (DBSchemaVer < 3) {
14 rv = MigrateV3Up(DBConn);
15 }
16 // Migrate up to V5
17 if (DBSchemaVer < 5) {
18 rv = ForceMigrateBookmarksDB(DBConn);
19 }
20 // Migrate up to V6
21 if (DBSchemaVer < 6) {
22 rv = MigrateV6Up(DBConn);
23 }
24 // Migrate up to V7
25 if (DBSchemaVer < 7) {
26 rv = MigrateV7Up(DBConn);
27 }
28 // Migrate up to V8
29 if (DBSchemaVer < 8) {
30 rv = MigrateV8Up(DBConn);
31 }
32 } else {
33 // Downgrading
34 // Downgrade v1,2,4,5
35 // v3,6 have no backwards incompatible changes.
36 if (DBSchemaVer > 2 && DBSchemaVer < 6) {
37 // perform downgrade to v2
38 rv = ForceMigrateBookmarksDB(DBConn);
39 }
40 }
41 }
42 }

Figure 2: Mozilla: bidirectional schema migration.

that the application correctly renames the existing table
to moz places backup (lines 4–6), recreates moz places with
the new schema (lines 10–13), copies only the new schema’s
fields, omitting user title (lines 16–20) and finally drops
the old table.

4.2.2 Monotone
In Monotone, collateral evolution is dealt with (and schema

migration is performed if necessary) in a centralized routine.
This is in contrast to Mozilla, where each subsystem has its
own mechanism for coping with co-evolution.

In Figure 4 we present a code snippet from Monotone’s
describe sql schema function. Similar to nsNavHistory :: InitDB
in Figure 2, this routine checks whether collateral evolution
has occurred, and informs the user whether the database is
usable, migration is required, etc.

Prior to starting the application and accessing the database,

1 MigrateV6Up(DBConn)
2 {
3 // 1. rename moz places to moz places backup
4 DBConn−>ExecuteSimpleSQL(
5 ”ALTER TABLE moz places RENAME TO”
6 ”moz places backup”);
7 ...
8 // 2. create moz places w/o user title
9 // and its index

10 DBConn−>ExecuteSimpleSQL(
11 ”CREATE TABLE moz places(”
12 ”id , url , title , rev host , visit count , ”
13 ”hidden, typed, favicon id ”) ;
14 ...
15 // 3. copy all data into moz places
16 DBConn−>ExecuteSimpleSQL(
17 ”INSERT INTO moz places ”
18 ”SELECT id, url, title , rev host , ”
19 ” visit count , hidden, typed, favicon id ”
20 ”FROM moz places backup”);
21 ...
22 // 4. drop moz places backup
23 DBConn−>ExecuteSimpleSQL(
24 ”DROP TABLE moz places backup”);
25 }

Figure 3: Mozilla: step-wise schema migration.

Monotone retrieves the on-disk schema version Y and com-
pares it with the application schema X (line 3). As we can
see on line 4, if the schema in the database is at the same
version as the application, i.e., X = Y , the function returns
SCHEMA MATCHES. If the database schema is older than
the version expected by the application (line 6), i.e., X > Y ,
the function returns SCHEMA MIGRATION NEEDED and a
migration procedure (which we will explain shortly) will be
invoked. Finally, Monotone checks for the situation when
the database schema is newer than that expected by the ap-
plication, i.e., X < Y . In this case, Monotone assumes that
the database cannot be safely used, and the return value is
SCHEMA TOO NEW (line 8). The remaining cases are just
sanity checks. Therefore, in contrast to Mozilla, Monotone
only supports unidirectional schema migration.

In Figure 5 we present a simplified version of the Mono-
tone schema migration code. If, for instance, the database
schema corresponds to application version 0.34, but the cur-
rent application version is 0.44, Monotone will perform the
conversion 0.34 → 0.44 using step-wise upwards migration.
Monotone has a predefined array migration events (lines 1–
8) that contains migration functions. For example, the func-
tion migrate add heights index (line 3) performs the conver-
sion 0.34→ 0.40, while the function migrate to binary hashes
(line 5) performs the conversion 0.40 → 0.44. The reason
Monotone “skips” some intermediate versions is that not all
Monotone releases change the schema, e.g., versions 0.34 and
0.40 do change the schema, but versions 0.35–0.39 and 0.41–
0.43 do not. The function migrate sql schema (starting on
line 10) first retrieves the current database schema version
(line 14), and then applies the schema migration procedures
in sequence until it reaches the most current version, sig-
naled by a 0 entry at the end of the migration events array.

1 string describe sql schema (sqlite3 ∗ db)
2 {
3 switch (classify schema (db)) {
4 case SCHEMA MATCHES:
5 return ”(usable)”;
6 case SCHEMA MIGRATION NEEDED:
7 return ”(migration needed)”;
8 case SCHEMA TOO NEW:
9 return ”(too new, cannot use)”;

10 case SCHEMA NOT MONOTONE:
11 return ”(not a monotone database)”;
12 case SCHEMA EMPTY:
13 return ”(database has no tables !) ”;
14 ...}
15 }

Figure 4: Monotone: schema version check.

1 const migration event migration events [] = {
2 // version 0.34 to 0.40
3 migrate add heights index ,
4 // version 0.40 to 0.44
5 migrate to binary hashes ,
6 ...
7 0 // end
8 };
9

10 void migrate sql schema(sqlite3 ∗ db, ...)
11 {
12 migration event const ∗m;
13 ...
14 for (find migration (db); m; m++)
15 {
16 ...
17 migrate func(m, db);
18 ...
19 printf (”migrated to schema }
20 }

Figure 5: Monotone: forward schema migration.

4.3 Table Additions and Deletions
While technically table additions and deletions are part

of schema changes, which we covered in Section 4.2, we be-
lieve that these table changes pose unique challenges that
differentiate them from schema changes associated with at-
tribute additions and deletions, hence they require further
treatment.

Assume that in the transition from version X to version
X + 1, a table T1 is added, and a table T2 is deleted. If
the application is updated but the database schema is not
migrated, version X + 1 of the application expects to find
T1 (which is not there), while table T2 still remains in the
database, although it not being used any longer.

We found that table deletions are common in Mozilla; we
now point out one problematic case. The table moz anno name
is deleted when the module nsAnnotationService is updated

from revision 1.15 (June 19, 2006) to revision 1.16 (Dec. 18,
2006); revisions 1.16 and later do not use it any longer. How-
ever, there is no DROP TABLE moz anno name command in
versions 1.16 and later. This leads to moz anno name be-
coming an “orphan” table that cannot be used, but takes up

space.
The T1 (addition) scenario is equally problematic: if no

migration is performed, and the application version Y as-
sumes T1 is present in the database, then trying to open the
table will lead to an error. However, we have not observed
this scenario in the applications we studied.

4.4 Other Attribute Changes
Our study has found that, although additions and dele-

tions constitute the majority of attribute changes (we cov-
ered them as part of schema changes in Section 4.2), at-
tributes can also change in less obvious ways, and these
changes can lead to collateral evolution problems.

4.4.1 Renaming
In Figure 7, we illustrate how errors can be introduced

when attributes are renamed. We present the nsNavBookmarks
module update from revision 1.68 (Dec. 16, 2006) to revision
1.69 (Feb. 07, 2007). The top half (lines 1–10) contains the
old code, while the bottom half (lines 12–22) contains the
new code. In revision 1.68 and earlier, table moz keywords
contains an attribute place id ; in revision 1.69, the attribute
is renamed to id. The handling code first checks to see if
the table exists (line 4); if it does not exist, the table is cre-
ated with the new schema. If the table does exist (line 21
and after), the old table schema is used, and herein lies the
problem: the old schema does not contain a id attribute, so
any database query that asks for it will fail.

4.4.2 Default Initializer Changes
Attributes can have default initial values, e.g., id integer

default null . If data client C assumes default value DX

for a certain attribute, while data server S assumes default
value DY , then the collateral evolution is problematic when
DX 6= DY .

In Figure 6 we present an example of correct handling of
changes to default attribute values extracted from Mono-
tone. In Monotone version 29, the table roster deltas con-
tains an attribute id with default value not null . In the next
version, Monotone 30, the not null default value is dropped,
i.e., the new definition is id primary key. To properly handle
this situation, Monotone first drops the roster deltas table
(line 4) and recreates it with the correct schema(lines 5–11).
Finally, the procedure upgrade regen rosters (line 13) will
re-populate the table at the new version.

4.4.3 Type Changes
While they are not part of traditional schema change oper-

ators [27], attribute type changes [19] can present challenges
for collateral evolution.

In Figure 7, we show an attribute type change introduced
in Mozilla, using the same nsNavBookmarks update from
revision 1.68 to revision 1.69. In the old version, table
moz keywords has an attribute keyword of type VARCHAR
(32). In the new version, keyword has type TEXT instead.
The runtime behavior in light of this type mismatch is de-
pendent on the SQL engine used. Mozilla relies on the fact
that SQLite does not enforce the length of a VARCHAR,
effectively representing VARCHAR and TEXT in the same
way [3]. However, when using a different SQL engine, the
type mismatch can result in a runtime error. Therefore, the
correct behavior would be to first check the schema version
and use schema migration in case of version mismatch.

1 migrate rosters no hash (sqlite3 ∗ sql ,
2 upgrade regime & regime)
3 { ...
4 sqlite3 exec (”DROP TABLE roster deltas”);
5 sqlite3 exec (”CREATE TABLE roster deltas
6

7 // id had type ‘‘ not null ’’ in previous version
8 id primary key,
9 checksum not null ,

10 base not null ,
11 delta not null ”) ;
12 ...
13 set regime(upgrade regen rosters , regime);
14 }

Figure 6: Monotone: handling changes to default
values.

1 // old version , revision 1.68
2 nsNavBookmarks::InitTables(DBConn)
3 { ...
4 if (! exists){
5 DBConn−>ExecuteSimpleSQL(
6 ”CREATE TABLE moz keywords(”
7 ”keyword VARCHAR(32) UNIQUE,”
8 ”place id INTEGER)”));
9 }

10 }
11

12 // new version , revision 1.69
13 nsNavBookmarks::InitTables
14 (mozIStorageConnection∗ DBConn)
15 { ...
16 if (! exists){
17 DBConn−>ExecuteSimpleSQL(
18 ”CREATE TABLE moz keywords(”
19 ”id INTEGER PRIMARY KEY AUTOINCREMENT,”
20 ”keyword TEXT UNIQUE)”))
21 }
22 }

Figure 7: Mozilla: attribute type change and at-
tribute renaming.

4.4.4 Key Changes
Another potentially problematic attribute change consists

of changes to an attribute’s key status. On lines 7 and 8 of
Figure 6 we show how the attribute id becomes a primary
key in the table roster deltas . By definition, each row in the
table has a unique value for the column associated with the
primary key. If the database schema is not migrated when
an attribute becomes primary key, we violate the unique-
ness assumption. A similar key change appears in Mozilla
(Figure 7) where the attribute place id is renamed to id and
becomes a primary key.

Even in situations when a key change does not lead to
a database inconsistency, it can still affect database oper-
ations, e.g., in terms of performance. For example, as per
Oracle 10g’s manual, the size of the redo log depends on
whether a modified attribute is a primary key or not. There-
fore, if an attribute becomes primary key but the schema
is not migrated, (or vice versa, an attribute is no longer

primary key), the DBMS will either do too much (or not
enough) logging.

5. FILE FORMAT CHANGES
While table and attribute changes are under application

program developers’ control, the developers are also faced
with changes they have little control over, i.e., the database
file format. The file format is hidden from the application,
but DBMS producers often choose to modify it, to offer im-
proved performance, reduce storage size, or implement a new
standard [28, 20, 24].

Following the notation introduced in Section 2, we use
F(D) to denote the file format for a database D; we inves-
tigate potentially-incorrect collateral evolution of a DBMS’
notion of the file format, FC(D, X) relative to the on-disk
file format, FS(D, Y).

Upgrading a DBMS, e.g., using SQLite 3.0 instead of 2.0
can lead to a wide range of issues for the application pro-
grams that link with SQLite. Even though the application
program and the on-disk files are unchanged, the new SQLite
version can either fail to read the files created in version 2.0
format, or, if it can read them, certain commands will fail to
execute [28]. For most of today’s DBMSs, the standard pro-
cedure for dealing with changes in file format is to use the
old version (in our case, 2.0) to “dump” the database into a
batch file of SQL commands, then upgrade the DBMS and
recreate the database using the new DBMS and the new file
format (in our case, 3.0).

In the remainder of this section we present our findings
after studying the entire lifetimes of SQLite, MySQL and
PostgreSQL. First, we present details on the frequency of
file format changes. Second, we identify challenges posed by
these changes and solutions for dealing with these challenges.

5.1 Empirical Study
SQLite is being developed at a rapid pace, though its

file format is quite stable; most of the changes to the file
format occurred in early versions [28]. The first version of
SQLite was released in May 2000, and the latest version in
May 2009. As shown in Table 5, over its 9 years lifetime,
SQLite has changed the file format 13 times, though only 3
of those changes require a dump-based migration; two other
changes, not mentioned in the table, do not affect regular
SQLite users, but affect those performance-critical applica-
tions providing their own OS abstractions. The correspon-
dence between file format changes and the release numbering
scheme used by SQLite is simple: major changes to the first
release digit, e.g., 2.8.14 to 3.0.0 are incompatible, whereas
changes to the second digit, e.g., 3.0.8 to 3.1.0 are meant to
be backwards-compatible.

MySQL was first released in 1995, and the last release,
6.0alpha, came out in May 2009. MySQL uses a simple
scheme to signal file format changes: whenever the file for-
mat changes, the major version number is incremented. As
shown in Table 5, over its 14-year existence, MySQL has
had 5 file format changes (from series 1.x.x to series 6.x.x).

PostgreSQL’s first release was 0.01 (May 1995); the lat-
est release was 8.3.7 (March 2009). PostgreSQL signals
changes to the file format by changing the second digit in
release number. For example, 7.0 and 7.1 are major releases
with potentially incompatible file formats, while 7.1.x and
7.1.y should be compatible. Over its entire 14-years lifetime,
we counted 21 file format changes (Table 5).

Program Time frame File format
(years) changes

SQLite 9 3 (13)
MySQL 14 5
PostgreSQL 14 21

Table 5: File format changes.

5.2 Challenges and Solutions
Collateral evolution of DBMSs and file formats can lead to

initialization-time or run-time errors. For example, when at-
tempting to use PostgreSQL 8.0 to open a database created
with PostgreSQL version 7.3, the server fails with the error
“FATAL: database files are incompatible with server”.
Another example is using SQLite 2.2.0 to manipulate a data-
base file created with SQLite 2.1.x. While the file can be
loaded, there is a restriction on commands that can be used
to manipulate the file [28]. In particular, due to changes in
the underlying representation, the command INTEGER PRI-

MARY KEY is disabled; after upgrading the file format to 2.2.0,
the command INTEGER PRIMARY KEY can be used normally.

To avoid such errors, MySQL [20] and PostgreSQL [24]
documentations clearly state that the procedure for updat-
ing between major (i.e., file-format changing) releases is to
back up the existing data, “dump”the DB contents to a SQL
script containing the commands needed to recreate all the
database records from scratch, upgrade the DBMS, and run
the script to recreate and populate the database at the new
format.

Interestingly, SQLite [28] is much more user-friendly in
this regard. Over its 9-year lifetime, SQLite has made only
three incompatible file format changes that require the user
to perform the “dump” procedure. Of the remaining 11
changes, all are backwards-compatible, i.e., the new version
can read (and sometimes auto-convert) a file created by an
old version. Moreover, some file format changes even provide
a limited form of forward-compatibility, e.g., files created
with version 3.2.0 can be read by older DBMSs (3.1.4–3.1.6,
but not older that 3.1.4).

We believe that the seamless file format conversion mech-
anisms used in SQLite should be adopted by other DBMS
producers as well. This would relieve the DBMS users and
application programs program developers of tedious, manual
dump-based migration method when file formats change.

6. FUTURE DIRECTIONS
As pointed out throughout our paper, collateral evolution

of application programs and databases presents challenges
to application developers and DBMS producers alike. Even
though our findings could prove valuable to both categories,
we believe further research is needed into minimizing the
effects of collateral evolution and the effort spent by devel-
opers and users in migrating databases.

While certain changes to schemas are inherently incom-
patible with prior versions, a mechanism for seamlessly mi-
grating the database schema both forward and backward
(such as the one used by Mozilla, presented in Section 4.2.1,
Figure 2) should become standard practice.

Looking further ahead, we note that the schema and data-
base migration mechanisms we considered so far assume off-
line migration. That is, the application program does not

use the database while it performs schema migration, and
the DBMS is shut down while a dump/import is in progress.
However, many applications such as mission-critical systems,
transaction processing, or online service providers cannot af-
ford to halt the system while a schema/file format update
is in progress; for these categories of applications, updating
the program while providing continuous service to clients is
essential [13]. On-the-fly schema evolution and file format
migration have seen little investigation, and current imple-
mentations are far from practical [14]. We plan to use the
results of this collateral evolution study to help open the
way towards on-the-fly database updates, in the spirit of
dynamic software updating [21].

7. RELATED WORK
Schema modification operators (SMO) [27, 12] and schema

evolution primitives [7] allow schema changes using table-
level operations (e.g., CREATE, DROP, RENAME, COPY,
MERGE, PARTITION, JOIN, DECOMPOSE) and attribute-
level operations (e.g., ADD, DROP, RENAME). Our study
focuses on a subset of SMO-style changes to tables because
not all SMO operators are supported in today’s DMBSs.
On the other hand, our treatment of changes to attributes
is more fine grained i.e., we study and assess the impact of
type and key changes, which are not part of SMO.

Curino et al. [11] performed a study on how Wikipedia’s
schema has evolved between April 2003 and November 2007.
They use macro-classification and micro-classification of changes.
The micro-classifications correspond to SMO syntax, which
is a superset of the changes we investigate. The micro-
classifications include attribute key and attribute type changes,
but omit default initializer changes. We present detailed,
per-table attribute changes, rather than per-database as they
do. Our approach facilitates understanding of how individ-
ual tables change, and whether schema changes are localized
to a few tables, or spread throughout the database. Schema
matching [25] and ontology mapping [16] try to address the
problem of accessing data where the client and server for-
mats are different by providing matching or mapping func-
tions between the two formats. We could envision using a
schema matching procedure MX↔Y that converts between
the data client and data server representations on-the-fly.
While helpful for avoiding runtime errors when the data
client and data server’s format are no longer compatible due
to evolution, matching/mapping approaches do not convert
the underlying data, i.e., they do not perform schema mi-
gration. Moreover, when the application and the underlying
data are out of sync, the functionality is likely to be lim-
ited (i.e., storing a newly-added attribute), therefore these
approaches provide limited help with collateral evolution.

A solution similar to schema matching or schema mapping
is to use lenses [8, 9], an approach for bi-directional trans-
formation between strings belonging to different languages.
Lenses have the advantage that composing bidirectional mi-
gration functions MX→Y ◦MY→X yields the identity func-
tion; this is accomplished by saving deleted attributes off to
the side in a dictionary. While lenses can reduce or eliminate
errors introduced by collateral evolution, just like schema
matching and mapping, this is only a transient solution.
Because lenses do not perform the actual schema migration,
the data server’s version remains Y and the data client’s
version remains X; however, eventually the database has to
be migrated.

Lämmel and Lohmann studied the problem of format evo-
lution and coupled schema transformation in the context of
transforming XML documents when their underlying DTDs
change [18]. Their transformations for refactoring DTDs
are similar to SMOs and our schema changes. Their con-
sistency condition, d ` x expresses the fact that an XML
document x is valid according to a DTD d. This condi-
tion is similar to our FC(D, X) = FS(D, Y) requirement,
though their treatment of possible transformations, as well
as well-formedness and validity conditions is more rigorous
than ours. Visser [29] formalized the coupled transformation
problem as constructing a two-level transformation between
a source type A and a target type B witnessed by conver-
sion functions between A and B. Their types (and type
transformation operations, called refinements) stem from
data refinement theory [22] and are more general than types
of relational database schemas (and schema change opera-
tions, respectively). Their A ∼= B condition is similar to our
FC(D, X) = FS(D, Y) requirement.

Cleve and Hainaut [10] present an approach for co-transforming
application code to stay in sync with schema evolution. Their
solution is to (1) define a set of primitives that allow map-
ping between different versions of database instances and
databases schemas, and (2) based on these mappings, gener-
ate wrapper functions that allow data migrations, or permit
data clients and servers to interact without actually migrat-
ing the data. They present a case study of automatically
generating wrappers in COBOL for two data reengineering
cases of medium-sized database applications. Rather than
focusing on the semantic of transformations and automated
wrapper generation, our study provides a fine-grained char-
acterization of database and application changes to two re-
alistic systems over several years and many releases. The
empirical evidence gathered in our study could be used to
identify, and construct a library of, frequent schema trans-
formations.

8. CONCLUSIONS
In this paper we analyze the collateral evolution of ap-

plications programs and databases, motivated by the recent
trend towards greater adoption of DBMSs as data storage
back-ends in regular applications. We perform a schema
and file format evolution study on widely-used open source
programs. Based on this study, we identify challenges in-
troduced by the collateral evolution of applications and the
databases they use. We point out how current co-evolution
approaches are inadequate, and provide possible solutions.
We believe that our study, as well as the challenges and
solutions identified in this work can help make collateral
evolution of applications and databases easier and safer.

Acknowledgments. We thank Dietrich Ayala of Mozilla
Corporation for explaining why our Mozilla type change ex-
ample is actually harmless, and the anonymous referees for
their helpful comments on drafts of this paper.

9. REFERENCES
[1] Django Software Foundation. Django Schema

Evolution.
http://code.djangoproject.com/wiki/SchemaEvolution.

[2] South: Intelligent schema migrations for Django.
http://south.aeracode.org/.

[3] SQLite FAQ. http://www.sqlite.org/faq.html#q9.

[4] The PRISM Project.
http://yellowstone.cs.ucla.edu/schema-
evolution/index.php/Prism.

[5] Well-known users for sqlite.
http://www.sqlite.org/famous.html.

[6] S. Abiteboul, R. Hull, and V. Vianu, editors.
Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[7] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing mapping composition. In VLDB ’06:
Proceedings of the 32nd international conference on
Very large data bases, pages 55–66. VLDB
Endowment, 2006.

[8] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz,
and A. Schmitt. Boomerang: resourceful lenses for
string data. In POPL, pages 407–419, 2008.

[9] A. Bohannon, B. C. Pierce, and J. A. Vaughan.
Relational lenses: a language for updatable views. In
PODS ’06: Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 338–347, New York, NY,
USA, 2006. ACM.

[10] A. Cleve and J.-L. Hainaut. Co-transformations in
database applications evolution. In GTTSE, pages
409–421, 2006.

[11] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo.
Schema evolution in wikipedia - toward a web
information system benchmark. In J. Cordeiro and
J. Filipe, editors, ICEIS (1), pages 323–332, 2008.

[12] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: the prism workbench.
Proc. VLDB Endow., 1(1):761–772, 2008.

[13] A. Deshpande and M. Hicks. Toward on-line schema
evolution for non-stop systems. Presented at the 11th
High Performance Transaction Systems Workshop,
September 2005.

[14] T. Dumitras, J. Tan, Z. Gho, and P. Narasimhan. No
more hotdependencies: toward dependency-agnostic
online upgrades in distributed systems. In HotDep’07:
Proceedings of the 3rd workshop on on Hot Topics in
System Dependability, page 14, Berkeley, CA, USA,
2007. USENIX Association.

[15] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and
J. Madec. Schema and database evolution in the o2
object database system.

In VLDB ’95: Proceedings of the 21th International
Conference on Very Large Data Bases, pages 170–181,
San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

[16] Y. Kalfoglou and M. Schorlemmer. Ontology mapping:
the state of the art. The Knowledge Engineering
Review, 18(01):1–31, 2003.

[17] R. Lämmel. Coupled Software Transformations
(Extended Abstract). In First International Workshop
on Software Evolution Transformations, Nov. 2004.

[18] R. Lämmel and W. Lohmann. Format Evolution. In
Proc. 7th International Conference on Reverse
Engineering for Information Systems (RETIS 2001),
volume 155 of books@ocg.at, pages 113–134. OCG,
2001.

[19] B. S. Lerner. A model for compound type changes
encountered in schema evolution. ACM Trans.
Database Syst., 25(1):83–127, 2000.

[20] MySQL. Upgrading MySQL.
http://dev.mysql.com/doc/refman/4.1/en/upgrade.html.

[21] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C. In PLDI
’06: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and
implementation, pages 72–83, New York, NY, USA,
2006. ACM Press.

[22] J. N. Oliveira. Transforming data by calculation. In
R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE,
volume 5235 of Lecture Notes in Computer Science,
pages 134–195. Springer, 2007.

[23] Y. Padioleau, J. L. Lawall, and G. Muller.
Understanding collateral evolution in linux device
drivers. In EuroSys, pages 59–71, 2006.

[24] PostgreSQL. Migration between releases.
http://www.postgresql.org/docs/8.0/interactive/migration.html.

[25] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[26] REVERsa. DB-MAIN. http://www.db-main.com/.

[27] B. Shneiderman and G. Thomas. An architecture for
automatic relational database system conversion.
ACM Trans. Database Syst., 7(2):235–257, 1982.

[28] SQLite. File format changes.
http://www.sqlite.org/formatchng.html.

[29] J. Visser. Coupled transformation of schemas,
documents, queries, and constraints. Electron. Notes
Theor. Comput. Sci., 200(3):3–23, 2008.

	Introduction
	A Formal Definition of Collateral Evolution
	Applications and Methodology
	Schema Changes
	Empirical Study
	Challenges and Solutions
	Mozilla
	Monotone

	Table Additions and Deletions
	Other Attribute Changes
	Renaming
	Default Initializer Changes
	Type Changes
	Key Changes

	File Format Changes
	Empirical Study
	Challenges and Solutions

	Future Directions
	Related Work
	Conclusions
	References

