
How to Have Your Cake and Eat It Too: Dynamic Software Updating with
Just-in-Time Overhead

Rida A. Bazzi Bryan Topp
School of Comp. Inf. and Dec. Sys. Engineering

Arizona State University
Tempe, AZ 85287

Email:{bazzi, betopp}@asu.edu

Iulian Neamtiu
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA 92521

Email:neamtiu@cs.ucr.edu

Abstract—We consider the overhead incurred by programs
that can be updated dynamically and argue that, in general,
and regardless of the mechanism used, the program must
incur an overhead during normal execution. We argue that the
overhead during normal execution of the updateable program
need not be as high as the overhead for the updated program.
In light of the fundamental limitations and the differences in
the overhead that must be incurred by the updateable and
updated programs, we propose a new mechanism for dynamic
software update based on a new shifting gears approach.
The mechanism attempts to incur just the required overhead
depending on the stage of update the application is in. Before an
update the execution incurs low overhead and when an update
occurs the execution incurs higher overhead which reverts to
low overhead as the execution progresses. We evaluate the
mechanism by modifying an application by hand. Preliminary
performance numbers show that the mechanism performs
better than existing mechanisms for dynamic software update.

I. INTRODUCTION

Upgrading deployed software, whether for adding func-
tionality or fixing bugs, is a significant part of the software
lifecycle. Upgrading software typically results in substantial
downtime needed to stop the old application and load and
start the upgraded (new) application. For applications that
cannot tolerate the interruption associated with traditional
software upgrades, dynamic software update (DSU) offers
the possibility of replacing the running application in-
memory without the need for relinquishing system resources
or terminating application processes and threads. Existing
works on DSU concentrate on providing the system mech-
anisms to induce the update: suspending execution without
stopping the application processes, copying the state from
the old to the new version, and starting the new version [1],
[2], [3].

Existing application-level mechanisms for dynamic
sofware update use DSU compilers which instrument the
application source code so that it is updateable at runtime.
These mechanisms introduce substantial overhead due to
indirection introduced by the mechanism, the loss of op-
timization opportunities by the compiler, as well as the

changes in cache locality due to instrumentation by DSU
compiler [4], [2]. While some existing low-level mechanisms
can avoid that overhead, they are architecture dependent
and harder to maintain, but more importantly they are not
general mechanisms for dynamic software update. In this
paper, we argue that any general mechanism for dynamic
software update must suffer some unavoidable overhead
unless knowledge and control of the compiler is assumed
by the mechanism. This overhead must be introduced by
dynamic software update mechanisms even for update sys-
tems such as Ekiden [5] which aim to reduce the overhead
by restricting the generality of the mechanism and relying
on the programmer to make up for the loss of generality.

By analyzing the overhead that must be introduced by
current dynamic software update systems, we realized that
we could develop general update mechanisms that incur high
overhead only after an update has been initiated and have
little to no overhead during normal execution (i.e., before the
update is initiated and after the update has completed) The
solution uses a novel shifting gears approach. The idea is to
run in high gear (low overhead) during normal execution
and only shift to low gear (high overhead) just before
the update. Once the update is done, the execution shifts
up to high gear as the execution progresses. To evaluate
the overhead introduced by our approach, we performed a
preliminary implementation of this scheme where we added
the instrumentation manually, rather than automatically by a
compiler, on an example program to show that the overhead
can be greatly reduced during normal execution. We use
as an example, the KissFFT program and show that the
overhead due to instrumentation can be reduced to less
than 10% during normal execution. This is significantly
lower than the overhead introduced by the instrumentation
of Upstare and Ginseng which can range from 40% to more
than 100% depending on the platform and compiler used.

In summary, the paper has two main contributions:

1) An analysis of the fundamental limitations on the
overhead introduced by general mechanisms dynamic
software updates.



Figure 1. Effects of DSU on optimization of code: (a) code motion not
allowed across update point, but optimizations across update point are
allowed; (b) same as (a) but instrumented code is larger which affects
instruction cache locality; (c) optimizations not allowed across update
point. This is especially problematic inside loops.

2) A new dynamic software update approach that intro-
duces less overhead than other existing approaches.

The rest of the paper is organized as follows. In Section II,
we study the fundamental limitations on the performance of
dynamically updateable programs. In Section III, we propose
a new DSU mechanism that minimizes the overhead through
a novel shifting gears approach. In Section IV we present
preliminary performance results that show that our approach
can reduce the overhead of dynamic software update. In
Section V we compare our approach to related work.

II. EFFECTS OF DSU ON PERFORMANCE

In this section, we argue that in general, providing
dynamic software update must incur an overhead during
the normal execution of the updateable program as well as
the updated program. Interestingly, the overhead must exist
independently of the type of mechanism used, so it applies
to general systems such as Upstare and Ginseng [2], [4] as
well as systems that explictly try to avoid the overhead such
as Ekiden [5].

To simplify the discussion, we assume that the program
consists of only one function, possibly with local variables.
In application-level dynamic software update, a number of
points in the old version are marked as potential update
points—we call these points “potential” because, depending
on which functions are on the stack at the time the point
is reached, the update could be unsafe. Without loss of
generality, we assume that the update is safe at the next
update point.

When the update point is reached, dynamic software
update requires that the execution state of the old version
be mapped to a state of execution of the new version of the
program (or to a hybrid version consistent with both the old
and the new version). A state mapping has two components:

saving the state of the old version and constructing a state
of the new version. We discuss the effects of each on
performance.

A. Saving the state

Mapping the state of the application requires that, at the
time an update is effected, the application-level variables be
accessible in order to be able to use their values to construct
a state of the new version of the application. So, any update
mechanism whether applied at the application level or at the
executable level must have access to the application-level
variables. This rules out the possibility for the compiler to
optimize-out application level variables that might be needed
to construct the state of the new version. Also, at the update
point, the source level code that appears before the update
point should be fully executed. Otherwise, we cannot have
guaranteed semantics for the program state at the update
point. This rules out any compiler optimizations that move
code across the update point. Therefore, saving the state puts
the following two restrictions on the compiler:

1) Application-level variables must be accessible and
may not be optimized out at the update points

2) No code motion is allowed across the update point.
Otherwise, the compiler can optimize across an update

point as show in Figure 1 (a). In the figure, the red colored
rectangles represent update points. As shown in the figure,
the compiler can optimize the expression e = b+ c to e = a
because that does not affect the saved values. The compiler
cannot move a = b + c to after the update point because
the value of a captured at the update point should correctly
reflect the semantics of the program.

The first execution, (a), shows only the effect of update
point and assumes that these update points do not add
to the size of the code. In the second execution, (b), the
update points are shown to be larger because in general code
needs to be added to the application in order to save the
state. Adding that code can affect the cache locality of the
application.

B. Constructing a new state

To construct the state, the programmer must be able to
associate a point in the execution of the old version with
a point in the execution of the new version. This requires
that the point in the execution of the new version, which
is specified statically, must be a barrier to any code motion
so that update does not alter the application-level semantics.
Also, since the state of the new version will be constructed
at that point and code that reconstructs the state needs to be
part of the new version, the compiler cannot tell whether the
values before the barriers are the same as after the barriers.
This would rule out any optimizations across the barrier.
This situation is shown in Figure 1 (c). In the figure, the
compiler cannot tell that e = a after the barrier because the
values of a, b, and c are read-in at the point of update.



a = b * c + d; t = b * c; t = b * c;
a = t + d; a = t + d;

// update // update // update

e = b * c + f; e = t + f; t = b * c;
e = t + f;

(a) (b) (c)

Figure 2. Code example showing that the compiler cannot ignore the
presence of code that reconstructs application-level state of the program:
(a) source code; (b) incorrectly compiled code with optimization; and (c)
compiled code with no optimization.

This overhead is worst case overhead, but it must be
incurred at update points. Here, it might be tempting to think
that it would be enough to “instruct” the compiler to ignore
the code that constructs the new state when optimizing
in order to reduce the overhead. Unfortunately, that can
lead to incorrect code as we show below. So, the loss of
optimization is a fundamental cost that cannot be avoided.

To understand why instructing the compiler to ignore the
code that reconstructs the state is not a viable solution,
consider the code snippet shown in Figure 2. The source
code is shown in (a). In the compiled code (b) the value
of e is calculated using a temporary variable t and program
variable f . The cause of the difficulty is the fact that t is
not visible at the source level. If the state is reconstructed
at the update point, the values of a, b, c, d, and f before the
update point would be correct but e would not be correctly
calculated because t is not part of the program-visible state.
The compiler would have to compile the code so that t is
recalculated as shown in (c). So, constructing the state puts
the following three restrictions on the compiler:

1) Application-level variables must be accessible and
may not be optimized out at the update points

2) No code motion is allowed across the update point.
3) No optimization can be made across update points.
In summary, dynamic updates at the application level

would require a loss of optimization opportunities regardless
of the mechanism being used. Our study of the fundamental
constraints that dynamic software update introduces led us
to a new approach for dynamic software update that incurs
just the right amount of overhead. This is discussed next.

III. SHIFTING GEARS: A NEW APPROACH FOR
DYNAMIC SOFTWARE UPDATE

In this section, we present our approach to reducing the
overhead of dynamic software update. The approach relies
on the observation that we can run the system in high gear
in the common case (pre-update and post-update) and only
switch to low gear for a brief period around the update.

Essentially, the system operates in high gear, with the
only overhead being mainly due to instrumentation used to
save the execution state when an update is required. When

an update must be performed, the state of the old version
must be saved and the state of the new version must be
constructed. The new version will be instrumented so that
it can construct its state from the saved state of the old
version. Finally, since the new version itself should be able
to save its state when an update is required, the new version
will first be loaded with ability to both save and restore
its state. Note that a fully instrumented new version will
incur high overhead in the worst case due to the presence
of instrumentation to restore the state. So, there is a need
for a way to eliminate the instrumentation that restores
the state and replace the fully instrumented new version
with a version that only contains instruentation to save the
execution state. We will argue below that, in general, it is
not possible to remove full instrumentation while a function
is active. Instead we propose that as functions exit, they are
replaced with versions that are instrumented only to save the
state. As a consequence, all but the longest running functions
(e.g., main()) can be replaced not long after an update is
completed. To summarize, the stages for an update are:

1) Initially, code is instrumented to save the execution
state.

2) When an update occurs, the execution state is saved.
3) A new version with the ability to both save and restore

the execution state is loaded.
4) As functions exit, they are replaced with versions that

are less heavily instrumented, that can only save the
execution state.

5) When a subsequent update is required, the state of
execution is saved, and go to stage 3.

A. Compilation and Gear Shifting

Normal operation (pre-update, high gear): During nor-
mal operation, the instrumented code must ensure that all
application-level variables are available at an update point
and that the update point be a barrier against code motion.
Also, the instrumentation should increase the code size as
little as possible.

To achieve these goals, we use the instrumentations illus-
trated in Figure 3 (which is an example of the instrumenta-
tion that we hand coded). All local variables of the function
are encapsulated inside a structure and all variable accesses
are transformed to accesses of the corresponding fields in
the structure. For each function there is a corresponding
struct type for the structure that holds the local variables
of that function.

At the update point, the local variables are saved
in a global stack variable. Each entry in stack
(stacknode) will contain the local variables of a function
that is active on the execution stack. A stacknode is large
enough to hold any set of local variables. To save space, it
is declared as a union of all possible local variables struct
types. The copying of the local variables is achieved with a
simple statement which assigns the local structure to the



typedef struct { typedef struct {
int _t; int t;
int _r; union {
int p; loc1t loc1;
int floor_sqrt; loc2t loc2;

} loc9t; ...
loc9t loc9;};

} stacknode;

void kf_factor(int n,int * facbuf)
{

loc9t loc;
loc._t = 9; // tag

loc.p=4;
loc.floor_sqrt = (int)floor (sqrt (n));

/*factor out ... */
do {

if(__update_req) {
loc._r = 91;
stack[sp++].loc9 = loc;
return;

}
...

} while (n > 1);

Figure 3. Instrumentation to save state.

void kf_factor(int n,int * facbuf)
{

loc9t loc;
loc._t = 9;
if (__recover) {

switch (stack[sp].loc6._r)
{ case 91: goto recovery91;

case 92: goto recovery92;}
}

loc.p=4;
loc.floor_sqrt = (int)floor (sqrt (n));

/* factor out ... */
do { if(__update_req) {

loc._r = 91;
stack[sp++].loc9 = loc;
return;

}
recovery91: if(__recover) {

loc = stack[sp--].loc9;
}

...

} while (n > 1);

Figure 4. Instrumentation to save and restore state.

corresponding field in the union. In addition, the update
point is stored in that structure as an integer identifier. It can
be seen that the amount of instumented code is minimal: (1)
store update point; (2) copy local variables to stack; and, (3)
return to caller.

When an update is invoked, one by one, the functions will
store the local variables in stack and when the main()
function is reached, stack contains a copy of the execution
stack (minus function parameters) and at that point a state
mapping can be done but that does not interfere with the
normal execution of the program.

During update operation (low gear): When an update
occurs, the saved state needs to be mapped to a state of the
new version. This requires a new version that can restore and
save the state be loaded, and the state mapping be applied.
This can be done in any way required (similar to the way
it is done in UpStare for example) as long as it is done
outside the main execution path. Naturally, code introduced
by the instrumentation (in the main execution path) should
be kept at a minimum. The instrumentation is illustrated in
the hand-coded example of Figure 4.

Normal operation (post-update, high gear): After the
state of the new version is retored (or constructed), we would
like to get rid of the instrumentation that restores the state
because that instrumentation introduces a lot of overhead.
We propose that such an elimination can be achieved as
functions exit. When a function is called again, a non-fully
instrumented version is used.

B. Reducing the Overhead Further

One might hope to further reduce the overhead by elim-
inating the code that restores the state while a function is
active. We argue that in general such an elimination is not
possible. Essentially, we would like to be able to map the
state of execution of a function with full instrumentation to
the state of execution of a function with less instrumentation
(and hence more optimization).

The difficulty of mapping the state of a fully instrumented
to that of a less instrumented function (that only saves state)
has to do with the differences in optimizations in general.
Revisting the example in Figure 2, we see that in general
replacing an active fully instrumnented function with a less
instrumented function can result in the loss of temporary
variables that are not visible at the application-level. Since
it is not possible to assign values to these temporaries at
the application level, we cannot expect an application-level
mechanism to be able to achieve the replacement.

IV. EXPERIMENTS AND CONCLUSION

To test our approach, we coded the instrumentation by
hand. We tested the instrumentation on Kiss FFT [6], the
bête noire of dynamic software update systems due to its
dependence on compiler optimizations for performance. We
had two versions of the instrumentation; one version could
save the state of execution and one version could both save
and restore the state.

We did the testing on two machines: (1) Intel DUO 2Gb,
1.6 Ghz machine and (2) Xenon 4Gb, 2.8 Ghz. The results
(additional overhead compared to the uninstrumented code)
are shown in Table I. The results show a wide gap between
the ovehead of instrumentation that saves the state and
instrumentation that saves and restore the state. At around
10% overhead for this CPU-bound application, one can
expect most applications to have considerably less overhead



Instrumented to Save Instumented to Save/Restore
Pentium Duo 12.68% 40%
Xeon 8.65% 39.42%

Table I
OVERHEAD FOR KISS FFT.

when executing in high gear. The result for the save-and-
restore instrumentation are also competitive with those of
Ginseng and Upstare.

The experiments do not measure the overhead for an ap-
plication after some, but not all, fully instrumented functions
are replaced with non-fully instrumented versions. We argue
that such functions will not be a source of high overhead
for well-written applications, since they will normally be
dispatch functions that do not have much computation.
Also, our discussion in the previous section shows that it
is not possible to eliminate such full instrumentation with
an application-level update mechanism.

In summary, we have studied fundamental limitations on
the overhead introduced by dynamic software update and
proposed a new scheme that preliminary experiments show
to be a viable approach for low overhead dynamic update.

V. RELATED WORK

We discuss the most relevant related works. Ginseng [4]
transforms off-the-shelf C programs into C programs that
can be updated on-the-fly via two main techniques: type
wrapping and function indirection. Ginseng allows a wide
range of updates to C programs, however, the indirection and
type wrapping impose a permanent performance overhead
on programs compiled with Ginseng. This overhead ranges
from 32% for I/O bound programs to 129% for the KissFFT
CPU-bound program.

Kitsune [7] is a whole program-replacement DSU systems
for C, i.e., it updates a program by starting the new version
from scratch and transferring the state from the running
version. In Kitsune state migration is automatic by default
for global variables, but other variables must be marked
manually for migration. Control migration means indicating
update points, just like in our approach. Some form of stack
reconstruction is manually achieved by the programmer who
“must write code to direct execution back to the equivalent
spot in the new program”. The low overhead achieved by
Kitsune (around 2% for the applications considered) does
not contradict the results of this paper. We argued that
for variables that need to be saved or restored, compiler
optimizations will be inhibited. Variables that do not need
to be saved or restored can still be optimized out. General
update mechanisms like Ginseng and Upstare are overly
conservative and instrument the code under the assumption
that all variables need to be saved and restored. The numbers
we provided for the KissFFT application can be considered
as extreme because the application is highly sensistive to

compiler optimizations and we instrumented it so that the
whole state can saved and restored in any loop in the
program. In contrast, for the updates applied using Kitsune,
not all variables are saved and restored and stack reconstruc-
tion is done selectively which reduces the overhead. Also,
Kitsune manages to reduce the size of instrumented code
which reduces the effects of loss of cache locality.

Lucos [8] is an approach for applying dynamic updates
to the Linux kernel using Xen virtualization. Lucos employs
binary rewriting and paging to update functions and types.
The performance overhead is less than 1% when dynamic
updates consist of applying small patches to the Linux
kernel. Polus [1] is a user-space follow-up to Lucos: calls
to updated functions go to the latest version, but active
functions continue to execute at the old version. Old data and
new data may coexist, and maintaining coherence between
them is relegated to the programmer. The performance
overhead ranges from 5% (VsFTPd) to 30% (Apache).

UpStare [2] uses stack reconstruction to allow an actively
running function to transition to a corresponding point in
the new version of the same function when an update is
applied. This technique has the same effect as Ginseng’s
code extraction, but is more flexible, as transition points can
be specified at patch time, not deployment time.

Acknowledgments. This research was supported in part by NSF
grants CSR-0849980 and CCF-0963996. We thank the anonymous
referees for their helpful comments on this paper.

REFERENCES

[1] H. Chen, J. Yu, R. Chen, B. Zang, and P. Yew, “POLUS: A
POwerful Live Updating System,” in ICSE’07, pp. 271–281.

[2] K. Makris and R. Bazzi, “Immediate multi-threaded dynamic
software updates using stack reconstruction,” in Proceedings
of USENIX Annual Technical Conference, 2009.

[3] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu,
“Mutatis mutandis: Safe and predictable dynamic software
updating,” ACM Trans. Program. Lang. Syst., vol. 29, no. 4,
p. 22, 2007.

[4] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical
dynamic software updating for C,” in PLDI’06, pp. 72–83.

[5] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster, “State
transfer for clear and efficient runtime upgrades,” in Proceed-
ings of the Workshop on Hot Topics in Software Upgrades
(HotSWUp), Apr. 2011.

[6] M. Borgerding, “Kiss FFT,” http://sourceforge.net/projects/
kissfft/.

[7] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S.
Foster, “Kitsune: Efficient, general-purpose dynamic software
updating for C,” Jan. 2012, http://www.cs.umd.edu/∼mwh/
papers/hayden11kitsune.html.

[8] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew, “Live
updating operating systems using virtualization,” in VEE ’06,
2006, pp. 35–44.


