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Competing Memes Propagation on Networks:
A Network Science Perspective

Xuetao Wei, Nicholas C. Valler, B. Aditya Prakash, Iulian Neamtiu, Michalis Faloutsos, and Christos Faloutsos

Abstract— In this paper, we study the intertwined propagation
of two competing “memes” (or data, rumors, etc.) in a composite
network. Within the constraints of this scenario, we ask two key
questions: (a) which meme will prevail? and (b) can one influence
the outcome of the propagations? Our model is underpinned
by two key concepts, a structural graph model (composite
network) and a viral propagation model (SI1I2S). Using this
framework, we formulate a non-linear dynamic system and
perform an eigenvalue analysis to identify the tipping point of the
epidemic behavior. Based on insights gained from this analysis,
we demonstrate an effective and accurate prediction method to
determine viral dominance, which we call the EigenPredictor.
Next, using a combination of synthetic and real composite net-
works, we evaluate the effectiveness of various viral suppression
techniques by either a) concurrently suppressing both memes or
b) unilaterally suppressing a single meme while leaving the other
relatively unaffected.

Index Terms—Epidemics, Competition, Prediction, Suppres-
sion

I. INTRODUCTION

IN THIS PAPER, we examine the competition of two
opposed memes across interconnected agents by extend the

popular susceptible-infected-susceptible (SIS) compartmental
model to construct a novel propagation scheme. We are
inspired by the popularity of epidemic models spanning var-
ious disciplines. In fact, epidemic models already accurately
describe various network spreading phenomena such as the
spread of social information, computer viruses, fashion trends,
religious beliefs, market penetration and product adoption [1],
[2], [3], [4], [5], [6]. Throughout this work, we use the general
term “meme” to represent the propagating datum, but, without
loss of generality, we may easily substitute the term “computer
virus,” “flu,” or “rumor.”
In our scenario, we consider two memes spreading across

a population of individuals. A meme’s ability to jump from
individual to individual is governed by a number of factors
unique to the meme itself. Thus, at a network level, the world
of each meme is unique. We capture the unique network views
of each competing meme through a novel graph structure we
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Fig. 1. (a) Example Composite Network topology: a single set of
nodes N with two distinct edge sets E1 and E2. (b) The SI1I2S
State Transition Diagram, where S represents the susceptible state
and I{1,2} indicate the infected state for memes M1 and M2. The
transitions between states are indicated by the directed edges labeled
β{1,2} and δ{1,2}.

refer to as a composite network, illustrated in Figure 1(a). Each
meme propagates across a unique plane representing a unique
connectivity between individuals in our system. A composite
network C is a tuple of nodes N and two edge sets E1, E2,
i.e, C = (N,E1, E2), where E1 �≡ E2. We further assume
that each individual may “possess” a single meme at a time,
a constraint we refer to as mutual exclusivity.
The following example can make this problem more con-

crete. Consider the 2011 Egyptian revolution, which according
to reports was partly coordinated via Twitter [7]. To counter
such a Twitter campaign, a tech-savvy government could
inject confusing and competing information using a malicious
Facebook application that spreads to someone’s friends. Then,
which propagation will win? Hence a focal point of our paper
is to predict the winner, by looking at the connectivity and
the propagation behavior of its “memes.” Naturally, another
important question is what means one could use to influence
the outcome of these competing information dissemination
campaigns.
Interestingly, previous work has not focused on this prob-

lem. In fact, most previous efforts either studied a single
epidemic on a single topology [8], [9], [10], [11], [12], [13],
[3], or studied two pathogens, but on the same topology, and
under the assumption that the two viruses appear one after
the other [14]. More recent work has studied the quarantining
techniques in the case of computer viruses [15], but it has
not attempted to study the problem analytically or derive the
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conditions that predict the outcome in the composite networks.
We discuss previous work in more detail in §VII.

In our earlier work [16], we provided a rigorous formu-
lation of competing memes on composite networks using
a modified susceptible-infected-susceptible (SIS) propagation
mechanism. We also proposed a Non-Linear Dynamic System
(NLDS)-based solution for the epidemic threshold, which
determines the phase transition of the behavior of the system.
This paper subsumes our previous work, and we briefly review
the formulation and modeling of the problem for complete-
ness. A key characteristic of our work is that it is applicable
for any pair of topologies for the composite network. To
validate our work, we use both synthetic composite networks
with up to 50,000 of nodes, and a real composite network
(specifically, mobile calls and text messages for an enterprise
with 235 users for a given mobile carrier). In summary, our
main contributions are:

1) We propose EigenPredictor, a method to predict which
meme wins. The method relies on the insight from our
analytical work mentioned above and uses multinomial
logistic regression. A key strength of our method is that
it can predict dominance by capturing the complex inter-
play of the two memes using just the first eigenvalues of
appropriately defined system matrices for each meme. In
extensive simulations with real and synthetic data, our
method can predict the winner (dominating meme) with
high accuracy, typically more than 95%.

2) We design and evaluate several suppression strategies
based on the insights obtained from our analysis. We fo-
cus on two problems: (a) Unilateral Suppression, where
we want to quench one meme while allowing the other
to progress relatively unimpeded; and (b) Concurrent
Suppression, in which we wish to eliminate both memes.
Both suppression objectives are constrained by the
number of allowed interventions, that is, the maximum
number of nodes we can select to suppress the spread
of the memes.

3) We evaluate the effect of cross-contamination between
the layers of the composite network. In the cross-
contamination scenarios, we allow the meme from one
network to eventually ”transform” into a meme on the
other network. For example, think of a rumor propagat-
ing in Facebook being transformed into a rumor spread
on twitter by an individual user. Cross-contamination
adds a new dimension to the dynamic behavior of the
competition, and this is arguably the first study that
formulates and studies crossing-over.

The rest of the paper is organized as follows. We present
the model and problem definitions in Section II and describe
the proofs for the threshold in Section III. We present the
EigenPredictor in Section IV. We show how to manage
propagation and the effect of cross-contamination in section V.
We discuss future directions in Section VI. In Section VII we
review related work, and Section VIII concludes our paper.

II. MODEL AND PROBLEM DEFINITIONS

A. Our SI1I2S Propagation Model

We now present our meme propagation model for the
competing memes; Table I explains our terminology. The
propagation model is based on the popular “flu-like” SIS
(Susceptible-Infected-Susceptible) model [8]. We name our
model SI1I2S (Susceptible – Infected1 – Infected2 – Suscep-
tible). Each node in the graph can be in one of three states:
Susceptible (healthy), I1 (infected by M1), or I2 (infected by
M2). The state transitions are shown in Fig. 1(b).
Meme persistence: δ. If a node is in state I1 (or I2), it

recovers on its own with probability δ1 (or δ2). This parameter
captures the persistence of the meme in an inverse way: a high
δ means low persistence. Note that we assume that a node can
only be infected by one meme, it cannot be infected by the
other.
Meme strength: β. A healthy node gets infected by neigh-

bors that got infected, and the meme strength is captured by β1

and β2. This potential infection is passed to a healthy neighbor
in the absence of other interactions and we call this potential
infection-in-isolation as an attack. In the following, we decide
which infection succeeds (infects a susceptible node i) . Let
C1 be the number of attacks (each happening with probability
β1 independently) by node i’s neighbors which are in state I1
(infected byM1); similarly, let C2 be the number of neighbors
infected byM2. Then, we have three possible cases for a node
in the Susceptible state:

• node i remains in the Susceptible state if C1 = 0 and
C2 = 0.

• node i gets infected with M1 with probability C1

C1+C2
.

• node i gets infected with M2 with probability C2

C1+C2
.

B. Problem Definitions

Given the competing memes model described above, we
now define the specific questions and problems that we address
in this work. The input for all the problems is as follows:
Basic Input: (1) a composite network’s adjacency matrices
A1 and A2; and (2) the competing memes model’s parame-
ters: β1, δ1 for M1 and β2, δ2 for M2.
Given this basic input, we describe 4 problems, evenly di-

vided into two broad categories: (1) Dominance and Extinction
and (2) Meme Control and Suppression.
1) Dominance and Extinction: Our first two problems are

motivated by the natural question of predicting the winner of
the competition between the two memes.
Problem 1: Epidemic Threshold. Given: The basic input.
Find: A condition (threshold values for λ1 and λ2) under
which the memes, either individually or collectively, die-out.
This problem deals with the question of the epidemic thresh-
old for our model, since under the threshold, neither meme
survives.
Problem 2: Meme Dominance. Given: The basic input.
Find: Under the given set of parameters, which meme will
dominate the system? Clearly, this question is more interesting
in the case where one or both memes are above the epidemic
threshold.
Defining dominance. Intuitively, we say that a meme dom-
inates over the other meme if it manages to capture more
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TABLE I
TERMINOLOGY

Symbol Definition Symbol Definition
M1, M2 Meme #1, #2 A1, A2 Adjacency matrices
δ1, δ2 Meme persistence of M1, M2 β1, β2 Meme strength of M1, M2

S Susceptible state I1, I2 Infected state for M1, M2

S1, S2 System matrix for A1, A2, λ1, λ2 Largest eigenvalue of S1, S2

where S = (1− δ)I+ βA in absolute value.

nodes. The definition hides several subtleties, which have to
do with the asymptotic behavior of the system, namely what
happens as time goes to infinity [12]. However, as we are
reliant on simulations, we are forced to adopt a more practical
definition. First, we examine the behavior, after a sufficient
warm-up period, when the system converges to some relatively
stable state (with only small fluctuations of its infected nodes).
We repeat our experiments 100 times and observe less than
a 2% variance in the results. Assuming that we are beyond
the warm-up period, we say that a meme prevails if it has
infected at least θ% more network nodes than the other meme.
For the results presented here we used θ = 10, but we have
also experimented with other θ values and observed similar
qualitative results.
2) Meme Control and Suppression: The remaining prob-

lems involve our ability to control the outcome of the meme
spread and competition.
Problem 3: Unilateral Suppression. Given: The basic input,
and a subset of k nodes.
Find: The nodes to suppress, so that we maximize the chances
that M2 wins. Specifically, we want to find the best nodes
to suppress meme M1, so that we favor M2. This problem
is relevant in a market penetration of competing products,
creating buzz in blogs, or a virus-versus-antivirus propagation
problem in a computer or epidemiological setting.
Problem 4: Concurrent Suppression. Given: The basic
input, and subset of k nodes.
Find: The best nodes to suppress that cause both memes
to die-out. That is, we want to find the best set of nodes
that reduce the spreading effectiveness of both memes. As
an example of concurrent suppression, imagine the spread of
two distinct, yet equally false rumors propagated through two
distinct fringe pseudo-political groups that share memberships.
Due to the potential damage such rumors may cause, both will
be suppressed by preventing critical members from spreading
the falsehoods.

III. THE EPIDEMIC THRESHOLD

In this section, We want to analytically determine the
epidemic threshold (Problem 1). First, a discrete-time Non-
Linear Dynamical System (NLDS), whose general form is
pt+1 = g(pt), is used to approximate the infection process.
The NLDS gives the evolution of the system with time, as we
explain below. First, the probability that node i is infected by
neighbor node j with memeM1 at time t is β1P

1
j (t−1). Then,

the probability ζ1i (t) that node i does not receive the infection
of M1 from its neighbors (here, we assume the neighbors are
independent) as:

ζ1i (t) = Πj∈i′sneighbors(1− β1P
1
j (t− 1)) (1)

Thus, we have the probability that node i receives the
infection of M1 at time t from its neighbors is:

1− ζ1i (t) = 1−Πj∈i′s neighbors(1 − β1P
1
j (t− 1)) (2)

With the same reasoning, we can derive the probability of
that node i receives the infection of M2 from its neighbors at
time t is:

1− ζ2i (t) = 1−Πj∈i′s neighbors(1 − β2P
2
j (t− 1)) (3)

Now, we have the probability that node i is infected by
M1 from its neighbors at time t is the probability that node
i receives the infection of M1 and does not receive infection
of M2 from its neighbors at time t (assuming that the β and
δ values are all extremely small, or, equivalently, the time
between state transitions is extremely small.) Thus, we get:

T 1
i (t) = (1 − ζ1i (t)) · ζ2i (t) (4)

Using the same reasoning, we have the probability that the
node is infected by M2 at time t is:

T 2
i (t) = (1 − ζ2i (t)) · ζ1i (t) (5)

Hence the probability that node i is in state I1 is:

P 1
i (t) = (1− δ1) · P 1

i (t− 1) + T 1
i (t) · Si(t− 1) (6)

and the probability that it is in state I2 is:

P 2
i (t) = (1− δ2) · P 2

i (t− 1) + T 2
i (t) · Si(t− 1) (7)

and the probability that it is in state S (Susceptible) is:

Si(t) = (1−T 1
i (t)−T 2

i (t))Si(t−1)+δ1P
1
i (t−1)+δ2P

2
i (t−1)

As mentioned before, for M1 we define the vector �P 1(t) =
(P 1

1 (t), P
1
2 (t), ..., P

1
N (t))′ where P 1

i (t) is the probability that
node i is infected by meme M1 at time t. Similarly, for
M2, we have �P 2(t) = (P 2

1 (t), P
2
2 (t), ..., P

2
N (t))′. Let �V (t) =

(�P 1(t), �P 2(t)) be the concatenation of two vectors. We use
the NLDS formulation to describe the whole infection process
evolution as �V (t) = f(�V (t− 1)), with:



1052 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 6, JUNE 2013

fi(�V (t− 1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − δ1)P
1
i (t− 1)+

T 1
i (t)Si(t− 1) if i ≤ N

(1 − δ2)P
2
i (t− 1)+

T 2
i (t)Si(t− 1) if i > N

(8)

Substituting T 1
i (t) , T

1
i (t) and Si(t − 1) into equation 8,

we find that fi(�V (t− 1)) is equal to the following:

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− δ1)P
1
i (t− 1) + (1− ζ1i (t))ζ

2
i (t)

(1− P 1
i (t− 1)− P 2

i (t− 1)) if i ≤ N

(1− δ2)P
2
i (t− 1) + (1− ζ2i (t))ζ

1
i (t)

(1− P 1
i (t− 1)− P 2

i (t− 1)) if i > N

We use the following theorem about the asymptotic stability
of an NLDS at a fixed point:
Theorem 1 (Hirsch and Smale, 1974 [17]): The system

given by pt+1 = g(pt) is asymptotically stable at an
equilibrium point p∗, if the eigenvalues of the Jacobian
J = �g(p∗) are less than 1 in absolute value, where

Jk,l = [�g(p∗)]k,l =
∂pk,t+1

∂pl,t
|pt=p∗

The fixed point we are interested in for analyzing the threshold
is the point where no node is infected (all nodes are healthy),
i.e., �V ∗ = �0. By using this, we have the following theorem:
Theorem 2: The system is asymptotically stable at �V ∗ = �0

if the first eigenvalue of the system matrices for both memes
as defined in Table I, are less than 1, i.e., λ1 < 1 and λ2 < 1,
where λ1 is the largest eigenvalue of matrix S1 = (1− δ1)I+
β1A1 (and similarly for λ2).
Proof: We are interested in the stability of the fixed point
�V ∗ = �0. Let the Jacobian at this point be ∇(f) (a 2N x 2N
matrix). Then

[∇(f)]ij =
∂fi(�V (t− 1))

∂�Vj(t− 1)

Next, we can write it into a block matrix composed of the
system matrices:

∇(f) =

[
S1 S3

S4 S2

]

In order to find the first eigenvalue of ∇(f)| �Vf
, we define

�X as 2N elements vector:

�X =

[
�X1

�X2

]

where �X1 and �X2 have N elements respectively. We then have:

�(f)| �vf �X =

[
S1 S3

S4 S2

]
·
[

�X1

�X2

]
= λ�(f)| �vf

[
�X1

�X2

]

Doing the matrix multiplications, we get:

S1
�X1 + S3

�X2 = λ�(f)| �vf �X1

and

S4
�X1 + S2

�X2 = λ�(f)| �vf �X2

with S1 = (1 − δ1)I + β1A1, S2 = (1 − δ2)I + β2A2 and
S3 = S4 = 0 (where I is the N x N identity matrix), as we
show in Table I and as discussed below. Hence, the Jacobian
∇(f) is a block diagonal matrix and its eigenvalues are the
same as the eigenvalues of S1 and S2. So the largest eigenvalue
of ∇(f) can be either λ1 or λ2.

IV. EIGENPREDICTOR: WHO WINS?

In this section, we determine which meme will prevail in
the composite network, which we described as Problem 2.
We showed in the previous section that when the system is
below the threshold, both memes die-out. Hence, the use of
the predictor is meaningful when the parameters are such that
at least one of the memes is above threshold and Theorem 2
does not apply.
Due to the complexity of the problem, instead of an

analytical solution, we present a predictive model, which we
call EigenPredictor, which allows us to predict which meme
will eventually prevail in the composite network. We also use
simulations with synthetic and real data, which we describe
below.

A. Simulation Set-up and Datasets

A discrete-time simulation of our system is used to sim-
ulate the stochastic behavior on different synthetic and real
composite networks.
1) Small-scale Data sets (N < 1, 000): Real-world en-

terprise composite network (ENT). This dataset, which was
caputured over the course of six months, represents the phone
call and SMS text message communications in one enterprise.
Each node is an employee (|N | = 235), the edges in E1

correspond to SMS messages exchanged between employees,
and edges in E2 correspond to phone calls made between
employees. In detail, of all users, 31% communicate via calls
alone, 28% via SMS alone, and 41% via both calls and SMS.
In addition to the SMS and phone communication data, ENT
also provides a basic social structure among the company’s
employees. This social information forms the basis of our
Social Hierarchy method, which we will describe in
Section §V. Each identified employee is grouped into one
of 5 anonymous job roles. Job roles are ordered by their
importance, thus we can determine who are the “bosses” and
who are the regular employees [16].
Synthetic composite networks. Two synthetic graphs with

1,000 nodes are created: an Erdős-Rényi graph and a scale-
free graph; we use the Barabási-Albert model [18]. Several
different combinations of topologies have been experimented.
Here, the reasons that we focus on these two are : (a)In order
to show that our methods are not tailored to a particular family
of graphs and (b) scale-free graphs are known to emerge in
complex human and communication networks [18].
2) Large-scale Data Sets (1, 000 < N < 50, 000): In order

to further stress-test the accuracy of our framework, we also
did experiments on synthetic social networks with 1, 000 <
N < 50, 000 nodes that are generated by the forestFire,
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randomWalk, and nearestNeighbor graph generation
models [19], which are informed by real world measurements
of social networks and provide graph structures that resemble
such networks.
3) Simulation runs: We use a combination of Matlab and

Python to conduct the experiments on real and synthetic
composite networks. In each experiment, each meme infects a
unique set of nodes Ini1 and Ini2. Each set of nodes has the
same size, and is selected uniformly at random from N . The
set of nodes is subject to the constraint Ini1 ∩ Ini2 = ∅ (i.e.,
mutually exclusive). We run each simulation until it reaches a
relatively stable state as we discussed in Section II. At which
point, we determine the average number of nodes infected by
M1 andM2 and report the outcome, which then gets averaged
across 100 runs.
Accuracy. To measure the accuracy of our model, we

compute, for each simulation, the percentage of runs where
the outcome (as predicted by EigenPredictor) and the actual
result (from the simulation) coincide.

B. The EigenPredictor

We now describe our EigenPredictor method for predicting
which meme prevails. At stable state, we have three possible
outcomes, which we represent as follows. If the outcome is
‘1’, it means that M1 will eventually prevail in the composite
networks; if the outcome is ‘2’, it means thatM2 will prevail;
for the case where the difference is less than θ, which here is
10%, the outcome is ‘3’. Note that we experimented with other
θ values (5%, 10%, and 15%) and the results were qualitatively
similar. To summarize, given the parameters of our system,
i.e., A1,β1, δ1, A2,β2, δ2, EigenPredictor produces a numeric
value (1, 2, or 3), with the following semantics:

EigenPredictor((A1,β1, δ1), (A2,β2, δ2))

=

⎧⎨
⎩

1, if M1 prevails
2, if M2 prevails
3, if no clear winner

(9)

Since λ1 is the first eigenvalue (in absolute value) of system
matrix S1 forM1, where S1 = (1−δ1)I+β1A1 (and similarly
for λ2), then λ1 is a function of parameters A1,β1, δ1 (and
the same for λ2). Therefore, equation 9 could be simplified
and written as:

EigenPredictor(λ1, λ2) =

⎧⎨
⎩

1, if M1 prevails
2, if M2 prevails
3, if no clear winner

(10)
We use our EigenPredictor in two scenarios: first, when λ1

and/or λ2 are below the threshold (Case 1); second, when both
λ1 and λ2 are above the threshold (Case 2).
Case 1: At Least One Eigenvalue Below Threshold. From

Section III, we know that if the system matrix’s first eigenvalue
of one meme is less than 1, the corresponding meme will
die-out eventually. Therefore, in this scenario, we can predict
which meme prevails eventually using the following three
rules:
(i) if λ1 < 1 and λ2 > 1, then M2 tends to prevail

eventually in the composite networks;

(ii) if λ1 > 1 and λ2 < 1, then M1 tends to prevail
eventually in the composite networks;
(iii) if λ1 < 1 and λ2 < 1, then both memes will die out

and none of them can be said to prevail.
Figures 2(a)-(e) demonstrate the proposed rules on both

synthetic and real composite networks. The infection starts
by infecting 30 nodes for each meme in Figure 2(a), Fig-
ure 2(b) and Figure 2(c), and 10 nodes for each meme in
both Figure 2(d) and Figure 2(e). The outcomes of below-
and above-threshold from these rules can be distinctly seen
in these figures. These results show that, though simple, our
proposed rules are very effective for predicting which meme
tends to prevail eventually in the composite networks.
Case 2: Both Eigenvalues Above Threshold. This is the

more interesting case in terms of competition: each meme in
isolation would not die-out, so it is a “fight for dominance.”
We find again that the system eigenvalues play a critical role:
the meme whose first eigenvalue is larger tends to prevail
eventually in the composite networks.
Intuitively, the first system eigenvalues capture the like-

lihood of success for each meme. Recall that the system
eigenvalue considers both the topology and the meme strength.
Extensive experimental results, shown in Figure 2(f), argue
in favor of this observation: we plot the outcome of the
competition for different pairs of the eigenvalues (λ2 vs. λ1);
we see that above the diagonal M2 prevails, and below the
diagonal M1 prevails, in other words, the meme with the
largest system eigenvalue wins.
Our regression model.We verify the significance of λ1 and

λ2 as determining factors using a rigorous regression model.
In particular, we use a multinomial logistic regression [20] to
predict the outcome in the case where both eigenvalues are
above the threshold:

log
Pr(Y = i|X = (λ1, λ2))

Pr(Y = K|X = (λ1, λ2))
= αi0+αi1 ·λ1+αi2 ·λ2 (11)

Here Y represents the outcome of this model (dependent
variable), and X represents the input, i.e., the independent
variables λ1 and λ2; �αi=(αi0, αi1 , αi2) is the coefficient
vector of independent variables, where i=1,2. Therefore, we
have:

Pr(Y = i|X = (λ1, λ2)) =
exp(αi0+αi1·λ1+αi2·λ2)

1+
∑K−1

i=1 exp(αi0+αi1·λ1+αi2·λ2)

(12)

Pr(Y = K|X = (λ1, λ2)) =
1

1+
∑K−1

i=1 exp(αi0+αi1·λ1+αi2·λ2)

(13)

where i=1,2 and K=3. The coefficients vectors αi computed
by our regression model are presented in Table III; note that
corresponding coefficients’ values (e.g., α10 and α20) are not,
as one might expect at first, equal in magnitude and of opposite
signs, since the output range is 1–3.
To construct the ground truth, we ran system simulations

(input: λ1 and λ2; output: which meme prevails) on both
synthetic and real composite networks. The number of data
points was 5,339 for synthetic composite networks and 6,844
data points for real composite networks (see Section IV-A for
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Fig. 2. Simulation Results: Infection plot over time (log-log) in Figure(a)-(e). 2(a): Synthetic Composite Networks: λ1 = 0.97, λ2 = 0.96; 2(b): Real
Composite Networks: λ1 = 0.9, λ2 = 0.94; 2(c): Synthetic Composite Networks: λ1 = 0.91, λ2 = 1.63; 2(d): Real Composite Networks: λ1 = 0.99, λ2 =
1.4; 2(e): λ1 = 4.5, λ2 = 1.7; 2(f): The outcomes for different combinations of system eigenvalues: 1 < λ1 < 10 and 1 < λ2 < 10; black dotted lines
represent three lines λ1=1, λ2=1, and λ1=λ2. When the eigenvalues are roughly equal there is no clear winner.
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TABLE II
PREDICTION ACCURACY.

Training data
Accuracy

set size
Synthetic Real
networks networks

5% 96.65% 95.05%
10% 98.42% 98.28%

a description of the datasets). Next, for each data point, we
compare the outcome from the simulation with the outcome
from the EigenPredictor (regression), and compute the accu-
racy of the predictor.
As shown in Table III, using only 5% of the dataset as

training data (and 95% of the dataset for validation), our model
achieves a prediction accuracy of 96.65%; when using 10%
for training, the accuracy is 98.42%, with 95% confidence
interval.
Stress-testing EigenPredictor: topology independence. In

order to test the robustness of our model, we use a different
training topology from the testing topology. Specifically, we
use 5% and 10% of the data set from synthetic composite
networks as training data to predict the data set from real
composite networks. We achieve an accuracy of 95.05% and
98.28%, respectively, with a 95% confidence interval, as
shown in Table II. These results indicate that EigenPredictor
is very effective in practice.
We now present details on the statistical results and signifi-

cance of our model: Table III shows the results of the logistic
regression (�α1, �α2, and |t|-values). To understand how well the
independent variables λ1 and λ2 contribute to the model (i.e.,
explain the dependent variable Y ), note the |t|-values; since
the |t|-values are much larger than 2.08 (which translates to
p-values being much lower than < 0.01), this indicates that
our model is statistically significant at the 1% level. These
results indicate that all features contribute to the prediction
model, and the model has high predictive power.
Discussion. The significance of the multinomial logistic

regression is two-fold: (a) we verify quantitatively that the
λ1 and λ2 are statistically sufficient to determine the winning
meme and (b) we develop a practical method to predict meme
dominance under complex dynamics.

V. MEME SUPPRESSION, CONTROL AND
CROSS-CONTAMINATION

In this section, we first design and evaluate suppression
methods based on two distinct strategies (described as prob-
lems 3 and 4 in §II-B2):
1) Unilateral Suppression. The goal of this strategy is to
suppress one meme, while leaving the other unscathed,
thus free to spread unimpeded. Using the five techniques
described below, we intend to suppressM1 by removing
ability to spread the memes from a subset of carefully
selected nodes. The intention of unilateral suppression is
to reduce λ1 to below λ2 (i.e., λ1 < λ2), thus affecting
the outcome.

2) Concurrent Suppression. The goal of this strategy is to
suppress the spread of both memes by removing a set
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Fig. 3. Large Scale Experimental Results. This figure shows experi-
mental results of large scale epidemic simulations using a ForestFire
and Nearest Neighbor synthetic graph models. Results above are for
N = 40, 000 nodes, but are consistent for results of 10, 000 to
50, 000 node experiments. Unlike smaller-scale experiments, these
results show that the weaker meme may retain some endemic
population, yet the meme with the larger eigenvalue clearly dominates
the simulation.

of nodes from both graphs in the composite network.
Ultimately, we want to reduce λ1 and λ2 to below 1 (i.e.,
λ1, λ2 < 1), thus stopping the spread of both memes.

Given these two main strategies, we propose 5 methods,
described in Table IV, partially motivated by the meth-
ods used in single virus/disease propagation on a single
network [21], [22]. We evaluate each method’s effect on
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TABLE III
REGRESSION RESULTS: COEFFICIENT VECTORS AND THEIR

CORRESPONDING |t|-VALUES.

αi0 αi1 αi2

�α1 -3.43 1.44 -1.32
|t|-values for �α1 9.27 12.18 8.66
�α2 7.05 1.37 2.39
|t|-values for �α2 6.64 9.64 12.48

the system matrix eigenvalues for each subgraph in the
composite network (λ1,λ2). The proposed methods are:
(a) Random, (b) Acquaintance, (c) Max Degree, (d)
Social Hierarchy and (e) Greedy.

A. Unilateral Suppression

As mentioned above, the objective of unilateral suppression
is to reduce λ1 to less than λ2, thus reversing the prediction
of our EigenPredictor. That is, we seek to answer: What set
of nodes should we suppress in order to reduce the spread
of one meme, ultimately resulting in the dominance of the
other, unsuppressed, meme? We present the results of using
Unilateral Suppression on the enterprise data set in Figure 4.
Note thatM1 will eventually prevail in the composite network
prior to applying any unilateral suppression strategies. Then,
observe that the value of λ1 decreases as nodes are removed
from the system. At k = 10, λ1 is reduced to below λ2 (thus
reversing the prediction of the EigenPredictor).
As expected, the two methods that rely on randomness (i.e.,

Random and Acquaintance) have the worst performance
compared to the other methods. In contrast, Greedy performs
better than the others, yet is the most expensive computation-
ally. Max Degree performs surprisingly well, within 1% of
Greedy at much lower computational cost.
Interestingly, when we remove nodes based on their so-

cial status (e.g., remove “bosses” before “managers,” and so
on), the method Social Hierarchy performs better than
the random methods, yet not as well as the topologically-
informed models, and eventually (at k = 20) crosses the
value of λ2. Though not as effective, in situations where
we lack topological information, we could potentially rely on
easily observable social hierarchy information to inform our
suppression process.

B. Concurrent Suppression

Under the concurrent suppression scheme, the goal is to
reduce the effective spreading power of two memes spreading
through different modes of communication (i.e., edge sets E1,
E2 in a composite network). Simply put, we ask: What set
of shared nodes should we inoculate in order to reduce the
spread of both memes the most?
We present the results of our suppression methods in Fig-

ure 5. As before, we observe that Max Degree and Greedy
reduce both λ1 and λ2 to below the epidemic threshold
(indicate by the horizontal line at 1) at approximately k = 19.
Social Hierarchy provides mixed results. As indi-

cated by the lower plotted line (representing the SMS portion
of the enterprise network), Social Hierarchy is nearly
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Fig. 4. Example of Unilateral Suppression on the enterprise data set.
The methods Greedy, Max Degree and Social Hierarchy
drop the system matrix eigenvalue λ1 below λ2 (thus reversing the
prediction of the EigenPredictor); (b) shows the original competition
results without removing nodes; note that M1 wins, while M2 dies
out; (c) shows the competition results after removing k = 20 nodes
using the Max Degree method; the result is reversed, with M2

winning and M1 dying out.

as effective as Max Degree and Greedy. Yet, on the upper
line (call graph of the enterprise network), the Social
Hierarchy method is not as effective and does not reduce
the spreading power to below the epidemic threshold.
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TABLE IV
SUPPRESSION METHODS

Method Name Unilateral Concurrent Intuition
Random rand(nodeG1

) rand(nodeG1 |G2
) Randomly select a node and remove it from G1 (G1|G2)

Acquaintance rand(neighbor) of

rand(node)

rand(neighbor)

of rand(node) of

rand(G1|G2)

Acquaintance immunization, remove a random neighbor of

a randomly selected node in G1 (G1|G2).

Max Degree max(deg(G1)) max(deg(G1|G2)) Remove node with the maximum degree in G1 (G1|G2).

Social

Hierarchy

max(rank(node)) max(rank(node)) Remove node with the highest rank.

Greedy max(λ1) max(λ1|λ2) Remove the node that causes the largest eigenvalue drop in

either λ1 or λ2.

C. Summary

In summary, we have designed and evaluated several tech-
niques for unilateral and concurrent suppressions, which are
based on randomness, topological information and social
hierarchy. The results from both suppressions show that the
topological properties-based method (i.e., Max Degree) is
very effective in controlling meme propagation compared
to other methods. Put another way, removing the highest-
connected node is a very effective suppression strategy. In
situations where we lack topological information, we could po-
tentially rely on the explicit information of social hierarchy to
design our suppression scheme (e.g., Social Hierarchy),
though not as effective as the topological properties-based
method.

D. Cross-Contamination Experiments

Until this point, we have considered memes spreading on a
composite network to be mutually exclusive, i.e., a meme will
spread using only the edges associated with their own network.
In this section, we evaluate the effect of cross-contamination
across various synthetic graphs. We change the model slightly:
we allow the meme from one network to eventually “trans-
form” into a meme that can propagate on the edges of the
other network. For example, consider a rumor propagating in
Facebook being transformed into a rumor spread on twitter by
an individual user. The user creates a new meme and releases
it on twitter, which spreads the same information, but now
this meme is spreading across twitter edges. Our simulation
model emulates this exact scenario, by carefully following the
propagation of these “cross-over” meme. To account for the
new ability of a meme to jump composite network layers, each
meme is assigned a cross-contamination parameter, denoted
0 < XA→B, XB→A ≤ 1.0. Specifically, XA→B describes the
ability of a meme propagating on composite network layer A
to cross to layer B. XA→B is similarly defined.
In the shown scenarios, if simulated in isolation, each of

the memes would propagate and capture the graph. While
in competition, in each of these simulations, ultimately one
meme dominates. We have established that the meme prop-
agating with the largest eigenvalue will eventually dominate
the graph in the absence of cross-over. However, the crossing
over allows the meme with higher such likelihood to spill over
and propagate on the other topology, thus giving an advantage
to the meme with higher such likelihood.

In Figure 6(a), we demonstrate the results of cross contami-
nation on a composite network of 500 nodes. In this example,
λS,1 = 26.43, and λS,2 = 13.24 with cross-contamination
probabilities of XA→B = .15 and XB→A = 0.05. Observing
that λS,1 > λS2 , we see that meme #1 ultimately captures the
greatest number of nodes. Interestingly, meme #2 does not
completely die out, possible due to the ability of meme #2 to
cross over to both layers of the composite network.
In Figure 6(b), we show the average steady-state percentage

of infected nodes versus the propagations strength of meme
#2 (β2). All other parameters are constant, in particular
β1 = 0.25, XA→B = 0.10, and XB→A = 0.10. We observe
that meme #2 will eventually dominate the simulation as we
increase β2. Due to space limitations, we cannot present a
more extensive study of this case, despite having more results,
while it would be interesting to study this problem analytically.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our work and
possible future directions.
Choice of epidemic model. The flu-like SIS (Susceptible-

Infected-Susceptible) epidemiological model is simple, yet
illustrative, and has been extensively studied in past literature
in a single-virus setting (cf. [9], [1], [23]). Therefore, we
chose to extend SIS in order to gain fundamental insights into
the dynamics of competing memes. We leave the investigation
of other epidemic models as future work.
Using real composite networks. Finding real data for

any networked system or communication is non-trivial due to
privacy concerns, infrastructure limitations, and measurement
biases. Finding real data sets of composite networks is even
more challenging. Obtaining the enterprise dataset used in
this paper was instrumental in modeling and understanding
how real composite network operate, but the dataset comes
with dissemination restrictions. We believe that the research
community could greatly benefit from the creation of an open
repository of real composite networks.
Deeper exploration. Our paper is the first attempt to

study, predict and manage competing epidemic propagations
on composite networks. We leave further exploration, like
finding the extent of foot-prints, proving performance bounds
for inoculation policies and incorporating more elaborate
interactions between the two networks as future work.
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Fig. 5. Example of Concurrent Suppression on the enterprise data set, using each method. The epidemic threshold is marked in each plot at 1. Again, both
the Greedy and Max Degree methods drop λ1 and λ2 below the epidemic threshold. Subplot 5(f) shows suppression results after removing k = 20 nodes
selected using the Max Degree method—both memes die out.
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Fig. 6. Cross contamination simulation results.

VII. RELATED WORK

We now proceed to reviewing related work in the context of
single-meme and multiple-meme propagation from epidemiol-

ogy, communication networks, game theory, and data mining
literature.
Single-meme propagation. Many works focus on single

meme propagation on one single topology. Compartmental
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models like SIS, SIR, etc., have been well-studied in many
epidemiological texts [9], [1], [24]. The evolution of blogs and
the maximization of influence propagation are studied in [3],
[25]. Information cascades models are proposed to study the
meme propagation in word-of-mouth communications [26],
[2]. Richardson et al. proposed a meme propagation model to
achieve optimal viral marketing plans [27]. Numerous studies
exist on virus propagation on the Internet based on the basic
epidemic models of infection [4], [5]. Virus propagation under
special cases have been studied, e.g., in IPv6 Internet [28]. A
fundamental question in epidemiology is the presence of a
threshold, under which an epidemic is guaranteed not to hap-
pen. Pastor-Satorras et al. [10] proposed an epidemic threshold
condition for random power law networks, which uses the
“mean-field” approach. Ganesh et al. [13] and Yang et al. [11]
provided epidemic threshold for the single-virus on single
topology. Prakash et al. [12] gave the epidemic threshold
condition for almost all single-virus epidemic models on a
single static network. Cohen et al. [21] studied the well-known
acquaintance immunization method and showed that it is much
better than random methods. Tong et al. [22] provide a simple
greedy (1 − 1/e) approximation algorithm for immunizing
nodes under the SIS model.

Multiple memes and interdependent networks. New-
man [14] studied multiple viruses on a single, special random
graph and provided the epidemic threshold for the case when
the second virus propagates over the residual network after
the propagation of the first virus has completed. This scenario
is close to the dynamics of propagation of a single virus—one
virus passed over the network, the second virus starts to pass
over the residual network. Models for multiple cascades have
been studied as extensions of the independent cascade model,
where once a node is infected with a cascade, it never change
its state [29]. Multiple viruses propagation on simple fair-play
single network was investigated [30]. The effects of cascades
in inter-dependent networks (e.g., Internet router and power
electricity networks) were investigated by Buldyrev et al. [31].
However, all of these works are completely different from our
problem as we consider the more realistic and challenging
scenario of competing memes propagating simultaneously
on composite networks. In this paper, we have significantly
extended our preliminary work [16] by: (a) proposing and
evaluating an effective prediction scheme, Eigenpredictor, (b)
considering immunization strategies with various suppression
techniques to affect the outcome of the propagation, and (c)
evaluating the effect of cross-contamination across various
graphs.

Game theory. Meier et al. [32] studied inoculation games
in social networks, where each node selfishly decides whether
or not to protect itself. The game between a virus and an alert
over a network was investigated by Aspnes et al. [33]. Kostka
et al. [34] studied competing campaigns as a game-theoretical
problem and showed that being the first player was not always
advantageous. However, these works using game theory are
different from our problem where we assume that all nodes
are passive and follow the same propagation model.

VIII. CONCLUSION

In this paper, we have designed an effective methodol-
ogy, EigenPredictor, to predict which meme will eventually
prevail. Our theoretical and experimental results show that
EigenPredictor achieves very high accuracy (above 95%)
on a wide variety of real and synthetic datasets. Given the
outcomes predicted by our EigenPredictor, we have designed
and evaluated various suppression schemes to alter the results
of the competing memes on composite networks. Extensive ex-
perimental results have revealed the comparative effectiveness
of suppression schemes. Finally, we formulate and provide
an initial study of the effect of cross-contamination across
the composite graphs, where a meme cross-over and starts
propagating on the other network’s topology.
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