
Schema Evolution Analysis for Embedded
Databases

Shengfeng Wu Iulian Neamtiu
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA 92521

{wus,neamtiu}@cs.ucr.edu

Abstract—Dynamic software updating research efforts have
mostly been focused on updating application code and
in-memory state. As more and more applications use embedded
databases for storage, dynamic updating solutions will have
to support changes to embedded database schemas. The first
step towards supporting dynamic updates to embedded database
schemas is understanding how these schemas change—so far,
schema evolution studies have focused on large, enterprise-
class databases. In this paper we propose an approach for
automatically extracting embedded schemas from regular appli-
cations, e.g., written in C and C++, and automatically computing
how schemas change as applications evolve. To showcase our
approach, we perform a long-term schema evolution study
on four popular open source programs that use embedded
databases: Firefox, Monotone, BiblioteQ and Vienna. Our study
spans 18 cumulative years of schema evolution and reveals that
change patterns and frequency in embedded databases differ
from schema changes in enterprise-class databases that formed
the object of prior studies. Our platform can be used for
performing long-term, large-scale embedded schema evolution
studies that are potentially beneficial to dynamic updating and
schema evolution researchers.

I. INTRODUCTION

Database evolution, and software evolution in general, are
facts of life: to remain competitive, software providers are un-
der increasing pressure to frequently release software updates,
to fix bugs and add new features. The most common update
practice today is to stop the application, apply the update,
and restart. Unfortunately, this stop/restart update method is at
odds with providing a seamless user experience. Restarting a
program, or rebooting the machine is disruptive for a mobile
or desktop application and could be intolerable for a server
with high-availability requirements.

Many mobile, desktop, and server applications have recently
started shifting from storing data in custom file formats
towards storing data using a database management system
contained within the application, hidden from the user, re-
quiring no maintenance; these systems are called Embedded
Databases (ED) [1]. An ED enables an application to manage
data in a safer and more flexible manner, while at the same
time rendering the data easier to query. The shift towards EDs
is evidenced by the popularity of SQLite, a server-less, zero-
config SQL engine [2]. SQLite is extremely popular: it is
part of all major mobile platforms, Google Android, Apple
iOS, Symbian and BlackBerry; operating systems (e.g., Mac

OS X, Solaris 10, OpenSolaris); user space applications (e.g.,
Apple Mail, Safari, iTunes, Firefox, McAfee antivirus [3]);
web applications [4]. An estimate by the SQLite development
team puts the number of SQLite installations upwards of 500
million [5].

A stop/restart update for applications with EDs involves
stopping the application (which necessarily implies shutting
down the database), applying the update, and restarting. Ide-
ally, however, we want to be able to update the applica-
tion code and the database dynamically (on-the-fly). Many
solutions exist already for dynamically updating “standard”
applications written in C, C++, and Java. For example, dy-
namic software updating (DSU) systems such as Ginseng [6],
Upstare [7], or Jvolve [8] allow on-the-fly updates to code
and in-memory data. However, because of their focus on
updating code and in-memory state, dynamic updating systems
are insufficient for performing online upgrades to applications
that require database updates. For example, in the update
from Firefox 3.0b2 to 3.0b3, the attribute user_title was
deleted from table moz_history. If we use a DSU system
for Firefox, we can update the code, but the information stored
in the database remains at the old version, which will lead to
schema incompatibility, and possibly an update failure.

The broad goal of our work is to close this gap by permitting
safe, dynamic schema updates to EDs; the first step towards
this goal is understanding how ED schemas evolve. To that
end, in this paper we present a system we constructed, called
SCVD (which stands for Schema extraCtion and eVolution
analysis for embedded Databases), that helps us understand
and quantify schema evolution in EDs.

SCVD is a tool that automates schema extraction and schema
evolution analysis for EDs. Given the evolution time frame for
an application (set of releases), SCVD automatically retrieves
the source code for all these releases, extracts the ED schemas
from each version of the application code, compares schemas
for successive versions, and presents the schema evolution
results in an easy-to-understand manner.

Researchers and developers are equally likely to bene-
fit from using SCVD. Via large-scale evolution studies, re-
searchers can understand how applications with EDs evolve,
and construct effective frameworks for supporting safe dy-
namic schema updates. Using SCVD, developers can compare
old and new applications to find out when and how to correctly

,

978-1-4244-9196-4/11/$26.00 © 2011 IEEE ICDE Workshops 2011151



Fig. 1. High-level overview of SCVD.

migrate an ED from the old schema to the new schema. In
fact, our own prior work [9] shows that ED schema updates
are sometimes ad-hoc, i.e., when an application changes the
ED schema, the new application version does not check the
schema version in the ED prior to executing queries. Without
migration after updating the application, the new queries will
run against the old schema, which can lead to data loss or
runtime errors. Note that the compiler does not detect such
errors, as schemas and queries are simply strings interspersed
throughout the application code.

For large, enterprise-class databases, researchers and prac-
titioners have proposed many solutions to reconcile appli-
cations and schema updates, such as query rewriting [10],
schema versioning and temporal querying [11], [12], schema
mapping [13], [14], schema matching [15], or editioning
views [16]. However, these approaches might not be suitable
for ED schema evolution for several reasons; for example,
they require SMOs (Schema Modification Operators [17],
[10]) to be specified by the developers; also, schema match-
ing/mapping/versioning implementations might impose signif-
icant overhead which is problematic for mobile and resource-
constrained systems.

Our paper is structured as follows. In Section II we present
the architecture and operation of SCVD. In Section III we
present the results of a long-term schema evolution study—18
cumulative years—we conducted using SCVD on four popular
open source programs that use EDs: Firefox, Monotone,
BiblioteQ and Vienna. We found that ED schemas change less
frequently than enterprise-class DB schemas, and that in EDs,
deletions are more frequent. In Section IV we discuss possible
threats to the validity of our study. Finally, in Section V we
present future research directions.

In short, this paper makes the following contributions:

• An approach for extracting ED schemas and detecting
schema evolution.

• A study of ED schema evolution for four popular appli-
cations over more than 18 cumulative years.

II. APPROACH

A high-level overview of SCVD is provided in Figure 1.
SCVD starts with the release history of an application, extracts
the database schemas embedded in the application, compares
the schemas, and produces a tally of schema evolution results.

The source code history extractor takes as input a list of
versions or tags, and checks out/downloads a corresponding
list of source code versions we want to analyze. For example,
the input for our Firefox study was a list of 308 CVS tags that
correspond to 308 revisions of Firefox; the input for Monotone
was a list of 48 Monotone official versions available on the
Web as .tar.gz’s.

The schema extractor is a module that extracts the database
schemas embedded in source code; it currently supports C,
C++, and Objective C. The extractor uses language-specific
patterns (expressed as regular expressions) to match schema
structures in application code and extract a list of tables, along
with their schemas, into . sql files, e.g., for application version
X we create a corresponding schema X.sql. The difficulty of
extracting tables and their schemas from application code
should not be understated. In the projects we analyzed, tables
and schemas move from file to file as a result of new releases,
some of their host C/C++ files disappear, some tables and
schemas are embedded in . sql that is executed directly, etc.
Therefore, correctly reconstituting the entire lineage (evolution
history) of each embedded table was quite challenging.

152



Application Time frame Table changes Attribute changes Changes
CREATE DROP ADD DROP Type Init Key per
TABLE TABLE COLUMN COLUMN change change change year

Firefox 10/02/2004–11/21/2008 5 (4.2%) 26 (21.7%) 57 (47.5%) 28 (23.3%) 0 (0%) 3 (2.5%) 1 (0.7%) 29.3
Monotone 04/06/2003–06/13/2010 11 (20.4%) 17 (31.5%) 14 (25.9%) 10 (18.5%) 0 (0%) 0 (0%) 2 (3.7%) 7.6
BiblioteQ 03/15/2008–02/19/2010 4 (2.6%) 8 (5.2 %) 27 (17.5%) 28 (18.2%) 83 (53.9%) 0 (0%) 4 (2.6%) 80.2

Vienna 06/29/2005–09/03/2010 1 (7.1%) 0 (0%) 13 (92.9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2.7
Total 21 (6.1%) 51 (14.9%) 111 (32.5%) 66 (19.3%) 83 (24.3%) 3 (0.9%) 7 (2%)

TABLE I
EVOLUTION TIME FRAME AND SCHEMA CHANGE DETAILS (AS ABSOLUTE NUMBERS AND PERCENTS).

The schema differencing module computes differences be-
tween two . sql schema files and tallies the results. The module
is based on mysqldiff [18], an open-source schema migra-
tion assistant. As mysqldiff is designed to work with the
MySQL SQL dialect, we translate the database schemas from
the SQLite SQL dialect into MySQL dialect before passing
the schemas to mysqldiff.

SCVD also computes, for each embedded SQL table, the
originating source file (C, C++, or Objective C), as well as
the version interval for that table, i.e., the version the table
was introduced in and the version the table was deleted in;
however, we omit presenting these results as the focus of this
paper is on schema changes.

III. SCHEMA EVOLUTION STUDY

A. Applications Examined

Previous works by Mandalapa [19], and Curino
et al. [20] have studied schema evolution for
TikiWiki/Joomla/Slash/MediaWiki (23 years, cumulative),
and Wikipedia (4.5 years), respectively. The domain of
these studies is enterprise-class databases, rather than EDs.
Therefore, to understand how EDs evolve and are used in
practice, we used SCVD to perform a schema evolution study,
covering a cumulative 18 years of evolution, on four popular
open source programs: Firefox, Monotone, BiblioteQ and
Vienna. Firefox 1 is the widely-used open source browser; it
is written mainly in C and C++, and uses SQLite to store
the browsing history, input forms, cookies, etc. Monotone 2

is a version control system; it is written in C++ and uses
SQLite to store file revisions, deltas, and branch information.
BiblioteQ 3 is a catalog and library management suite written
in C++. Vienna 4 is a popular RSS/Atom newsreader for Mac
OS X; it is written in Objective C and uses SQLite to store
news folders and messages.

B. Results

Our study was focused on table- and attribute-level changes
that affect update safety. In Table I we summarize the results.
The analysis time frame for each application is provided in

1http://mozilla.org
2http://monotone.ca/
3http://biblioteq.sourceforge.net/
4http://vienna-rss.org

column 2. The rest of the columns summarize schema changes
as SMOs and attribute-level changes.
CREATE TABLE and DROP TABLE represent table addi-

tion and deletion, while ADD COLUMN and DROP COLUMN
represent column addition and deletion. There is no SMO that
refers to changes to attribute types, e.g., from INTEGER to
VARCHAR, so we report those as “Type change”. Similarly,
there is no SMO for changes to attribute initializers so we
report those as “Init change”. Finally, we report changes to
the key status of an attribute as “Key change”; these changes
correspond to Shneiderman and Thomas’s [17] PROMOTE TO
KEY and DEMOTE FROM KEY.

For each application, we count the changes over the time
span we studied, and provide both the total count and per-
centages. For example, in Firefox, there were 5 CREATE
TABLEs, 26 DROP TABLEs, 57 ADD COLUMNs, etc., which
constitute 4.2%, 21.7%, 47.5%, etc. of the Firefox changes.
The last row sums up the changes across all applications; as
we can see, when considering all applications, the most fre-
quent operations were ADD COLUMN (32.5%), type changes
(24.3%), DROP COLUMN (19.3%), DROP TABLE (14.9%),
and CREATE TABLE (6.1%).

C. Discussion

Designing an effective on-the-fly schema update system for
EDs crucially depends on understanding how EDs schemas
change in practice. For example, a system that supports
DEMOTE FROM KEY but does not support DROP COLUMN is
not going to be very effective in practice, because key changes
are rare. Therefore, we structure the discussion of our findings
by comparing our results with results from prior work, along
the following two dimensions:

1) Nature of changes: what schema changes are more
frequent in EDs compared to enterprise-class databases?

2) Frequency and timing of changes: when, and how fre-
quently, do ED schemas change?

Nature of changes: Based on the total number of changes
(last row in Table I), we can infer that any schema update
system must support ADD COLUMN, DROP COLUMN, DROP
TABLE, and CREATE TABLE, as these changes are frequent
in all applications. While type changes are frequent in Bib-
lioteQ,5 the other applications do not use them; therefore,

5Most of them consisted of changing LONGTEXT to TEXT and INTEGER
to BIGINT.

153



Fig. 2. Mozilla: frequency of schema changes over time.

we also computed totals ignoring the type changes in Bib-
lioteQ, which yields the following distribution: ADD COLUMN
(42.9%), DROP COLUMN (25.5%), DROP TABLE (19.7%),
and CREATE TABLE (8.1%).

Our CREATE TABLE results are similar to those of Man-
dalapa [19] and Curino et al. [20] (their ratios are 8.7% and
8.9%, respectively). The same goes for ADD COLUMN (their
ratios are 30.7% and 38.7%). However, we found many more
DROP TABLE’s (their percentages are 8.7 and 3.3). Our DROP
COLUMN percentages are similar to Curino et al. (26.4%),
but much higher than Mandalapa’s (6%). Mandalapa found
that CHANGE COLUMN accounts for 25.6%, similar to us if
we include the type changes in BiblioteQ, though note that
Firefox, Monotone and Vienna have zero type changes and
overall there is a low percentage of changes to initializers and
keys.

The high numbers of column and table deletions we found
lead us to believe that the ED systems we analyzed tend
to undergo more restructuring, rather than exhibit continuous
growth [20] as in the enterprise-class databases analyzed by
prior work. The low number of column changes (excepting
BiblioteQ) lead us to believe that supporting table and column
additions/deletions is more important than supporting changes
to column types, initializers and key status.

Frequency and timing of changes: In Figures 2, 3, and 4
we plot the timing and frequency of schema changes. In each
graph, the x-axis represents program version/revision, while
the y-axis represents the number of schema changes used in
that version (i.e., changes compared to the prior version). As
we can see, the trends are similar across programs: schemas
tend to change more in the beginning, and the database
structure stabilizes over time because later versions have fewer
changes. This suggests that on-the-fly schema updates are
necessary, especially in the beginning of a program’s lifetime.
Interestingly, Curino et al. [20] have found that for Wikipedia,
the number of SMOs does not decrease over time.

In terms of frequency (changes per year), our applications’
change rate varies between 2.7 and 80.2 per year, as can be
seen in the last column of Table I. This suggests that ED

Fig. 3. Monotone: frequency of schema changes over time.

Fig. 4. BiblioteQ: frequency of schema changes over time.

schema change rate is generally lower than the schema change
rate for enterprise-class DBs: prior work has found the annual
change frequency to be 58.7 for Wikipedia [20], 56 for Joomla,
95 for Slash, 91.7 for TikiWiki, and 57.7 for MediaWiki [19].

IV. THREATS TO VALIDITY

We now discuss possible threats to the validity of our study.
One possible source of errors is missing tables, e.g., by using
inadequate patterns that fail to extract all the tables from the
C/C++/Objective C code. Another possible source of errors is
renamings: we use a coarse-grained model that counts table
and column renamings as a deletion followed by an addition.

External validity, i.e., the results generalize to other systems,
is also threatened in our study. We have chosen a fairly broad
range of open-source applications to examine: a browser, a
version control server, an RSS reader, and a library storage
and query system. Other application categories, or proprietary
applications, or applications written in languages other than
C/C++/Objective C, might display different schema evolution
characteristics.

V. FUTURE WORK

We plan to extend this work in several directions. Straight-
forward extensions involve supporting other “host” languages

154



besides C, Objective C, and C++ (for example Python, PHP
and Ruby) and studying a broader range of applications that
contain EDs.

A more challenging extension is detecting more compli-
cated SMOs such as DISTRIBUTE TABLE, PARTITION
TABLE, MERGE TABLE, RENAME TABLE, and RENAME
COLUMN. We plan to use query contexts to help with detecting
these SMOs. For example if a query:

SELECT A,B,C FROM foo

in the old application version is replaced with the query:

SELECT foo.A, foo.B, bar.C FROM foo,bar WHERE foo.A = bar.A

in the new application version, this suggests a
DISTRIBUTE TABLE was used to split the table foo
with schema (A,B,C) into tables foo and bar with schemas (A,B)
and (A,C), respectively.

VI. RELATED WORK

Curino et al. [20] have studied schema evolution for
Wikipedia from April 2003 to November 2007. Their study
provides both micro- and macro-classification of changes. The
micro-classifications correspond to SMO syntax, which is a
superset of the changes we investigate; in particular, we do
not collect data on DISTRIBUTE TABLE, MERGE TABLE,
COPY COLUMN, and MOVE COLUMN. Macro-classifications
include changes to indexes, keys, types, syntax and engine;
we decided to only consider changes to keys, types and
initializers, as these have a direct impact on schema upgrade
safety. They also compute the query success rate when running
a query against preceding and following schema versions; we
do not compute this, though we envision doing so in the future
when we start analyzing queries for context information.

Mandalapa [19] developed a tool called SEATS which can
analyze schema evolution in large, enterprise-class DBs. They
performed a large-scale schema evolution study on popular
content management systems (CMS): TikiWiki (7 years),
Joomla (2 years), Slash (8 years) and MediaWiki (6 years).
In addition to table and column changes, they also compute
the query failure rate, i.e., percent of new queries that would
fail when run on the old schema. Our approach targets a
different class of applications (EDs with schemas embedded
in C/C++/Objective C, as opposed to CMSs with external
databases and explicit schemas) and we have investigated
18 years (cumulative) of evolution, as opposed to their 23
cumulative years.

Sjøberg [21] presents a schema evolution study on a health
management system over 1.5 years; their findings are similar
to ours, i.e., most frequent changes are column additions/dele-
tions and table additions/deletions.

Our own prior work [9] presents a schema evolution study
on Firefox and Monotone over smaller time frames than the
time frames considered in this paper; BiblioteQ and Vienna
were not part of that study. The main difference between the
two works reside in schema extraction and computing schema
changes: in the prior work, extraction and change computation

was manual. In this paper, extraction and differencing are
automatic, which is key to scalability. In fact, when we
compared the results from this paper with our prior work,
we identified several schema changes that the prior, manual
approach has been missing.

VII. CONCLUSIONS

In this paper we propose an approach for automating
schema extraction and schema change detection in embedded
databases, a previously-unexplored application domain. Us-
ing our toolset, we performed a schema evolution study on
four popular open source applications that employ embedded
databases, and showed that embedded databases tend to change
differently than the enterprise-class databases that have been
the object of prior studies. Our approach can be used for
performing long-term, large-scale schema evolution studies
that are potentially beneficial to dynamic updating and schema
evolution researchers alike.

ACKNOWLEDGMENTS

We thank Pamela Bhattacharya and the anonymous referees for
their helpful comments on this paper.

REFERENCES

[1] Wikipedia, “Embedded database,” http://en.wikipedia.org/wiki/ Embed-
ded database.

[2] D. R. Hipp, “Sqlite,” http://www.sqlite.org/.
[3] SQLite Team, “Well-known users of SQLite,”

http://www.sqlite.org/famous.html.
[4] P. Bhattacharya and I. Neamtiu, “Dynamic updates for web and cloud

applications,” in APLWACA, 2010, pp. 21–25.
[5] SQLite team, “Most widely deployed SQL database,”

http://www.sqlite.org/mostdeployed.html.
[6] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic

software updating for C,” in PLDI. New York, NY, USA: ACM Press,
2006, pp. 72–83.

[7] K. Makris and R. A. Bazzi, “Immediate multi-threaded dynamic soft-
ware updates using stack reconstruction,” in Proceedings of the 2009
conference on USENIX Annual technical conference, ser. USENIX’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 31–31.

[8] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: a vm-centric approach,” in PLDI. New York, NY, USA: ACM,
2009, pp. 1–12.

[9] D.-Y. Lin and I. Neamtiu, “Collateral evolution of applications and
databases,” in ERCIM Workshop on Software Evolution/International
Workshop on Principles of Software Evolution, August 2009, pp. 31–
40.

[10] C. A. Curino, H. J. Moon, and C. Zaniolo, “Graceful database schema
evolution: the prism workbench,” VLDB, vol. 1, no. 1, pp. 761–772,
2008.

[11] H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou, and C. Zaniolo, “Man-
aging and querying transaction-time databases under schema evolution,”
VLDB, vol. 1, no. 1, pp. 882–895, 2008.

[12] C. Plattner, A. Wapf, and G. Alonso, “Searching in time,” in SIGMOD.
New York, NY, USA: ACM, 2006, pp. 754–756.

[13] C. Yu and L. Popa, “Semantic adaptation of schema mappings when
schemas evolve,” in VLDB. VLDB Endowment, 2005, pp. 1006–1017.

[14] Y. Velegrakis, R. J. Miller, and L. Popa, “Mapping adaptation under
evolving schemas,” in VLDB. VLDB Endowment, 2003, pp. 584–595.

[15] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” The VLDB Journal, vol. 10, no. 4, pp. 334–350,
2001.

[16] Oracle, Edition-Based Redefinition, http://www.oracle.com/technology/
deploy/availability/pdf/edition based redefinition.pdf.

[17] B. Shneiderman and G. Thomas, “An architecture for automatic rela-
tional database system conversion,” ACM Trans. Database Syst., vol. 7,
no. 2, pp. 235–257, 1982.

155



[18] A. Spiers, “mysqldiff,” http://adamspiers.org/computing/mysqldiff/.
[19] V. Mandalapa, “A framework for understanding schema evolution in web

information systems,” Master’s thesis, Arizona State University, 2009.
[20] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema evolution

in wikipedia - toward a web information system benchmark.” in ICEIS
(1), 2008.

[21] D. Sjøberg, “Quantifying schema evolution,” in Information and Soft-
ware Technology, vol. 35, no. 1, January 1993, pp. 35–44.

156


