
Programming Support for Speculative Execution with

Software Transactional Memory

Min Feng Rajiv Gupta Iulian Neamtiu

University of California, Riverside

Email: {mfeng,gupta,neamtiu}@cs.ucr.edu

Abstract—In this paper, we identify the practical issues that
deter the adoption of software transactional memory (STM) for
speculation in real applications. These issues include dealing
with excessive instrumentation added by naive identification of
potential shared accesses, functions that may be called from
both transactional and non-transactional contexts, and calls
to functions for which the source is unavailable. We address
these challenges and provide an approach for developing
speculatively-executed code in C/C++ that offers superior
programmability and performance. Our contributions consist
of a set of programming constructs for writing speculatively-
executed code and a compiler that translates code annotated
with these constructs into speculatively-executable code that
uses STM runtime libraries. Our approach uses annotations
that simply mark the boundaries of the code that is to be
executed speculatively and supports calling precompiled (e.g.,
C standard library) and irreversible (e.g., I/O operations and
system calls) functions from within transactions. We employ
a series of important optimizations for reducing the overhead
of speculative execution, including: placement of read/write
barriers only for accesses that actually can cause a data race;
elimination of redundant read/write barriers by caching shared
variables; and eliminating unnecessary search in the write
buffer.

We evaluate the programmability of our constructs and
the performance of our compiler implementation using eight
STAMP benchmarks and two real applications—the Velvet
genomic assembler and the ITI decision tree constructor.
Compared to Intel’s STM compiler, our approach requires
91% fewer constructs to be inserted by the programmer, yet
it achieves 20.8% better performance.

I. INTRODUCTION

Speculative parallelization [1] has been proposed for

executing interdependent code in parallel, while ensuring its

original semantics. For example, speculative parallelization

is often used to parallelize loops where cross-iteration de-

pendences arise seldom at runtime—the loop executes in

parallel by speculating on the absence of cross-iteration

dependences. Each iteration is executed in a speculative

state. To enforce correctness, the iterations are committed

according to their order in the original code.

Programming speculative parallel code in an unmanaged

language, such as C/C++, is a demanding task for pro-

grammers. A major part of this effort involves writing

speculatively-executed code. Software transactional memory

(STM) [2] has been widely used for speculative execu-

tion. So far researchers have not paid enough attention

STM libs Intel STM Ours

Instrumenting shared access Manual Auto Auto

Annotating speculative func. Manual Manual Auto

Handling precompiled func. Manual Manual Auto

Addressing system calls Manual Manual Auto

Table I
PROGRAMMING BURDEN OF USING DIFFERENT STM

IMPLEMENTATIONS. Manual — TASKS DONE MANUALLY BY THE

PROGRAMMER; Auto — TASKS DONE AUTOMATICALLY BY THE

COMPILER.

Low-level STM API Intel STM Comp. Ours
Program NOC XLOC NOC NOF NOC

Bayes 176 4,291 75 60 15

Labyrinth 98 1,839 31 28 3

Genome 122 477 31 26 5

Intruder 265 4,408 95 92 3

Kmeans 17 73 3 0 3

Ssca2 55 2,065 10 0 10

Vacation 359 4,241 151 148 3

Yada 324 4,710 115 109 6

Average 177 2,750 64 58 6

Table II
PROGRAMMING EFFORT FOR WRITING SPECULATIVELY-EXECUTED

CODE IN C/C++. NUMBERS WERE MEASURED USING THE STAMP
BENCHMARK SUITE. NOC—NUMBER OF PROGRAMMING CONSTRUCTS

INSERTED FOR SPECULATIVE EXECUTION; XLOC—SOURCE LINES OF

CODE THAT NEED TO BE EXAMINED; NOF—NUMBER OF FUNCTIONS

CALLED DIRECTLY AND INDIRECTLY IN THE TRANSACTION.

to the programming effort with STM. Because most STM

implementations [3], [4] are in the form of libraries,

programmers need to manually insert low-level STM API

calls (e.g., read/write barriers) into the parallel code. Table I

(column 2) summarizes the programming burden of writing

speculatively-executed code using low-level STM API calls.

First, programmers need to insert read/write barriers for

each read/write that may access shared memory. In real

applications, a transaction may contain hundreds of lines

of code, and tens or hundreds of functions may be called

directly and indirectly from within the transaction. There

may be hundreds of shared read/write barriers to be added,

which is a great burden on programmers. Second, some

STM libraries [5] also require programmers to add STM-

related arguments into the declaration of functions called

directly and indirectly in a transaction. In real applications,

there may be hundreds of function declarations that need to

be modified. Finally, in real applications, the source code of

functions such as precompiled library functions and system

calls may not be available to the programmer. The low-level

STM API lacks support for these functions, which deters

using STM for speculation in real applications.

To illustrate the programming burden of using STM and

call attention to this problem, in Table II we show the

programming effort for writing speculatively-executed code

in C/C++ using low-level STM API constructs (columns 2–

3). We collected the data from the STAMP benchmarks,

which contain hand-coded transactions using low-level STM

APIs. The reported numbers include the number of program-

ming constructs inserted in the library functions called in

these benchmarks. To use STM in these benchmarks, the

programmer needs to insert on average 177 programming

constructs for each application. Each application has on

average 58 functions called directly and indirectly in trans-

actions. Programmers need to examine the source code in

these functions line by line to find all shared reads/writes.

The table shows that on average 2,750 lines of code need

to be examined for each application. Moreover, the code to

be examined is usually spread across multiple files, which

further increases the programming effort.

The Intel C++ STM Prototype Compiler [6], [7], [8]

and OpenTM [9] provide first-class STM constructs for

C/C++. However, these approaches still present challenges

to programmers, which are summarized in Table I (column

3). First, they still require programmers to annotate the

declaration of each function called directly and indirectly

from within a transaction. Therefore, when many functions

are called in the transaction, these programming constructs

impose a significant burden on the programmer. Table II

shows the programming effort imposed by the Intel STM

compiler (columns 4–5). For each STAMP benchmark,

programmers need to insert on average 64 programming

constructs, around 91% of which are used for annotating

function declarations; moreover, this effort must be repeated

for each new program that is converted to use speculative

execution. Second, the two compilers cannot transact-ify

precompiled library functions whose source code is unavail-

able. Therefore, if a transaction calls any precompiled library

function in transactions, the compilers simply serialize the

execution of that transaction, i.e., no other transactions are

allowed to execute in parallel with the serialized transaction

[8]. As a result, Intel STM and OpenTM cannot be used

to speculatively parallelize code containing precompiled

library functions, a situation commonly encountered in

real applications. In contrast, we were able to parallelize

two real applications using the approach presented in this

paper—Velvet, a widely-used genomic assembler [10], and

Incremental Tree Inducer (ITI), a well-known decision tree

constructor [11].

In this paper, we identify and address the challenges

that deterred the adoption of STM for speculation in real

applications. Our solution is a combination of annotations

and analyses. We introduce a set of programming constructs

to writing speculatively-executed code in C/C++. Unlike

previous STM approaches [6], [9], our constructs do not

require programmers to annotate each function called in

a transaction. Rather, programmers just need to specify

transaction boundaries. We also provide support for pre-

compiled library functions (e.g., C standard library) whose

source code is unavailable. Programmers can annotate the

library functions using our constructs to enable concurrent

execution of the transactions that contain these functions.

For system calls whose results cannot be rolled back (e.g.,

I/O operations and system calls), we provide constructs to

suspend the calls to these library functions inside transac-

tions and execute them outside. The last column in Table II

presents the annotation effort of our approach—note the

order-of-magnitude reduction compared to the other two

approaches.

We present the design of our compiler that transforms

annotated C/C++ code into speculatively-executable code

using write buffering-based STMs. The programmers do not

need to annotate the functions called in transactions as our

compiler automatically classifies all functions in a program

into four groups based on their usage in transactions. We

apply different code transformations to different groups for

performance and correctness. Our compiler automatically

inserts low-level STM API calls (e.g., read/write barriers)

into transactions. To optimize transaction performance, we

use static data race analysis to avoid placing read/write

barriers for reads/writes of global variables that do not cause

data races. We cache the values loaded/stored by shared

reads/writes to eliminate redundant read/write barriers. Since

the overhead of write buffering-based STMs comes largely

from searching write buffers [12], our compiler eliminates

unnecessary searches in write buffers for data that is defi-

nitely not present in write buffers.

Our compiler is implemented as a source-to-source trans-

lator based on the ROSE [13] program transformation

infrastructure. We evaluate our implementation on a Dell

PowerEdge T605 server (Intel Xeon 8-core processor) us-

ing the STAMP benchmark suite and two additional real

applications—Velvet and ITI. We parallelized all programs

using speculative parallelism. Compared to the Intel STM

compiler, our approach requires 91% fewer programming

constructs to be inserted into the STAMP benchmarks.

On average, our compiler implementation achieves 1.62x

speedup for the ten applications, using 8 threads. Compared

to the Intel STM compiler, our approach improves the

performance of the STAMP benchmarks by 20.8%.

The rest of the paper is organized as follows. Section 2

presents our programming and compiler support for writing

speculatively-executed code. Section 3 describes our support

for enabling calling of precompiled library functions and

irreversible functions within transactions. Section 4 presents

a set of optimizations to reduce runtime overhead. Section

5 evaluates our implementation. Section 6 discusses related

work and Section 7 concludes this paper.

II. SPECULATIVELY-EXECUTED CODE

This section presents our programming constructs for

writing speculatively-executed code and describe the code

translation for programs annotated with these constructs.

A. Programming Constructs

To facilitate speculative parallelization, we only require

programmers to specify the boundaries of a transaction:
#pragma tm transaction

{
... // statements here

}
Unlike traditional STM libraries [3], [4] or the Intel STM

compiler [6], our constructs do not require programmers to

manually insert read/write barriers into transactional code or

annotate functions called within transactions. Transactions

can include function calls. The compiler instruments shared

reads/writes within transactions so that the STM runtime

system can detect conflicting accesses to shared variables to

guarantee atomicity and isolation. Upon a conflict, the STM

runtime rolls back execution and re-executes the transaction.

B. Code Compilation

Unlike most previous STM compilers [14], [15] that target

managed languages such as JAVA, our programming con-

structs are designed for C and C++, which are unmanaged

languages. Compared to managed languages, supporting

our programming constructs in C/C++ is more challenging.

First, for C/C++ programs, our compiler must generate

code statically—we cannot use JIT compilation as managed

languages do. JIT compilers can perform operations such

as creating an atomic clone for a function on-the-fly, dy-

namically suppressing redundant/dead barriers, and transact-

ifying library functions by inlining them, which static compi-

lation cannot do. Second, due to the unsafe use of pointers

in C/C++ programs, our compiler is forced to use word-

based STMs while the compilers for managed languages can

use object-based STMs. Finally, without type safety, shared

reads/writes should be checked conservatively, which further

makes reducing STM overhead quite challenging.

Our compiler translates programs annotated with our

programming constructs into source code instrumented with

calls to an STM runtime library. Figure 1 shows the process

of code generation, where the grey blocks indicate the work

done by our compiler. The user code is written in C/C++

with our programming constructs. Our compiler first takes

the user code as input and translates the functions and

calls based on the call graph. It then instruments code with

low-level STM API constructs and uses static data race

analysis to find shared data accesses, as described in detail

in Section II-B2. Finally, the compiler eliminates redundant

read and write checks to reduce the overhead, which will

be described in Section IV. The generated code is C/C++

code with calls to low-level STM functions, and can be

compiled with regular compilers, such as GCC, to generate

an executable binary.

���������

	
��������

����
����

����
���

�����

����
����������

����������

������

������������

���
�����

���
�������������

���� ���	!��"��

��� �	!��#
�
�

$%�����#��&���
�

�
�
�
��
�
�
�
	

�
�

Figure 1. Overview of code generation.

1) Function Translation: This first step in code transla-

tion is to translate all functions defined in the user code

according to their call sites and their usage via function

pointers. To do this, our compiler classifies the functions

into the four following types, using the call graph generated

by static analysis.

i. Atomic functions are functions called only inside trans-

actions. In other words, their call sites are either in trans-

actions or in other atomic functions. These functions need

to be executed atomically. Therefore, the compiler must

instrument the shared reads/writes in them with low-level

STM API constructs.

ii. Non-atomic functions are functions that are never called

in any transaction, i.e., these functions are called either

outside transactions or from non-atomic functions. There is

no need to do any special code translation for them.

iii. Double-duty functions are functions called both inside

and outside transactions. Our compiler creates atomic clones

for such functions and instruments the clones with low-level

STM API constructs. All calls to these functions that appear

in transactions are replaced with calls to their atomic clones.

iv. Dynamically-called functions are functions called

through function pointers. Since these functions may be

called both inside and outside transactions, we must decide

at runtime whether to call the original function or its atomic

clone. To solve this problem, for each dynamically-called

function, the compiler creates an atomic clone and places

a conditional call to the atomic clone at the beginning

of the original function. The code below gives an exam-

ple: the original function checks a thread-local variable,

inside_transaction at the beginning. The variable is

set to be true when the current thread enters a transaction. If

the variable is true, the original function then calls its atomic

clone; otherwise, the original statements inside the function

are executed.
int original_func()

{
if (inside_transaction == true)

return atomic_func();

// original statements here

}

API function Description

txDesc* stmGetDesc() Get a descriptor
void stmBegin(txDesc*) Start a transaction
void stmEnd(txDesc*) Validate & commit
void stmAbort(txDesc*) Explicitly abort
Type stmRead〈Type〉(txDesc*, Type*) STM read barrier
void stmWrite〈Type〉(txDesc*, Type*, Type) STM write barrier
void stmReadBytes(txDesc*, void*, void*, size t)) STM read barrier
void stmWriteBytes(txDesc*, void*, void*, size t)) STM write barrier
void stmLogStack(txDesc*) Log stack variables
void stmLogBytes(txDesc*, void *, size t) Log specific var.
(void*) stmMalloc(txDesc*, void*) STM malloc
void stmFree(txDesc*, void*) STM free

Table III
THE LOW-LEVEL STM API USED IN TRANSLATED CODE.

2) Code Instrumentation: After function translation, the

compiler instruments the transaction code, atomic functions,

and atomic clones of functions with low-level STM API

constructs. Table III presents the low-level STM API calls

used by our compiler. This API is designed for word-based

STM libraries, such as TL2 [3] and TinySTM [4]. We chose

word-based STM libraries rather than object-based libraries

due to the lack of type safety and the presence of unsafe

pointer arithmetic in C/C++ [7]. Although the compiler is

designed to generate code for STM libraries, it can also be

used for hardware and hybrid TM libraries as long as their

implementations are compatible with the listed API.

All low-level STM functions require a transaction de-

scriptor as an input. The transaction descriptor is obtained

by calling the function stmGetDesc. Each thread has a

unique transaction descriptor, which is created in thread-

local storage when function stmGetDesc is called for the

first time in the thread. Calls to function stmGetDesc are

inserted before every transaction. To eliminate redundant

accesses to thread-local storage within a transaction, a local

variable is used to hold the transaction descriptor and passed

to every called atomic function through arguments.

The compiler inserts the stmBegin and stmEnd API

calls at the boundaries of transactions to start and com-

mit them. The stmAbort call is inserted where explicit

transaction abort is specified. The aforementioned three

functions dynamically decide if the transaction is nested

in another transaction by checking a thread-local variable

inside_transaction. If so, they start/end the trans-

action as an inner transaction; otherwise, the transaction is

treated as an outermost transaction. In previous works [7],

[8], transactions are statically classified as outermost trans-

actions and inner transactions and different API constructs

are inserted to start/commit them. We use dynamic checks

because a function containing transactions may be called

from both inside and outside of other transactions. Therefore,

the transactions in the function may be either outermost or

inner transactions, depending on the function’s call site.

Barrier functions perform the required STM operations to

ensure consistency and detect conflicts for shared memory

accesses in transactions. We have read/write barriers for

each basic data type in C/C++. For user-defined data con-

structs, we use stmReadBytes and stmWriteBytes as

read/write barriers. Our compiler instruments atomic code

with read/write barriers as follows:

i. Find Shared Variables. It is very important for the

compiler to only place read/write barriers at necessary

places since they are usually time-consuming at runtime.

Instrumenting all accesses to global/heap variables with

read/write barriers usually introduces unnecessary barriers

since some of global/heap variables may be read-only in

transactions, or may not be shared across transactions. To

avoid placing unnecessary read/write barriers, the compiler

uses static data race analysis [16] to find potentially shared

variables, i.e., variables that two transactions may access

without synchronization and one of the accesses is a write.

ii. Normalize Operators. The compiler then normalizes

C/C++ operators on these variables. In C/C++, a variable

reference may be both a read and a write at the same

time. Since our compiler works on C/C++ source code, it

cannot directly insert read/write barriers for such variable

references. For example, the reference to a in a++ is both

a read and a write. To enable barrier insertion, our compiler

converts a++ to a=a+1, where the first reference to a is a

write and the second is a read.

iii. Insert Barriers. Finally, our compiler inserts read/write

barriers for accesses to the potentially shared variables

found in step 1. For example, after instrumentation, a=a+1

will be stmWriteInt(tx, &a, stmReadInt(tx,

a)+1), where tx is the transaction descriptor.

Although we do not need to detect conflicts for writes

to live-in private variables (including local variables on the

stack, thread-local variables, and global variables that are

not shared), the original values in these variables need to

be logged to allow rollback if needed. The compiler inserts

stmLogStack before each transaction to save the local

state. Function stmLogStack uses the EBP and ESP

registers on the x86 architecture to locate and save the

local variables on the stack. Similar registers can also be

found on other architectures, e.g., SP and LR on the ARM

processors. The compiler also inserts stmLogBytes before

every write to thread-local variables and global variables that

are not shared. The function saves the value at an address

if the address has not been logged in the transaction.

Functions stmMalloc and stmFree are the STM

versions of malloc and free. Our compiler replaces

malloc and free in transactions with the STM versions.

III. SUPPORT FOR LIBRARY FUNCTIONS

In previous works [7], [8], [9], two types of functions

cannot be transact-ified: precompiled library functions and

functions that cannot be rolled back (e.g., system calls and

I/O operations). Calls to these types of functions within

transactions can be detected by either the compiler or the

runtime system. If a transaction is identified to contain

such function calls, it is executed in serial mode, i.e.,

other transactions cannot run concurrently with it. This

makes it impossible to speculatively parallelize code that

contains calls to precompiled or irreversible functions. In

this section, we introduce two programming constructs to

avoid serialization of transactions when such functions are

called in transactions.

A. Precompiled Library Functions

We introduce the construct #pragma tm

precompiled to annotate precompiled library functions

so that the compiler can transact-ify them. The syntax is:
#pragma tm precompiled [read(. . .)] [write(. . .)]

// function declaration here

The construct is introduced immediately preceding a

function declaration, and tells the compiler what memory

locations the function reads and writes. A memory location

can be a variable or a (pointer,size) pair. After a precompiled

function is annotated with the construct, it can be used as

a regular function in transactions. In a transaction where

the function is called, the compiler creates local copies of

the shared memory locations that the function accesses.

The function then works on the local copies instead of

directly accessing the shared memory locations. In this way,

we eliminate the need to transact-ify the code inside the

function since it does not touch shared memory locations.

The compiler only needs to add read/write barriers when

copying data between shared memory locations and local

copies. The transactions with annotated library functions

can thus be executed in parallel with other transactions. The

code below provides an example with the precompiled

construct used to annotate two library functions.

#pragma tm precompiled read(x)

float sin (float x);

. . .

#pragma tm precompiled \

read(dst, src, num, (*src, num)) \

write((*dst, num))

char * memcpy(void *dst, void *src, size_t num);

The first function is a mathematical function provided by

the C mathematical library. We put argument x in the read

clause since it is read in the function. The write clause

is omitted since no variable is written by the function. The

second function is a memory copy function provided by C

string library. It copies the values of num bytes from the

memory location pointed to by src to the one pointed to by

dst. Since the function reads the num-byte memory block

pointed to by src, we put (*src, num) in the read

clause. Similarly, we put (*dst, num) in the write

clause.

In certain cases it is impossible to know the memory

locations accessed by a function until it is called. In such

cases, we use the precompiled construct to annotate the

call site of the function. In the example that follows, the

function copies a string pointed to by src into the array

pointed to by dst. The string ends in a null character. We

cannot know the memory size accessed by the function at

its declaration, since the string length is not fixed. However,

we can conservatively annotate the function at its call site

since the maximum length of the string (i.e., the size of the

allocated memory block) is known at that time.

char src[256], dst[256];

#pragma tm transaction

{
... // statements here

#pragma tm precompiled \

read(dst, (*src, 256), src) \

write((*dst, 256))

strcpy(dst, src);

}

Calls to an annotated library function need to be translated

and instrumented with low-level STM API constructs for

the purpose of conflict detection and potential rollback.

Instrumenting calls to a precompiled function proceeds as

follows:

i. Log Values of Thread-local Variables. For every thread-

local variable in the write clause, the compiler uses the log

functions to log their values as they may be needed in case

of a rollback.

ii. Create Local Copies for Shared Variables. For every

shared scalar variable in the read and write clauses, the

compiler creates a local variable on the stack. The compiler

initializes the local copies of the variables in the read clause

by using stmRead〈Type〉. For other shared variables (such

as arrays, objects, and dynamic data structures) in the read

and write clauses, the compiler uses malloc to allocate

space for their local copies and assigns the starting addresses

to the corresponding pointers. Function stmReadBytes is

called to copy data for these variables. The compiler replaces

the function arguments with their local copies.

iii. Update Values of Shared Variables. After the function

is completed, the shared variables in the write clauses

need to be updated with the values in their local copies.

Therefore, the compiler inserts calls to stmWrite〈Type〉
and stmWriteBytes after the function call for shared

variables in the write clause. Finally, the compiler frees all

temporarily-allocated variables.

The code below shows the translated call to precompiled

function memcpy, whose annotation was described before.
int l_num = stmReadInt(tx, &num);

void *l_src = (void*)malloc(tx, 256);

void *l_dst = (void*)malloc(tx, 256);

stmReadBytes(tx, (void*)l_src, (void*)src, 256);

memcpy(l_dst, l_src, l_num);

stmWriteBytes(tx, (void*)dst, (void*)l_dst, 256);

free(l_src); free(l_dst);

B. Irreversible Functions

In some transactions that call irreversible functions, other

statements may not be data-dependent on the irreversible

functions. For example, function printf only prints text on

the screen but does not produce any data. Another example

is function system, which invokes the shell to execute

a system command. Other statements in the transaction

may not depend on the system command. Therefore, in

these transactions, the execution of such functions can be

safely suspended during speculative execution. We store the

input of these functions during the speculative execution and

execute them when the transactions have succeeded.

The construct #pragma tm suspend is designed to

annotate the functions to be suspended during the speculative

execution. Its syntax is similar to that of the precompiled

construct except that there is no write clause; it annotates

function declarations, as follows:

#pragma tm suspend read(c)

int putchar (int c);

The putchar function is an output function from the

standard C library—it prints the character c to the current

position in the standard output. Since the function does not

use any pointer as argument, we can annotate it when it

is declared. Similar to the precompiled construct, the

suspend construct can also be used at function call sites

as shown below.

char str[256];

#pragma tm transaction

{
... // statements here

#pragma tm suspend read(str, (*str, 256))

puts(str);

}

In the above example, function puts writes the string

pointed to by str to standard output. As the string ends

in a null character, we do not know the string length at

the function declaration. We solve this by annotating the

function at its call site, where the maximum length of the

string is known.

Calls to an annotated irreversible function need to be

translated and instrumented to enable suspending with trans-

actions. Our compiler instruments calls to irreversible func-

tions as follows:

i. Record Arguments. For every variable in the read

clause, the compiler pushes its value in the thread-local

queue args. For shared variables, stmRead〈Type〉 or

stmReadBytes is called inside the push function to en-

sure consistency. These values will be used to invoke the

irreversible function outside the transaction.

ii. Record Function. The compiler replaces the function

call with a statement that saves the function identifier (gener-

ated from the function name for each annotated function) in

the thread-local queue funcs. The function identifier will

be used to invoke the function outside the transaction.

iii. Call Function Outside. The compiler generates a

wrapper function resume_suspended_funcs that goes

through these queues and calls the irreversible functions they

contain. The wrapper function will be called from stmEnd

when the transaction is successfully committed.

The code below shows the translated call to irreversible

function putchar, whose annotation was described before.

stmBegin(tx);

. . . // statements here

args.sharedpush(tx, &c, sizeof(char));

funcs.push(F_PUTCHAR);

stmEnd(tx);

. . .

void resume_suspended_funcs() {
while (!funcs.empty())

switch (funcs.pop()) {
case F_PUTCHAR:

putchar(*((char*)args.pop()));

break;

. . .

}
}

We use a global lock to prevent the wrapper functions

called in different transactions from interleaving. A thread

needs to acquire the lock before performing a wrapper

function during the commit phase.

Our precompiled and suspend constructs can be

used to annotate most C/C++ standard library functions.

However, there is one case where these constructs cannot be

used—the standard template library (STL). This is because

some STL functions operate on linked data structures, hence

it is difficult to determine the memory locations that are

accessed prior to executing them.

IV. OPTIMIZATIONS

In Section II-B2 we have presented our static data race

analysis that helps reduce the number of read/write barriers

inserted in the transactional code. In this section, we present

three other compile time optimizations to reduce the time

overhead incurred by STM.

A. Eliminating Redundant Barriers

During code instrumentation, redundant read/write bar-

riers may be introduced in the code, which can signifi-

cantly increase the STM overhead. The code below shows

two arithmetic statements and their intermediate code with

read/write barriers.
Original code Intermediate code

b = a+1; stmWriteInt(tx, &b, \

stmReadInt(tx, &a)+1);

b = a*b; stmWriteInt(tx, &b, \

stmReadInt(tx, &a)* \

stmReadInt(tx, &b));

In the intermediate code, read barrier is called three

times and write barrier is called twice. Actually, only

two barriers are required in this code, one read barrier for a

and one write barrier for b (all other barriers are redundant).

To eliminate redundant barriers in an expression, our

compiler first creates temporary variables to hold the values

loaded/stored by read/write barriers and uses the temporary

variables in the expression. The code below shows the

previous intermediate code with temporary variables inserted

for read/write barriers.
l_a = stmReadInt(tx, &a);

l_b = l_a+1;

stmWriteInt(tx, &b, l_b);

l_a = stmReadInt(tx, &a);

l_b = stmReadInt(tx, &b);

l_b = l_a*l_b;

stmWriteInt(tx, &b, l_b);

With temporary variables, read/write barriers are sepa-

rated from the original statements. A read barrier can be

eliminated if it is pre-dominated by read or write barriers

to the same variable within the same transaction. A write

barrier can be eliminated if it is post-dominated by write

barriers to the same variable within the same transaction.

The code below shows the final code generated for the

previous example after elimination of redundant barriers.
l_a = stmReadInt(tx, &a);

l_b = l_a+1;

l_b = l_a*l_b;

stmWriteInt(tx, &b, l_b);

B. Reducing Searches in Write Buffers

Since the overhead of write buffering-based STMs comes

largely from searching write buffers [12], eliminating un-

necessary data searches in write buffers can greatly improve

performance. To eliminate unnecessary searches in write

buffers, our compiler checks the control flow for each read

barrier. If a read barrier is not preceded by any write barrier

to the same variable within the same transaction, it does not

need to search the transaction’s write-set since the variable

cannot be in the write-set. Our compiler replaces such read

barriers with calls to stmDirectRead〈Type〉, which is a

read barrier that reads a value in a regular memory location

without searching the write-set.

C. Synchronization Between Transactions

Speculative parallelization often requires transactions to

be committed in a specific order, to preserve the sequential

semantics of the original program. One way to enforce a

commit order between transactions is to place synchroniza-

tion code prior to the end of the transaction. However, this

has two major drawbacks. First, performing synchronization

in transactions introduces extra overhead since synchroniza-

tion code usually does not need to be executed speculatively.

Second, performing synchronization in transactions may

cause transactions to abort, due to inconsistent states of

shared data structures used for synchronization. Therefore,

it increases transaction abort rates. For example, in the

following code, busy-waiting is used to synchronize the

transaction commit.
#pragma tm transaction

{
... // statements here

while (signal == 0);

}

In the above example, the transaction will not commit until a

signal is received. Let us assume that when the transaction

enters the busy-waiting loop, variable signal’s value is

0. The value of signal can be changed to 1 after the

transaction has started, e.g., by another transaction. This

leads to an inconsistent memory state since the transac-

tion eventually sees two values (‘0’ and ‘1’) for variable

signal. Most STM implementations, such as Transactional

Lock II (TL2) [3], will abort the transaction in this case

since inconsistent memory state may trigger a fatal exception

(e.g., segmentation fault) or cause the transaction to enter an

endless loop.

We introduce an STM construct, #pragma tm

beforevalidate, which specifies code that is executed

non-speculatively immediately before a transaction (specified

via #pragma tm transaction) is validated and

committed. The beforevalidate construct is designed

for synchronization between transaction commits to keep

the sequential semantics of the original program. For

example, the preceding synchronization code can be written

as follows:
#pragma tm transaction

{
... // statements here

}
#pragma tm beforevalidate

{
while (signal == 0);

}
In the example, the busy-waiting loop is executed non-

speculatively before transaction validation and commit.

Therefore, it will not cause extra overhead or increase

transaction abort rate.

V. EVALUATION

This section evaluates our approach. Our compiler is

implemented on top of ROSE [13], an open source compiler

infrastructure. We use the built-in call graph generator in

ROSE [13] to generate the static call graph. The static data

race detector, Locksmith [16], is used to find potentially

shared variables. Since Locksmith is designed for C, we

use the Comeau C++ compiler [18] to convert C++ code to

C-like code, which is then passed to Locksmith. We used

our compiler implementation with the TL2 STM library [3],

though it can target any write-buffering based STM system

that supports the low-level TM interface listed in Table III.

The experiments were conducted on a DELL PowerEdge

T605 machine (Intel Xeon 8-core 2.0GHz) running CentOS

v5.5. We performed experiments on 10 applications: eight

STAMP benchmarks and two real applications—Velvet and

ITI.

A. STAMP Benchmarks

STAMP is a benchmark suite designed for TM research.

It consists of eight parallel benchmarks [5]. All STAMP

benchmarks are originally instrumented with low-level TM

API constructs. To evaluate our approach, we replaced the

low-level TM API constructs in the STAMP benchmarks

with our programming constructs. Each benchmark has two

input data sets. In our experiments, we used the larger input

data set, which is more suitable for experiments on real

machines.

1) Programming Effort: To compare the programming

effort with prior approaches, Table IV shows the number

of programming constructs inserted into the benchmarks,

using the low-level STM API, the Intel STM compiler, and

our approach. The reported numbers include the number

Program Programming effort
Low-level API Intel Our compiler

barrier other bound. lib. irrever.

Bayes 49 127 75 15 0 0

Labyrinth 36 62 31 3 0 0

Genome 60 62 31 5 0 0

Intruder 75 190 95 3 0 0

Kmeans 8 9 3 3 0 0

Ssca2 24 31 10 10 0 0

Vacation 63 296 151 3 0 0

Yada 99 225 115 6 0 0

Velvet – – – 2 0 9

ITI – – – 1 2 30

Table IV
PROGRAMMING EFFORT (NUMBER OF CONSTRUCTS) WHEN USING THE

LOW-LEVEL STM API, THE INTEL STM COMPILER, AND OUR

COMPILER. PROGRAMMING EFFORT USING THE LOW-LEVEL STM API
IS SPLIT INTO CONSTRUCTS USED FOR READ/WRITE BARRIERS AND

OTHERS, WHILE PROGRAMMING EFFORT USING OUR COMPILER IS SPLIT

INTO CONSTRUCTS USED FOR TRANSACTION BOUNDARIES,
PRECOMPILED FUNCTIONS, AND IRREVERSIBLE FUNCTIONS.

of programming constructs inserted in the library functions

called in these benchmarks.

Compared to the low-level STM API, our approach re-

quires on average 97% fewer programming constructs to

be inserted into each benchmark. For each benchmark in

the PARSEC benchmark suite, we counted the number of

accesses to global/heap variables within transactions. We

found that on average each transaction contains 144 accesses

to global/heap variables, out of which 81 are shared accesses.

To achieve better performance with the low-level STM API,

programmers need not only place read/write barriers, but

also put effort in examining all the accesses to global/heap

variables to see whether they are shared accesses. We

liberate programmers from the burden of identifying shared

accesses and placing read/write barriers. Compared to the

Intel STM compiler, our approach requires on average 91%

fewer programming constructs to be inserted into each

benchmark. With our approach, programmers do not need

to annotate any function called within transactions. Overall,

our approach only requires 3–15 programming constructs

for each benchmark.

2) Performance: Figure 2 shows the speedups achieved

for each STAMP benchmark using different numbers

of threads. For each benchmark, the baseline is the

single-threaded original version of the program. Numbers

greater than 1 reflect better performance than the single-

threaded original versions. The numbers are measured us-

ing all of our optimizations. With 8 threads, our ap-

proach achieves speedups for all STAMP benchmarks except

vacation-high and yada. For vacation-high and

yada, the large number of read/write barriers imposes a

significant performance penalty. On average, our approach

achieves 1.65x speedup for the STAMP benchmarks with 8

threads.

3) Optimization Benefits: This section evaluates the ben-

efits of various optimizations proposed in this paper. The

optimizations include using static data race analysis (DRA)

to avoid placing barriers for accesses that do not cause

data races, caching the values loaded/stored by shared

reads/writes to eliminate redundant barriers (ERB), and

eliminating unnecessary searches (EUS) in write buffers for

data that are definitely not present in write buffers.

Program Baseline DRA DRA+ERB

Bayes 172 87 71

Labyrinth 107 67 67

Genome 40 40 37

Intruder 183 152 148

Kmeans 7 7 7

Ssca2 24 24 24

Vacation 196 180 156

Yada 424 304 289

Average 144 108 100

Table V
NUMBER OF READ/WRITE BARRIERS INSERTED WITH VARIOUS

OPTIMIZATIONS.

Table V compares the number of read/write barriers

inserted with different optimizations. In the baseline, we

inserted read/write barriers for every access to global/heap

data, which are potentially shared by threads. As we can

see, in the baseline, each benchmark has on average 144

read/write barriers. DRA reduces the number of barriers

by 25.3% on average for these benchmarks. The number

of barriers inserted in yada is reduced significantly since

yada operates on numerous locally-allocated objects. ERB

further reduces the number of barriers by 7.2%. EUS does

not reduce the number of barriers since it only eliminates

the unnecessary searches in write buffers. Since kmeans

and ssca2 have only small transactions that do not call

any functions, their baseline does not contain any barriers

to eliminate. Overall, our optimizations eliminate 30.7% of

the barriers from the baseline.

Figure 3 shows the impact of various optimizations on

program performance. The numbers were measured using

8 threads. In the baseline, read/write barriers are inserted

for every access to global/heap data. DRA improves the

performance by 23.3% on average for these benchmarks.

The performance of bayes and labyrinth is improved

most since a lot of barriers in them are eliminated by DRA.

ERB and EUS further improve the performance by 7.4%

and 5.4% for these benchmarks. EUS significantly improves

performance for genome and kmeans since they have

shared read-only data. Overall, our optimizations improve

the performance by 32.8% on average for these benchmarks.

4) Comparison: Figure 4 compares the performance of

hand-coded transactional code using the low-level STM API,

the Intel STM compiler, and our approach. The STAMP

benchmark suite provides hand-coded transactional code via

low-level STM API constructs. To measure the performance

of the Intel STM compiler, we apply their programming

constructs to the STAMP benchmarks. The numbers were

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

 4.5x

bayes
genome

intruder

kmeans−low

kmeans−high

labyrinth

ssca2
vacation−low

vacation−high

yada

S
pe

ed
up

1
2
4
8

Figure 2. Speedups over sequential versions
of the same programs achieved by our compiler
using 1, 2, 4, and 8 threads.

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

 4.5x

bayes
genome

intruder

kmeans−low

kmeans−high

labyrinth

ssca2
vacation−low

vacation−high

yada

S
pe

ed
up

baseline
DRA
DRA+RBE
DRA+RBE+EUS

Figure 3. Performance with different opti-
mizations.

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

 4.5x

 5x

bayes
genome

intruder

kmeans−low

kmeans−high

labyrinth

ssca2
vacation−low

vacation−high

yada

S
pe

ed
up

Hand−coded
Intel compiler
Ours

Figure 4. Performance comparison of the
hand-coded transactional code, the Intel STM
compiler, and our compiler.

measured using 8 threads. Among the three implementa-

tions, the hand-coded transactional code achieves the best

performance. This is expected, since a lot of effort has been

spent on manually optimizing the hand-coded transactional

code provided by STAMP. For example, there are no re-

dundant barriers in the hand-coded transactional code. The

performance of our approach is quite close to that of the

hand-coded transactional code. Compared to the hand-coded

transactional code, the programs generated by our compiler

are slower by 14.3%. Compared to the Intel STM compiler,

our approach improves the performance by 20.8%.

B. Real Applications

This section evaluates our approach using two real ap-

plications, Velvet and ITI. We use these applications

to show that our approach has low programmer burden

and can improve performance for loops with precompiled

and irreversible functions. The low programming burden is

evident in the last two rows of Table IV: we had to add just

11 constructs for Velvet and 33 for ITI. Note that, low-level

STM APIs and the Intel STM compiler cannot be used due

to the presence of precompiled and irreversible functions.

1) Velvet: Velvet [10] is a widely-used genomic assem-

bler designed for short read sequencing technologies. Due

to its popularity, developers have put a lot of effort into par-

allelizing it. In the latest version of Velvet (version 1.1),

fine-grained locks (i.e., one lock for each shared object) are

used to parallelize two loops in function fillUpGraph,

which account for approximately 50% of the execution time.

To apply fine-grained locks, 257 lock-related statements

were added by the Velvet developers. Apart from the extra

code, the programmer must ensure that there is no deadlock

and no livelock. Lock contention needs to be managed to

maximize program performance. For example, programmers

must determine whether threads should spin or block when

acquiring a lock.

We applied our approach to the two loops. Each iteration

of the two loops is treated as a transaction. Numerous

output operations (e.g., fprintf) and system calls (e.g.,

sysconf) are called inside the two loops. Since these

functions are irreversible, we inserted 9 programming con-

structs to suspend and perform their execution outside the

transactions. In total, we inserted 11 programming constructs

in Velvet.

Figure 5 compares the performance of our approach and

fine-grained locks (FGL). The baseline is the sequential

version of Velvet. The numbers were measured using

nucleotide sequence SRR027005 [19] as input. With only

11 programming constructs added, our approach achieves

1.48x speedup using 8 threads. Compared to code with

fine-grained locks, the code generated by our compiler is

slower by only 11.4%. Considering the significantly lower

programming effort, our approach provides an easy way to

parallelize real applications.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of parallel threads

FGL
Ours

Figure 5. Speedups of Velvet
over its sequential version.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of parallel threads

Figure 6. Speedup of ITI over
its sequential version.

2) Incremental Tree Inducer: Incremental tree inducer

(ITI) [11], also called Direct Metric Tree Induction (DMTI),

is a widely-used decision tree constructor; it incrementally

constructs decision trees from labeled examples. The appli-

cation has not been parallelized before.

We applied our approach to the main loop, each iteration

of which reads a labeled example and updates the decision

tree. The loop body is annotated as a transaction. Both pre-

compiled and irreversible library functions are used inside

the loop. Two C string functions, strlen and strcmp,

are called inside the loop. Since the string length is known,

we used 2 precompiled constructs to annotate their

declarations. C standard output function, printf, is also

called inside the loop. Since different calls to printf use

different formats of arguments, we inserted 30 suspend

constructs to annotate its call sites. In total, we added 33

programming constructs.

Figure 6 shows the speedups achieved by our approach for

ITI. The baseline is the single-threaded original version of

ITI. We used data set agaricus lepiota [20] as input.

We achieved a 1.50x speedup using 8 threads, which demon-

strates that our approach can be used to parallelize real

applications that contain both precompiled and irreversible

functions.

VI. RELATED WORK

Besides the Intel STM Prototype Compiler [6], some other

works have also introduced basic TM constructs into C

or C++. Tanger [21] is another STM compiler for C/C++.

Similar to the Intel STM compiler, it does not provide

STM constructs for synchronization, precompiled library

functions or irreversible functions. It relies on dynamic

instrumentation to support precompiled library functions in

transactions. Luchangco et al. [22] theoretically analyzed

different design options for integrating STM into C++

without doing any real implementation. OpenTM [9] is an

extension to OpenMP [23] and focus more on the expression

of loop-level speculative parallelism based on TMs. Milo-

vanović et al. [24] proposed another extension to OpenMP.

It supports a multithreaded STM design with a dedicated

thread for eager asynchronous conflict detection. Performing

conflict detection in a separate thread saves time in other

threads. SpiceC [25] is a programming model for loop-level

parallelization. It is specially designed to support multiple

forms of parallelisms, including speculative parallelism.

Many works have introduced TM constructs into managed

languages. AtomCaml [26] introduced first-class constructs

to support atomic execution of code written in Objective

Caml, which is based on a uniprocessor execution model.

Adl-Tabatabai et al. [14] presented compiler and runtime

optimizations for TM constructs in JAVA. Their system

supports composition of transactions and partial roll back.

They use just-in-time (JIT) optimizations on STM oper-

ations. Hindman and Grossman [15] developed a source-

to-source translator to support atomicity in JAVA. Their

implementation is based on locks.

VII. CONCLUSION

We have presented an approach for programming

speculatively-executed code in C/C++. Our proposed pro-

gramming constructs only require programmers to annotate

transaction boundaries. Our constructs also provide support

to enable parallel execution of transactions that contain

precompiled and irreversible library functions. We have eval-

uated our compiler implementation. Compared to the low-

level STM API, our approach requires 97% fewer program-

ming constructs to be inserted into the STAMP benchmarks.

When using 8 threads, our compiler implementation achieves

a 1.62x average speedup for the ten applications.

REFERENCES

[1] L. Rauchwerger and D. Padua, “The LRPD test: Speculative
run-time parallelization of loops with privatization and reduc-
tion parallelization,” in PLDI, 1995, pp. 218–232.

[2] N. Shavit and D. Touitou, “Software transactional memory,”
in PODC, 1995, pp. 204–213.

[3] D. Dice, O. Shalev, and N. Shavit, “Transactional lock II,” in
Distributed Computing, 2006, pp. 194–208.

[4] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance
tuning of word-based software transactional memory,” in
PPoPP, 2008, pp. 237–246.

[5] C. C. Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “STAMP: Stanford transactional applications for multi-
processing,” in IISWC, 2008, pp. 35–46.

[6] “Intel C++ STM compiler, prototype edition,”
http://software.intel.com/en-us/articles/intel-c-stm-compiler-
prototype-edition/.

[7] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-
Tabatabai, “Code generation and optimization for transac-
tional memory constructs in an unmanaged language,” in
CGO, 2007, pp. 34–48.

[8] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkow-
its, J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy,
J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian, “Design
and implementation of transactional constructs for c/c++,” in
OOPSLA, 2008, pp. 195–212.

[9] W. Baek, C. C. Minh, M. Trautmann, C. Kozyrakis, and
K. Olukotun, “The opentm transactional application program-
ming interface,” in PACT, 2007, pp. 376–387.

[10] D. R. Zerbino and E. Birney, “Velvet: algorithms for de
novo short read assembly using de bruijn graphs,” Genome
Research, vol. 18, pp. 821–829, 2008.

[11] P. E. Utgoff, N. C. Berkman, and J. A. Clouse, “Decision tree
induction based on efficient tree restructuring,” Mach. Learn.,
vol. 29, no. 1, pp. 5–44, October 1997.

[12] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg, “McRT-STM: a high performance software
transactional memory system for a multi-core runtime,” in
PPoPP, 2006, pp. 187–197.

[13] D. Quinlan, “Rose: Compiler support for object-oriented
framework,” in CPC, 2000.

[14] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman, “Compiler and runtime support
for efficient software transactional memory,” in PLDI, 2006,
pp. 26–37.

[15] B. Hindman and D. Grossman, “Atomicity via source-to-
source translation,” in MSPC, 2006, pp. 82–91.

[16] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH:
Practical static race detection for C,” TOPLAS, vol. 33, no. 1,
pp. 3:1–3:55, January 2011.

[17] L. Van Put, D. Chanet, B. De Bus, B. De Sutler, and
K. De Bosschere, “DIABLO: a reliable, retargetable and
extensible link-time rewriting framework,” in ISSPIT, 2006,
pp. 7–12.

[18] “Comeau C++ compiler,” http://www.comeaucomputing.com/.
[19] “DDBJ sequence read archive,”

http://trace.ddbj.nig.ac.jp/dra/index e.shtml.
[20] “UCI machine learning repository,”

http://archive.ics.uci.edu/ml/.
[21] P. Felber, T. Riegel, C. Fetzer, M. S. kraut, U. Müller, and

H. Sturzrehm, “Transactifying applications using an open
compiler framework,” in TRANSACT, 2007.

[22] V. Luchangco, L. Crowl, Y. Lev, D. Nussbaum, and M. Moir,
“Integrating transactional memory into C++,” in TRANSACT,
2007.

[23] L. Dagum and R. Menon, “Openmp: An industry-standard
api for shared-memory programming,” IEEE computational
science & engineering, vol. 5, no. 1, pp. 46–55, 1998.

[24] M. Milovanović, R. Ferrer, V. Gajinov, O. S. Unsal, A. Cristal,
E. Ayguadé, and M. Valero, “Multithreaded software transac-
tional memory and OpenMP,” in MEDEA, 2007, pp. 81–88.

[25] M. Feng, R. Gupta, and Y. Hu, “SpiceC: scalable parallelism
via implicit copying and explicit commit,” in PPoPP, 2011,
pp. 69–80.

[26] M. F. Ringenburg and D. Grossman, “Atomcaml: first-class
atomicity via rollback,” in ICFP, 2005, pp. 92–104.

