
Predicting Concurrency Bugs: How Many, What Kind and
Where Are They?

Bo Zhou Iulian Neamtiu Rajiv Gupta
Department of Computer Science and Engineering

University of California Riverside, CA, USA
{bzhou003, neamtiu, gupta}@cs.ucr.edu

ABSTRACT
Concurrency bugs are difficult to find and fix. To help
with finding and fixing concurrency bugs, prior research has
mostly focused on static or dynamic analyses for finding spe-
cific classes of bugs. We present an approach whose focus
is understanding the differences between concurrency and
non-concurrency bugs, the differences among various con-
currency bug classes, and predicting bug quantity, type,
and location, from patches, bug reports and bug-fix met-
rics. First, we show that bug characteristics and bug-fixing
processes vary significantly among different kinds of concur-
rency bugs and compared to non-concurrency bugs. Next,
we build a quantitative predictor model to estimate concur-
rency bugs appearance in future releases. Then, we build
a qualitative predictor that can predict the type of concur-
rency bug for a newly-filed bug report. Finally, we build a
bug location predictor to indicate the likely source code loca-
tion for newly-reported bugs. We validate the effectiveness
of our approach on three popular projects, Mozilla, KDE,
and Apache.

1. INTRODUCTION
Concurrent programming is challenging, and concurrency

bugs are particularly hard to diagnose and fix for several rea-
sons, e.g., thread interleavings and shared data complicate
reasoning about program state [17], and bugs are difficult
to reproduce due to non-determinism and platform-specific
behavior. As a result, we show that fixing concurrency bugs
takes longer, requires more developers, and involves more
patches, compared to fixing non-concurrency bugs.

Many recent efforts have focused on concurrency bugs,
with various goals. On one side, there are empirical studies
about the characteristics and effects of concurrency bugs [8,
15, 25], but they do not offer a way to predict bug quan-
tity, type and location. On the other side, static [7] or dy-
namic analyses [16] aim to detect particular types of concur-
rency bugs. Such analyses help with precise identification of
bugs in the current source code version, but their focus is
different—finding specific type of bugs in the current ver-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EASE ’15, April 27 - 29, Nanjing, China
Copyright 2015 ACM 978-1-4503-3350-4/15/04 ...$15.00.

sion, rather than using evolution data to predict the future
number, kind, and location of bugs; in addition, program
analysis is subject to scalability constraints which are par-
ticularly acute in large projects. While other prior efforts
have introduced models for predicting bug quantity [11, 21]
and bug location [19, 23] without regard to a specific bug
category, we are specifically interested in isolating concur-
rency bugs and reporting prediction strategies that work well
for them. Hence in this paper we study the nature of con-
currency bugs, how they differ from non-concurrency bugs,
and how to effectively predict them; we use statistics and
machine learning as our main tools.

Our study analyzes the source code evolution and bug
repositories of three large, popular open-source projects:
Mozilla, KDE and Apache. Each project has had a his-
tory of more than 10 years, and their size has varied from
110 KLOC to 14,330 KLOC. Such projects benefit from our
approach for several reasons: (1) large code bases pose scal-
ability, coverage and reproducibility problems to static and
dynamic analyses; (2) large collaborative projects where bug
reporters differ from bug fixers benefit from predictors that
help fixers narrow down the likely cause and location of a
bug reported by someone else; (3) a quantitative predictor
for estimating the incidence of concurrency bugs in next re-
leases can help with release planning and resource allocation.

We now summarize our methodology and findings. By an-
alyzing bug reports, commit logs and source code, we found
that concurrency bugs fall into four categories: atomicity vi-
olations, order violations, races, and deadlocks (Section 2).
Next, for each bug type, we analyzed multiple facets (e.g.,
patches, files, comments, and developers involved) to char-
acterize the process involved in, and differences between, fix-
ing concurrency and non-concurrency bugs. We found that
compared to non-concurrency bugs, concurrency bugs take
twice as long to fix, bug-fixes affect 46% more files, require
patches that are 4 times larger, involve 17% more developers,
involve 72% more patches for a successful fix, and have 17%
higher severity. Within concurrency bugs, we found that
atomicity violations are the most complicated bugs, taking
highest amounts of time, developers and patches to fix, while
deadlocks are the easiest and fastest to fix (Section 4).

Using the historic values of these bug characteristics, we
construct two models to predict the number of extant con-
currency bugs that will have to be fixed in future releases: a
model based on generalized linear regression (Section 5.1),
and one based on time series forecasting (Section 5.2). Our
predicted number of concurrency bugs differed very little
from the actual number: depending on the bug type, our

Thread 1 Thread 2

ap r a t om i c d e c (&obj−>
r e f c o u n t) ;

i f (! obj−>r e f c o u n t) {
c l e a n u p c a c h e o b j e c t

(ob j) ;
}

ap r a t om i c d e c (&obj−>
r e f c o u n t) ;

i f (! obj−>r e f c o u n t) {
c l e a n u p c a c h e o b j e c t

(ob j) ;
}

Figure 1: Atomicity violation bug #21287 in Apache
(mod_mem_cache.c).

Thread 1 Thread 2

nsThread : : I n i t (. . .) {
. . .

mThread =
PR CreateThread
(Main , . . .) ;

. . .

nsThread : : Main (. . .) {
. . .
mState = mThread−>

GetSta te (. . .) ;
. . .

Figure 2: Order violation bug #61369 in Mozilla
(nsthread.cpp).

prediction was off by just 0.17–0.54 bugs.
While these quantitative predictors provide managers an

estimate of the number of upcoming concurrency bugs, to
help developers we constructed two additional, qualitative
predictors. First, a bug type predictor that can predict the
likely type of a newly-filed bug concurrency bug, e.g., atom-
icity violation or deadlock with at least 63% accuracy (Sec-
tion 6). Second, a bug location predictor that predicts the
likely bug location from a new bug report with at least 22%
Top-1 accuracy and 55% Top-20% accuracy (Section 7).

2. CONCURRENCY BUG TYPES
We now briefly review the four main types of concurrency

bugs, as introduced by previous research [7, 15,17].
Atomicity violations result from a lack of constraints on

the interleaving of operations in a program. Atomicity vio-
lation bugs are introduced when programmers assume some
code regions to be atomic, but fail to guarantee the atom-
icity in their implementation. In Figure 1 we present an
example of an atomicity violation, bug #21287 in Apache:
accesses to variable obj in function decrement refcount are not
protected by a lock, which causes the obj to be freed twice.

Order violations involve two or more memory accesses
from multiple threads that happen in an unexpected order,
due to absent or incorrect synchronization. An order viola-
tion example, bug #61369 in Mozilla, is shown in Figure 2:
nsThread::Main() in Thread 2 can access mThread’s state before
it is initialized (before PR CreateThread in Thread 1 returns).

Data races occur when two different threads access the
same memory location, at least one access is a write, and
the accesses are not ordered properly by synchronization.

Deadlocks occur when two or more operations circularly
wait for each other to release acquired resources (e.g., locks).

3. METHODOLOGY
We now present an overview of the three projects we ex-

amined, as well as the methodology we used for identifying
and analyzing concurrency bugs and their bug-fix process.

3.1 Projects Examined
We selected three large, popular, open source projects for

our study: Mozilla, KDE and Apache. The Mozilla suite
is an open-source web client system implementing a web
browser, an email client, an HTML editor, newsreader, etc.

Mozilla contains many different sub-projects, e.g., the Fire-
fox web browser, and the Thunderbird mail client. In this
paper, we mainly focus on the core libraries, and the prod-
ucts related to the Firefox web browser. KDE is a develop-
ment platform, a graphical desktop, and a set of applications
in diverse categories. Apache is the most widely-used web
server; we analyzed the HTTP server and its supporting li-
brary, APR, which provides a set of APIs that map to the
underlying operating system. The evolution time span and
source code size are presented in Table 1.

We focus on these three projects for several reasons. First,
their long evolution (more than 10 years), allow us to observe
the effect of longer or shorter histories on prediction accu-
racy. Second, they are highly concurrent applications with
rich semantics, and have large code bases, hence predict-
ing bug type and location is particularly helpful for finding
and fixing bugs. Finally, given the popularity of their core
components that constitute the object of our study, find-
ing and fixing concurrency bugs is a key priority for these
projects. We believe that these characteristics make our cho-
sen projects representative of some of the biggest challenges
that the software development community faces as complex
applications become more and more concurrent.

3.2 Identifying Concurrency Bugs
We now describe the process for collecting concurrency

bugs and computing the attributes of their bug-fixing pro-
cess. All three projects offer public access to their bug track-
ers [1,10,20]. We first selected the fixed bugs; then we split
the fixed bugs into concurrency and non-concurrency bugs
using a set of keywords and cross-information from the com-
mit logs; finally we categorized the concurrency bugs into the
four types. Our process is similar to previous research [8,15].
Potential threats to the validity of our process will be dis-
cussed in Section 8. The results, explained next, are given
in Table 1.

Identifying “true” bugs. To identify the viable bug re-
port candidates, we only considered bugs that have been
confirmed and fixed; that is, we only selected bug reports
marked with resolution FIXED and status CLOSED. We did
not consider bugs with other statuses, e.g., UNCONFIRMED and
other resolutions (e.g., INVALID, or WONTFIX)—the reason is
that for bugs other than FIXED and CLOSED, the bug reports
did not have detailed information and discussions also in
general, they will not contain correct patches. Without rea-
sonably complete bug reports it would be impossible for us
to completely understand the root cause of the bugs.

We limited the searching process to those parts of the
project with a long history and large source code base. For
Mozilla, we only selected 8 products which are directly re-
lated to the core and browser parts: Core, Firefox, Direc-
tory, JSS, NSPR, NSS, Plugins, and Rhino [4]. For Apache,
we only chose C/C++ products: the Apache HTTP Server
and the Apache Portable Runtime. For KDE, we considered
all products in the KDE Bugtracking System. The 5th col-
umn of Table 1 shows the number of bugs that have been
fixed and closed.

Candidate concurrency bug reports. As the 5th column
of Table 1 shows, there were more than 250,000 bugs left
after the previous step. To make our study feasible, we
automatically filtered bugs that were not likely to be rele-
vant to concurrency by performing a search process on the
bug report database. We retained reports that contained
a keyword from our list of relevant concurrency terms; the

Table 1: Bug reports and concurrency bug counts.

Project Time SLOC Bug reports Concurrency Bugs
span First Last Fixed & Matching concurrency Atomicity Order Data Deadlock Total

release release closed keywords violation violation race
Mozilla 1998-2012 1,459k 4,557k 114,367 1,149 60 34 10 30 134
KDE 1999-2012 956k 14,330k 118,868 887 14 13 29 19 75
Apache 2000-2012 110k 223k 22,370 423 18 8 10 5 41

Total 2,459 92 55 49 54 250

list included terms such as“thread”, “synchronization”, “con-
currency”, “mutex”, “atomic”, “race”, “deadlock”. Note that
similar keywords were used in the previous research [8, 15].
In Table 1 (6th column), we show the number of bug re-
ports that matched these keywords. Many bugs, however,
are mislabeled, as explained shortly. Our keyword-based
search for bug reports could have false negatives, i.e., miss-
ing some of the real concurrency bugs (which we identify
as a threat to validity in Section 8). However, we believe
that a concurrency bug report that did not contain any of
the aforementioned keywords is more likely to be incomplete
and much more difficult to analyze its root cause.

Determining the concurrency bug type. We then manually
analyzed the 2,459 bug reports obtained in the previous step
to determine (1) whether they describe an actual concur-
rency bug and if yes, (2) what is the concurrency bug type.
In addition to the bug description, some reports also contain
execution traces, steps to reproduce, discussion between the
developers about how the bug was triggered, fix strategies,
and links to patches. We used all these pieces of information
to determine whether the bug was a concurrency bug and
its type.

For all bugs we identified as concurrency bugs, we ana-
lyzed their root cause and fix strategy, and binned the bug
into one of the four types described in Section 2. In the
end, we found 250 concurrency bugs: 134 in Mozilla, 75 in
KDE, and 41 in Apache; the numbers for each category are
presented in the last set of grouped columns of Table 1; the
Mozilla and Apache numbers are in line with prior findings
by other researchers, though their study has analyzed bugs
up to 2008 [15]. We found that, in Mozilla and Apache,
atomicity violations were the most common, while in KDE,
data races were the most frequent.

Note that searching bug reports alone is prone to false
positives (incorrectly identifying a non-concurrency bug as
a concurrency bug) and false negatives (missing actual con-
currency bugs) [8]. To reduce the incidence of such errors,
we also keyword-searched the commit logs (e.g., CVS and
Mercurial for Mozilla) and then cross-referenced the infor-
mation obtained from the bug tracker with the information
obtained from the commit logs. For instance, Mozilla bug
report #47021, did not contain any of the keywords but we
found the keyword race in the commit log associated with
the bug, so based on this information we added it to our set
of concurrency bugs to be categorized.

Concurrency bug types and keywords. We found many bug
reports that contained keywords pertaining to other types
of bugs. The following table shows the percentage of bug
reports in each category (computed after our manual cat-
egorization) containing each of the four keywords that one
would naturally associate with the corresponding bug type.

Percentage of bug reports containing the keyword
Atomicity Order Race Deadlock

Keyword bug reports bug reports bug reports bug reports

“atomic” 29.35 14.54 8.16 1.85
“order” 21.74 40.00 16.33 14.81
“race” 70.65 63.64 51.02 7.41
“deadlock” 16.30 16.36 12.24 94.44

Note how 70.65% of the atomicity violation reports con-
tain the keyword “race”, while only 29.35% contain the key-
word “atomic”. In fact, a higher percentage of atomicity
violation and order violation bug reports contain the term
“race” (70.65% and 63.64%, respectively) compared to the
race bug reports (51.02%). These findings suggest that: (1)
while searching for concurrency bug reports using an exhaus-
tive keyword list followed by manual analysis has increased
our effort, it was essential for accurate characterization, as
many bugs contain misleading keywords, and (2) using ap-
proaches that can assign weights to, and learn associations
between, keywords, are likely to be promising in automati-
cally classifying bug types—we do exactly that in Section 6.

3.3 Collecting Bug-fix Process Data
To understand the nature of, and differences in, bug-fixing

processes associated with each concurrency bug type, we
gathered data on bug features—the time, patches, develop-
ers, files changed, etc., that are involved in fixing the bugs.
We now provide details and definitions of these features.

Patches represents the number of patches required to fix
the bug; we extract it from the bug report. Days represents
the time required to fix the bug, computed as the difference
between the date the bug was opened and the date the bug
was closed. Files is the number of files changed in the last
successful patch. We extracted the number of files changed
by analyzing the bug report and the commit information
from the version control system. Total patch size indicates
the combined size of all patches associated with a bug fix, in
KB. Developers represents the number of people who have
submitted patches. Comments is the number of comments
in the bug report. Severity: to capture the impact that the
bug has on the successful execution of the applications, our
examined projects use a numerical scale for bug severity.
Mozilla uses a 7-point scale1, while KDE and Apache use
8-point scales. To have a uniform scale, we mapped KDE2

and Apache3 severity levels onto Mozilla’s.

4. QUANTITATIVE ANALYSIS OF DIFFER-
ENCES IN BUG-FIXING PROCESSES

Prior work has found that fixing strategies (that is, code
changes) differ widely among different classes of concur-
rency bugs [15]; however, their findings were qualitative,
rather than quantitative. In particular, we would like to
be able to answer questions such as: Which concurrency

10=Enhancement, 1=Trivial, 2=Minor, 3=Normal, 4=Ma-
jor, 5=Critical, 6=Blocker.
20=Task, 1=Wishlist, 2=Minor, 3=Normal, 4=Crash,
4=Major, 5=Grave, 6=Critical.
30=Enhancement, 1=Trivial, 2=Minor, 3=Normal, 4=Ma-
jor, 4=Regression, 5=Critical, 6=Blocker.

fixes require changes across multiple files? Do atomicity vi-
olation fixes require more patches to “get it right” compared
to deadlock fixes? Which concurrency bug types take the
longest to fix? Are concurrency bugs more severe than non-
concurrency bugs? Do concurrency bugs take longer to fix
than non-concurrency bugs?

Therefore, in this section we perform a quantitative assess-
ment of the bug-fix process for each concurrency bug type,
as well as compare concurrency and non-concurrency bugs,
along several dimensions (features). While bug-fixing effort
is difficult to measure, the features we have chosen provide
a substantive indication of the developer involvement asso-
ciated with each type of bug. Moreover, this assessment is
essential for making inroads into predicting the number of
concurrency bugs in the code that are yet to be discovered.

To compare concurrency bugs and non-concurrency bugs,
we randomly selected 250 non-concurrency bugs found and
fixed in the same product, component, software version and
milestone with the 250 concurrency bugs we found. The rea-
son why we used the same product/component/version/mile-
stone for concurrency and non-concurrency bugs was to re-
duce potential confounding factors. We manually validated
each non-concurrency bug and bug report for validity, as we
did with concurrency bugs.

4.1 Feature Distributions
We now present our findings. For each feature, in Figure 3

we show a boxplot indicating the distribution of its values
for each concurrency bug type. Each boxplot represents the
minimum, first quartile, third quartile and maximum values.
The black horizontal bar is the median and the red diamond
point is the mean. The second-from-right boxplot shows
the distribution across all concurrency bugs. The rightmost
boxplot shows the distribution for non-concurrency bugs.
For legibility and to eliminate outliers, we have excluded
the top 5% and bottom 5% when computing and plotting
the statistical values. We now discuss each feature.

Patches are one of the most important characteristics of
bug fixing. Intuitively, the number of patches could be used
to evaluate how difficult the bugs are—the more patches
required to “get it right,” the more difficult it was to fix that
bug. We found (Figure 3) that atomicity violations take
the highest number of patches (usually 2–5, on average 3.5),
while order violations take on average 2.4 patches, followed
by races at 1.7 patches and deadlocks at 1.6 patches. Non-
concurrency bugs require on average 1.4 patches.

Days. Predicting the bug-fix time is useful for both con-
currency bugs and non-concurrency bugs, as it helps man-
agers plan the next releases. We found (Figure 3) that the
average bug-fix time is longer than 33 days for all 4 types of
concurrency bugs, which means that usually the time cost
associated with concurrency bugs is high. Similar to the
number of patches, atomicity violation bugs took the longest
to fix (123 days on average), order violations and races took
less (66 days and 44 days, respectively), while deadlocks were
fixed the fastest (33.5 days on average). Non-concurrency
bugs take on average 34 days.

Files. This characteristic can be used to estimate the ex-
tent of changes and also the risk associated with making
changes in order to fix a bug—the higher the number of
affected files, the more developers and inter-module com-
munications are affected. We found (Figure 3) that bug
fixes affect on average 2.8 files for atomicity, 2.4 files for or-
der violations, 1.9 files for races and 1.8 files for deadlocks.

Atomicity Order Race Deadlock Overall NC

2
4

6
8

N
um

be
r

of
 p

at
ch

es
 to

 fi
x

th
e

bu
g

Patches

Atomicity Order Race Deadlock Overall NC

0
10

0
20

0
30

0

N
um

be
r

of
 d

ay
s

to
 fi

x
th

e
bu

g Days

Atomicity Order Race Deadlock Overall NC

1
2

3
4

5
6

7
8

N
um

be
r

of
 fi

le
s

to
 fi

x
th

e
bu

g Files

Atomicity Order Race Deadlock Overall NC

0
20

40
60

80

To
ta

l f
ile

 s
iz

e
to

 fi
x

th
e

bu
g Patch size

Atomicity Order Race Deadlock Overall NC

0
20

40
60

80

To
ta

l c
om

m
en

ts
 in

 th
e

bu
g

re
po

rt

Comments

Atomicity Order Race Deadlock Overall NC

1.
0

1.
5

2.
0

2.
5

3.
0

To
ta

l d
ev

el
op

er
s

in
 th

e
bu

g
re

po
rt

Developers

Atomicity Order Race Deadlock Overall NC

3.
0

3.
5

4.
0

4.
5

5.
0

B
ug

 s
ev

er
ity

Severity

Figure 3: Feature distributions for each class of concurrency
bugs (Atomicity, Order, Race, Deadlock), all concurrency
bugs combined (Overall) and non-concurrency bugs (NC).

Non-concurrency bugs affect on average 1.6 files.
Total patch size. The total size of all patches, just like the

number of files, can be used to indicate the risk associated
with introducing the bug-fixing changes: if the size of the
patches is large, many modifications have been made to the
source code (e.g., pervasive changes, large-scale restructur-
ing). We found that average concurrency patch sizes tend
to be large, with atomicity (27.6KB) and order violations
(19.7KB) far ahead of races (7.7KB) and deadlocks (5.1KB).
Non-concurrency patches are smaller, 3.8KB on average.

Comments. The number of comments in the report can
indicate hard-to-find/hard-to-fix bugs that developers solicit
a lot of help with. Examples of such bugs that are hard to
reproduce and fix include Mozilla bugs #549767, #153815,
#556194, where even after removing the“mark as duplicate”
comments, there are more than 100 comments dedicated to
reproducing and fixing the bug. We found that the average
number of comments is again highest for atomicity viola-
tions (29.4) followed by order violations (20.7), races (12.0)
and deadlocks (10.6). The number is much smaller for non-
concurrency bugs (7.6).

Developers. The more developers are involved into sub-
mitting patches for a bug, the more difficult it was to find
and fix that bug. We found that atomicity fixes involve on
average 1.39 developers while the other bugs involve fewer
developers (1.21). Non-concurrency bugs involve, on aver-
age, 1.03 developers.

Severity. Bug severity is important as developers are more
concerned with higher severity bugs which inhibit function-
ality and use. We found that all types of concurrency bugs
have average severity between 3.6 and 3.7. Since severity
level 3 is Normal and level 4 is Major, we can infer that con-
currency bugs are higher-priority bugs. Non-concurrency
bugs tend to be lower severity (mean 3.1), which underlines
the importance of focusing on concurrency bugs.

4.2 Differences Among Concurrency Bugs
We now set out to answer another one of our initial ques-

tions: Are there significant differences in the bug-fix process

Table 2: Wilcoxon Rank Sum and Signed Rank Tests re-
sults; p-values were adjusted using the FDR procedure; ∗∗

indicates significance at p = 0.01 while ∗ at p = 0.05.
Features Category Order Race Deadlock

Atomicity 0.0116∗ <0.0001∗∗ <0.0001∗∗

Patches Order 0.0168∗ 0.0084∗∗

Race 0.8427

Atomicity 0.0790 0.1728 0.0002∗∗

Days Order 0.6302 0.0790
Race 0.0270∗

Atomicity 0.4654 0.1215 0.0868
Files Order 0.6378 0.5034

Race 0.7363

Atomicity 0.0079∗∗ <0.0001∗∗ <0.0001∗∗

Patch Order 0.2666 0.0412∗

size Race 0.2814

Atomicity 0.0367∗ <0.0001∗∗ <0.0001∗∗

Comments Order 0.0034∗∗ 0.0063∗∗

Race 0.5370

Atomicity 0.0110∗ 0.0110∗ 0.0005∗∗

Developers Order 0.9690 0.2695
Race 0.2695

Atomicity 0.7933 0.7933 0.9228
Severity Order 0.7933 0.7933

Race 0.7933

among different categories of concurrency bugs?
To answer this question we performed a pairwise compar-

ison across all pairs of concurrency bug types. For general-
ity and to avoid normality assumptions, we performed the
comparison via a non-parametric test, the Wilcoxon signed-
rank test. To avoid type I errors, we performed a Wilcoxon
signed-rank test by applying false discovery rate (FDR) pro-
cedures [3]. We present the results, obtained after the cor-
rection, in Table 2. The starred values indicate significance
at p = 0.01 (∗∗) and p = 0.05 (∗), respectively. We found
that atomicity and deadlock tend to be significantly differ-
ent from the other categories, while for order and race, it
depends on the feature. We also found that bug severity
does not differ significantly among concurrency bug types.
4.3 Discussion
Concurrency bugs v. non-concurrency bugs. We found
significant differences for all these features between con-
currency and non-concurrency bugs. In Figure 3, the last
two boxplots in each graph show the distribution of val-
ues for that feature for all concurrency bugs (Overall) and
non-concurrency bugs (NC). We found that, compared to
non-concurrency bugs, concurrency bugs involve 72% more
patches for a successful fix, take twice as long to fix, bug-
fixes affect 46% more files, require patches that are four
times larger, generate 2.5 times as many comments, involve
17% more developers, and have a 17% higher severity.

For each feature, the differences between concurrency and
non-concurrency bugs are significant (p < 2e−16)); we used
Cliff’s delta to compute the effect size measure; the results
indicated significance (effect size Large for all features except
severity, where they were Medium). For brevity, we omit
presenting the individual results.
Differences among types. Based on our findings, we in-
fer that (1) concurrency bugs are usually difficult to find
the root cause of and get the correct fix for, and (2) there
are significant differences between different types of concur-
rency bugs hence these types should be considered sepa-
rately. These two points provide the impetus for the work
presented in the remainder of the paper.

5. PREDICTING THE NUMBER OF CON-
CURRENCY BUGS

Costs associated with software evolution are high, an esti-
mated 50%–90% of total software production costs [12, 24].
Predicting the number of extant bugs, that will have to be
fixed in upcoming releases, helps managers with release plan-
ning and resource allocation, and in turn can reduce software
evolution costs. Therefore, in this section we focus on pre-
dicting the future number of concurrency bugs.

In Section 4, we observed relationships between the num-
ber of concurrency bugs and the features we analyzed. Hence,
to estimate the likelihood of concurrency bugs in the project,
we naturally turn to using the features as inputs. In this sec-
tion we focus on (1) understanding the effect of each feature
on each type of concurrency bug, as well as its prediction
power for the number of those concurrency bugs, (2) us-
ing the features to build predictor models and evaluating
the accuracy of the models, and (3) understanding the ef-
fect of time and autocorrelation on prediction accuracy. In
particular, we explore two predictors models—one based on
multiple linear regression and one based on time series.
Time granularity. There is an accuracy–timeliness trade-
off in how long a window we use for bug prediction. A time
frame too short can be susceptible to wild short-term varia-
tions or lack of observations, while too long a time frame will
base predictions on stale data. Therefore, we built several
models, with varying time spans, for computing past val-
ues of independent variables and bug numbers. In the first
model, named Monthly, we counted the dependent variable
(number of bugs) and independent variables (patches, days,
files, patch size, etc.) at a monthly granularity based on the
open date of the bugs, e.g., one observation corresponds to
May 2010, the next observation corresponds to June 2010,
and so on. We also tried coarser granularities, 3-months,
6-months, and 12-months, but the predictions were less ac-
curate (albeit slightly). Therefore, in the remainder of this
section, monthly granularity is assumed.

5.1 Generalized Linear Regression
To analyze the relationship between the number of con-

currency bugs and each feature, we built a generalized linear
regression model to avoid the normality assumption. We
choose the number of bugs as dependent variable and the
features, i.e., patches, days, files, patch size, comments, de-
velopers, and severity, as independent variables.

In Table 3 we present the regression results for each type
of concurrency bug and across all concurrency bugs (again,
this is using the monthly granularity). For each independent
variable, we show the regression coefficient and the p-value,
that is, the significance of that variable. We found that
not all independent variables contribute meaningfully to the
model. For example, for data race bugs, files, patch size,
developers and severity are good predictors (low p-value),
but the other features are not; moreover, the regression co-
efficients for files, developers and severity are positive. In-
tuitively, these results indicate that past changes to files,
high number of developers and high bug severity are corre-
lated with a high incidence of data race bugs later on; since
the coefficient for patch size is negative, it means that past
patches will actually reduce the incidence of data races in
upcoming releases. For atomicity violations and order vio-
lations we have similar results. When predicting the num-
ber of all concurrency bugs (last two columns in Table 3),
we found that three variables contribute to the model: files,
developers and severity.

Table 3: Results of the generalized regression model; ∗∗ indicates significance at p = 0.01; ∗ indicates significance at p = 0.05.

Features Atomicity violation Order violation Data race Deadlock All conc.
coefficient p-value coefficient p-value coefficient p-value coefficient p-value coefficient p-value

Patches 0.0196 0.014∗ 0.0197 0.094 0.0171 0.173 -0.0090 0.607 0.0032 0.709
Days -0.0001 0.004∗∗ <0.0001 0.912 <0.0001 0.360 <0.0001 0.950 -0.0001 0.084
Files 0.0147 0.001∗∗ 0.0321 <0.001∗∗ 0.0161 0.002∗∗ 0.0313 <0.001∗∗ 0.0136 0.003∗∗

Patch size -0.0011 <0.001∗∗ -0.0011 <0.001∗∗ -0.0038 <0.001∗∗ 0.0017 0.141 -0.0004 0.122
Comments -0.0006 0.176 -0.0017 0.003∗∗ 0.0008 0.126 0.0017 0.049∗ -0.0004 0.354
Developers 0.1517 <0.001∗∗ 0.2035 <0.001∗∗ 0.1847 <0.001∗∗ 0.2086 <0.001∗∗ 0.1757 <0.001∗∗

Severity 0.1257 <0.001∗∗ 0.1055 <0.001∗∗ 0.1173 <0.001∗∗ 0.1035 <0.001∗∗ 0.1331 <0.001∗∗

Pseudo R2 0.9388 0.9572 0.9701 0.9653 0.9165

Table 4: Summary of stepwise regression model.
PPPPPPPBug

Independent variables

category Patches Days Files Patch size Comments Developers Severity
Atomicity X X X X X X X

Order X X X X X X
Race X X X X X X

Deadlock X X X X X X
All concur. X X X X X X

Finally, we used the Cox & Snell pseudo R2 to measure
how well the model fits the actual data—the bigger the R2,
the larger the portion of the total variance in the depen-
dent variable that is explained by the regression model and
the better the dependent variable is explained by the inde-
pendent variables. We show the results in the last row of
Table 3; the results indicate high goodness of fit, 0.91–0.97,
which confirms the suitability of using the model to predict
the number of concurrency bugs based on feature values.
Finding parsimonious yet effective predictors. To bal-
ance prediction accuracy with the cost of the approximation
and avoid overfitting, we looked for more parsimonious mod-
els that use fewer independent variables. We applied back-
ward stepwise regression, a semi-automated process of build-
ing a model by successively adding or removing independent
variables based on their statistical significance, then comput-
ing the Akaike Information Criterion (AIC) for finding the
important variables. Table 4 shows the result of stepwise re-
gression; we use ‘X’ to mark the independent variables that
should be used when constructing predictor models. For ex-
ample, for races, we can still get a good prediction when
eliminating the days feature.

5.2 Times Series-based Prediction
Since our data set is based on time series, and prior work

has found bug autocorrelation (temporal bug locality [11]),
we decided to investigate the applicability of time series fore-
casting techniques for predicting concurrency bugs. In par-
ticular, we used ARIMA (Autoregressive integrated moving
average), a widely-used technique in predicting future points
in time series data, to build a concurrency bug prediction
model. In a nutshell, given a time series with t observations
X1, . . . , Xt and error terms ε1, . . . , εt, an ARIMA model pre-
dicts the value of an output variable X̂t+1 at time step t+1;
that is, X̂t+1 = f(X1, . . . , Xt, ε1, . . . , εt). Note that prior
values for X, i.e., X1, . . . , Xt are part of the model, hence
the term“autocorrelation”. The quality of the model is mea-
sured in terms of goodness of fit (adjusted R2) and other
metrics such as RMSE—the root mean squared error be-
tween the predicted (X̂t) and actual (Xt) values.

Concretely, we constructed ARIMA predictor models for
each bug class. In each case X1, . . . , Xt were the num-
ber of bugs; ε1, . . . , εt were the values of independent vari-
ables (patches, days, files, etc.); and X̂1 . . . , X̂t were the

predicted values; the differences between Xi and X̂i were

Table 5: Time series based prediction model result.

Bug RMSE Adjusted ARIMA
category R2 parameter

Atomicity 0.3485 0.8626 ARIMA(1,1,1)
Order 0.1947 0.9149 ARIMA(0,0,0)s
Race 0.1832 0.9285 ARIMA(1,0,0)
Deadlock 0.1728 0.9244 ARIMA(2,0,0)s
All conc. 0.5400 0.8965 ARIMA(0,0,0)

used when computing the prediction accuracy. For exam-
ple, if XMay 2010 was the actual number of atomicity bugs
in May 2010, then the time series model used XApril 2010,
XMarch 2010, . . ., as lagged (true) values; PatchesApril 2010,
PatchesMarch 2010, . . ., DaysApril 2010, DaysMarch 2010, . . .,
FilesApril 2010, F ilesMarch 2010, . . ., etc. as error terms; and

X̂May 2010, X̂April 2010, . . . as predicted values.
Table 5 shows the ARIMA results for each concurrency

bug type and each time granularity; we performed this anal-
ysis using the R toolkit. The first column shows the con-
currency bug type, the second column shows the root mean
square error (the lower, the better); the third column shows
the goodness of fit R2; the last column shows the ARIMA pa-
rameter that was automatically chosen by R as best-performing
model. ARIMA has three parameters: (p, d, q) where p is
the autoregressive (AR) parameter, d is the number of dif-
ferencing passes and q is the moving average (MA) param-
eter; put simply, p and q indicate the number of past sam-
ples involved in the prediction. For example, for Atomicity,
the best model was ARIMA(1,1,1) meaning it got best re-

sults when X̂t was computed using just the prior observation
Xt−1 and the prior error term εt−1, and differencing once.
The time series analysis has also found seasonal patterns in
the bug time series. Such entries are marked with a trail-
ing ‘s’, e.g., for Order and Deadlock bugs. In all cases, the
season length was determined to be 12 months—this is not
surprising, given that certain projects follow a fixed release
cycle; we leave further investigation of seasonal patterns to
future work. We observed that the RMSE is low for our
data sets—the typical difference between the predicted and
actual bug numbers was 0.17–0.54, depending on the bug
type. To illustrate the accuracy of time series-based pre-
diction, in Figure 4 we show the predicted (blue, triangle
marks) and actual (red, round marks) time series for the
total number of concurrency bugs each month.
Discussion. We now discuss why multiple models are needed.
ARIMA is based on autocorrelation, that is, it works well
when the current value Xt and the lagged value Xt−l are not
independent. While accurate in helping managers forecast
the number of bugs, the autoregressive nature of ARIMA
models in a sense espouses the time locality of concurrency
bugs: if the prior release was buggy, the next release is likely
to be buggy, too—in that case the managers can delay the
next release to allow time for finding and fixing the bugs.

N
um

be
r

of
 b

ug
s

2002 2004 2006 2008 2010 2012

0
2

4
6

8

bug-actual bug-predicted

Figure 4: Time series of predicted and actual numbers of concurrency bugs each month.

However, at the risk of stating the obvious, the managers
cannot control the past number of bugs, but by examining
the model and the non-autoregressive features (number of
patches, files, developers, etc.) they can adjust the software
process so that future values of the non-autoregressive fea-
tures will permit the number of bugs to decrease. It is also
up to the project managers to decide whether a one-month
horizon is enough for release planning, or longer horizons
(e.g., 3- or 6-months) would be more suitable.

6. PREDICTING THE TYPE OF CONCUR-
RENCY BUGS

When a new bug report has been filed and is examined,
determining the nature of the bug is essential for a wide
range of software engineering tasks, from bug triaging to
knowing whom to toss a bug to [9], to finding the root cause
and eventually fixing the bug.

In particular for concurrency bugs, the root causes and
fixing strategies can vary widely among bug categories (Sec-
tion 2). Therefore, when a concurrency bug report is filed,
it is essential that the developers determine its category in
order to speed up the fixing process. To support this task,
using the categorized bugs reports described in Section 4,
we built a predictor model that, given a newly-filed bug re-
port, predicts which type it is: atomicity violation, order
violation, deadlock or race. We next describe the approach
and then the results.

6.1 Approach
The approach is based on machine learning, i.e., classifiers

that use relevant keywords extracted from bug reports as in-
put features and learn the association between keywords and
specific concurrency bug types based on a Training Data Set
(TDS). Next, we verify the prediction accuracy by present-
ing the classifier with validation inputs and comparing the
classifier output with the true output; the set of bug reports
used for validation is called a Validation Data Set (VDS).
We now describe the predictor construction process.
Textual data preparation. We applied standard infor-
mation retrieval techniques to extract relevant keywords from
bug reports: we used Weka to transform bug reports from
the textual description available in the bug tracker into a
set of keywords usable by the classifier4 and build our TDS.
Classifier choice. After preparing the TDS, the next step
was to train the classifier and validate the learned model.
We use Weka’s built-in Näıve Bayes, Bayesian Network, C4.5
and Decision Table classifiers in our approach.
Training and validation. As shown in our prior work [5],
using a larger dataset for training bug classifiers does not

4To extract keywords from bug reports, we employed TF-
IDF, stemming, stop-word and non-alphabetic word re-
moval [18], using Weka’s StringtoWordVector class.

Table 6: Accuracy of bug category prediction, in percents;
highest accuracy indicated in bold.

Training Validation Classifier
set set Näıve Bayesian C4.5 Decision

Bayes Net Table

Mozilla 39.39 63.64 45.45 60.61
All KDE 37.50 56.25 56.25 31.25

All projects 38.00 60.00 48.00 50.00

Mozilla 50.00 60.00 40.00 63.33
2004+ KDE 63.64 72.73 36.36 72.73

All projects 52.38 61.90 38.10 66.67

Mozilla Mozilla 60.00 65.00 55.00 50.00
KDE KDE 46.67 60.00 60.00 53.33
Apache Apache 57.14 71.43 71.43 71.43

Table 7: Detailed result of the Bayesian Net classifier.

Training Bug Evaluation measure
/Validation set category precision recall F-measure

Atomicity 0.647 0.524 0.579
All Order 0.600 0.429 0.500
/All projects Race 0.429 0.750 0.545

Deadlock 0.778 1.000 0.875

Atomicity 0.625 0.625 0.625
2004+ Order 0.571 0.333 0.421
/All projects Race 0.545 0.750 0.632

Deadlock 0.750 1.000 0.857

necessarily yield better results; in fact, training a classifier
with old samples can decrease prediction accuracy as the
classifier is trained with stale input-output pairs that do not
match the current project state.

To quantify the effect of recent vs. old training samples,
we constructed two bug training/validation sets: one set,
referred to as All, contained all the concurrency bug reports
since project inception (that is 1998–2012 for Mozilla, 1999–
2012 for KDE, and 2000–2012 for Apache); the other set,
referred to as 2004+, contained only more recent samples,
i.e., bug reports from 2004–2012 for each project. We chose
2004 as a threshold as a trade-off between still having a
significant history yet eliminate the initial evolution period.

In both cases, the TDS/VDS split was 80%/20%, as fol-
lows. To construct the VDS, we sorted the bug reports in
the 2004+ dataset chronologically. For the 2004+ scenario,
we set aside the most recent 20% as the VDS. For the All
scenario, to preserve the 80/20 proportion, we kept the same
VDS but from the TDS we discarded a random set so that
the TDS size for All was the same as for 2004+.

6.2 Results
Table 6 shows each classifier’s accuracy. The first column

indicates the training set we used, while the second column
indicates the validation set. The rest of the columns show
the prediction accuracy, in percents, using different classi-
fiers. We highlight the best results in bold; in a nutshell,
Bayesian Net performs best (as it is usable across the board).

The first set of rows shows the results when the All train-

Table 8: Strongest prediction keywords.

Mozilla KDE Apache All projects

deadlock deadlock between deadlock
moztrap cef mac warhammer
structure synchron crash concur

race concur import first
network hang got atom

spin order id network
xpcom callback call race

semaphore backport determine spin
gclevel manage intern lock
runtime cur subsequ backgroundparser

ing set was used, that is bug reports selected from all projects
across the entire time span. In the second column we show
the VDS used: bugs from Mozilla, KDE, or from all three
projects (we did not perform this validation for Apache due
to its low representation in the VDS). We found that the best
classifier was Bayesian Net, which attained 56.25%–63.64%
prediction accuracy in identifying the concurrency bug type.

The second set of rows shows the results when the 2004+
(recent history) training set was used. We found that the
best classifier was Decision Table, which attained 63.33%–
72.73% prediction accuracy in identifying the concurrency
bug type. We consider a predictor with this level of accu-
racy to be potentially very useful to developers. Also, the
deleterious effect of “stale” training samples is readily ap-
parent, as all classifiers except C4.5 perform better on this
more recent data set, 2004+, than on the All data set.

In the last three rows we show the results obtained by us-
ing project-specific TDS/VDS sets. We used the complete-
history data set for Mozilla and Apache; in KDE we could
not find any concurrency bugs prior to 2004. We found that
Bayesian Net performs best for Mozilla (65%), Bayesian Net
and C4.5 perform best for KDE (60%), while for Apache,
Bayesian Net, C4.5 and Decision Table are tied, with 71.43%.

Overall the Bayesian Net classifier had the best perfor-
mance in most cases (7 out of 9). Hence in Table 7 we
show the precision, recall and F-measure attained with this
classifier. We found that deadlock bugs have the highest
precision, recall and F-measure value since they are quite
different from the other three classes. Order violation has
the lowest precision, recall and F-measure value. Upon man-
ual inspection, we found that in several cases order bugs were
classified as data races (the nature of order and race bugs
makes them difficult to distinguish in certain cases). For
instance, KDE bug #301166 was classified as data race due
to the keywords “thread” and “asynchronously”, but it could
be considered both an order violation and data race bug.
Observations. These results reveal several aspects. First,
for a new project we recommend that project managers
choose Bayesian Net as classifier, since it has performed
best in most cases. Second, recent training sets achieve the
highest accuracy (compare 2004+ with All) when using the
right classifier—Decision Table in our case. Third, a large,
cross-project training dataset can yield better results than
per-project training sets—compare KDE trained on 2004+
with KDE trained on its own data sets; this might be due to
lower bug report quality in KDE. This might be promising
for predicting bugs in a new project for which we have no
large concurrency bug sets; we leave this to future work.

What do classifiers learn? To gain insight into how classi-
fiers learn to distinguish among bug types, we extracted the
10 “strongest” nodes, i.e., with the highest conditional prob-

Table 9: Source path prediction results.

Project Accuracy (%) Classifier
Top-1 Top-10% Top-20%

Mozilla 31.82 50.00 59.09 Decision Table
KDE 25.00 50.00 56.25 Näıve Bayes
Apache 22.22 44.44 55.56 Bayesian Net
All projects 26.09 47.83 52.17 Näıve Bayes

ability in the trained Bayesian Nets, on the data sets used
in the last four rows of Table 6 (that is, each project trained
on its own bug reports and an all-projects VDS trained on
the 2004+ TDS). Table 8 lists the keywords in these nodes,
in the order of strength. We found that, in addition to
textual keywords (e.g., “deadlock”, “race”, “spin”, “hang”),
the network has learned to use names of program classes,
variables and functions (e.g., “gclevel”, “cef”, “cur”, “back-
groundparser”). We believe that the high prediction power
of these program identifiers could be a useful starting points
for static analysis, an investigation we leave to future work.
Interestingly, another high-probability node was the devel-
oper ID of a frequent Mozilla contributor (“warhammer” in
the last column).

Note that we have built our classifier assuming the input
is a concurrency bug report. However, as future bug reports
will not be subject to our manual analysis to decide whether
they are concurrency or non-concurrency (our goal is to
avoid manual intervention) we will not have ground truth on
whether they represent a concurrency or a non-concurrency
bug. To solve this, we have built a high-accuracy (90%)“pre-
classifier”that triages bug reports into concurrency and non-
concurrency. For brevity, we leave out details of this classi-
fier. Since the proportion of concurrency bugs is small com-
pared to other bugs, we would still have some false positives
to manually eliminate among the classified bug reports, but
the workload is reduced greatly thanks to the pre-classifier.

7. PREDICTING CONCURRENCY BUGS’
LOCATION

The previous section showed one useful step for finding
and fixing a bug: predicting its type. It is also useful to
figure out where, in the source code, the new bug is likely
to be located; hence in this section we present our approach
for predicting the likely location of a concurrency bug.

7.1 Approach
We used a classifier that takes a bug report as input and

produces a set of source code paths as output. More specifi-
cally, the classifier’s output is a vector of binary values, and
each position in this vector corresponds to a source code
path. For example, consider three bugs #1, #2, and #3,
such that #1’s location was code path /foo/, #2’s location
was path /bar/, and #3 has affected both code paths /bar/

and /baz/. Suppose the order in the output vector is (/foo/,
/bar/, /baz/). Then the correct classifier output for bug #1
would be (1,0,0); for bug #2 it would be (0,1,0); and for bug
#3 it would be (0,1,1).

7.2 Results
The training process is similar to the one used in the prior

section, that is, we used 80% of the bug set for training
and 20% for validation. Measuring prediction accuracy is
slightly more convoluted, because a bug can affect multiple
files, and we are interested in predicting a Top-k of most
likely locations, rather than a single location.

We now explain how we compute Top-k accuracy when a
single bug spans multiple code paths. For each bug i in the

VDS, assuming the bug has affected j paths, we have a list
of true source code paths {tpathi1, . . . , tpathij} (each unique
path is called a “class”; we employed Mulan [26] for this
part). We present the bug report i to our classifier, which re-
turns a list of m likely output paths {opathi1, . . . , opathim}.
More specifically, for each validation input, Mulan returns
as output a vector of real numbers indicating the proba-
bility of the sample belonging to each class; probabilities
under a threshold are replaced with 0. Next, from the set
{opathi1, . . . , opathim} we select the highest-ranked k out-
put paths, in order of probability, i.e., a subset {opathi1, . . . ,
opathik}. Then, we check if the set {tpathi1, . . . , tpathij} is
a subset of {opathi1, . . . , opathik}. Finally, we compute Top-
k accuracy: for Top-1 accuracy, we count a hit if the prob-
ability value assigned to the true path class is the highest-
ranked in output vector; for bugs affecting multiple files, say
2, if the 2 highest probabilities correspond to the true path
classes, and so on. To compute Top-10% accuracy, we check
whether the bug location(s) is(are) in the Top-10% highest
output class probabilities; similarly for Top-20%.

In Table 9 we present the results. In the first column we
show the project, and in the columns 2–4 we present the
attained accuracy for each of the three metrics. The last
column shows the classifier used to achieve that accuracy
(we only present the best results across the four classifiers).

We achieve 22.22%–31.82% Top-1 accuracy, depending
on the project (column 2). We consider this to be po-
tentially very useful for locating bugs, because it means
the developer is presented with the exact bug location in
22.22%–31.82% of the cases, depending on the project (we
had 45 path locations for Mozilla, 47 for KDE and 19 for
Apache). When measuring Top-10% accuracy, the accuracy
increases to 44.44%–50%. When measuring Top-20% accu-
racy, we obtained higher values, 55.26%–59.09%, which is
expected. That is, in more than half the cases, the bug lo-
cation is in the Top-20% results returned by the classifier.
Since all our projects have large code bases, narrowing down
the possible bug location can considerably reduce bug-fixing
time and effort.

On a qualitative note, we found that certain locations
are more prone to concurrency bugs: Mozilla had 6 bugs
in files under /mozilla/netwerk/cache/src and 4 bugs files under
/mozilla/xpcom/base, whereas KDE had 6 bugs in /KDE/extragear/

graphics/digikam/libs. Our method can guide developers to these
likely bug-prone locations after receiving a bug report to
help speed up bug finding and fixing.

8. THREATS TO VALIDITY
Selection bias. We have chosen three projects for our study.
These projects are mostly written in C/C++ and are, we be-
lieve, representative for browsers, desktop GUI, and server
programs that use concurrency. However, other projects,
e.g., operating systems, database applications or applica-
tions developed in other programming language (Java), might
have different concurrency bug characteristics. For example,
prior efforts [8,15] have found that deadlocks in MySQL rep-
resent 40% of the total number of concurrency bugs, whereas
for our projects, deadlocks account for 22% (Mozilla), 25%
(KDE), and 12% (Apache) of concurrency bugs. Neverthe-
less, for atomicity violation and order violation, our results
are similar to prior findings [15].
Data processing. Our keyword-based search for bug re-
ports could have missed some concurrency bugs—a weak-
ness we share with other prior studies [8, 15]. However, a

concurrency bug report that did not contain any keywords
on our list is more likely to be incomplete and more diffi-
cult to analyze its root cause. To reduce this threat, we
used an extensive list of concurrency-related keywords, and
searched both the bug tracker and the commit logs. Com-
pletely eliminating this threat is impractical, as it would
involve manual analysis (which itself is prone to errors) for
more than 250,000 bug reports.
Unfixed and unreported bugs. Some concurrency bugs
might go unfixed or unreported because they strike infre-
quently, on certain platforms/software configurations only,
and are hard to reproduce. It would be interesting to con-
sider these kinds of bugs, but they are not likely to have
detailed discussions and they will not have patches. As a
result, these bugs are not considered as important as the
reported and fixed concurrency bugs that are used in our
study.
Short histories. When relying solely on machine learning
and statistics for training, our approach works better for
projects with larger training data sets—this could be prob-
lematic for projects with short histories or low incidence of
concurrency bugs, though cross-project prediction could be
useful in that case, as we have shown.
Bug classification. We used four categories and manual
categorization for concurrency bugs. We excluded bugs which
did not have enough information to be categorized. This can
lead to missing some concurrency bugs, as discussed previ-
ously. As a matter of fact, some concurrency bugs may
belong to multiple categories, e.g., an order violation could
also be considered a data race.

9. RELATED WORK
Bug characteristic studies. Bug characteristic studies
have been performed on other large software systems [25],
though the objectives of those studies were different, e.g.,
understanding OS [6] errors. In contrast, our study fo-
cuses specifically on understanding and predicting concur-
rency bugs. Many other efforts [2, 11, 13, 14, 22] have mined
bug and source code repositories to study and analyze the
behavior and contributions of developers and their effects
on software quality.Some of the efforts used machine learn-
ing for analysis and prediction. In contrast, we do in-depth
analysis and prediction for concurrency bugs.
Studies on concurrent programs. Lu et al. [15] ana-
lyzed 105 concurrency bugs collected from four open source
projects (Mozilla, Apache, OpenOffice, MySQL). Their study
focused on understanding concurrency bug causes and fixing
strategies. Fonseca et al. [8] studied internal and external
effects of concurrency bugs in MySQL. They provide a com-
plementary angle by studying the effects of concurrency bugs
(e.g., whether concurrency bugs are latent or not, or what
type of failures they cause). We use a similar methodology
for deciding which bugs to analyze, but with different ob-
jectives and methods: characterizing bug features, a quan-
titative analysis of the bug-fixing process and constructing
prediction models for bug number, type and location.
Predicting bug location. Ostrand et al. [21] used multi-
variate negative binomial regression model and revealed that
variables such as file size, the number of prior faults, newly-
introduced and changed files can be used to predict faults
in upcoming releases. Based on the model they predict the
number of faults in each file, and fault density. They found
that their Top-20% files predicted to be buggy contained
71%–92% of the detected bugs. Their study, like ours, has

revealed that bug numbers are autocorrelated. However,
we use different variables to construct the predictor model,
and instead of predicting the number of bugs per file and
bug density per file, we predict the number of concurrency
bugs in the system, and type/location for newly-filed con-
currency bug reports. Kim et al. [11] proposed bug cache
algorithms to predict future bugs at the function/method
and file level by observing that bugs exhibit locality (tem-
poral, spatial) and the fact the entities that have been in-
troduced or changed recently tend to introduce bugs. Their
study was performed on 7 large open source projects (in-
cluding Apache). Their accuracy was 73%–95% for files and
46%–72% for functions/methods. Their study, like ours, has
revealed that bug numbers are autocorrelated. We do not
investigate localities beyond temporal; however, they might
help improve our prediction accuracy.

Wu et al. [27] used time series for bug prediction but did
not consider the impact of independent variables on the time
series, as we do. Rao et al. [23] compared five information
retrieval models for the purpose of locating bugs. Their
work mainly focused on comparing models (concluding that
Unigram and Vector Space work best) and calculating the
likelihood that one file would be buggy based on its similar-
ity with known buggy files. We use a different model; we
focused on finding the exact location one concurrency bug
would affect; and we had to solve the multi-label classifica-
tion problem. Moin et al. [19] used commit logs and bug
reports to locate bugs in the source file hierarchy. However,
their method is coarser-grained than ours, e.g., if two bugs
are in mozilla/ security /nss/ lib /certdb and mozilla/ security /nss/ lib /

pki respectively, they considered the bugs to be in the same
location, mozilla/ security /nss/ lib /, but our prediction model can
distinguish the difference between these two locations.

10. CONCLUSIONS
We have performed a study of concurrency bugs in three

large, long-lived open source projects. We have found that
concurrency bugs are significantly more complicated, taking
more time and resources to fix, than non-concurrency bugs.
We have also found that concurrency bugs fall into four main
categories (atomicity violations, order violations, races, and
deadlocks) and that among these categories, deadlocks are
easiest, while atomicity violations are hardest to fix. We
have shown that effective forecast methods can be constructed
to help managers and developers predict the number of con-
currency bugs in upcoming releases, as well as the likely type
and location for newly-filed concurrency bug reports.

11. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments.

This work was supported in part by National Science Foun-
dation grant CCF-1149632.

12. REFERENCES
[1] Apache Software Foundation Bugzilla.

https://issues.apache.org/bugzilla/.
[2] K. Ayari, P. Meshkinfam, G. Antoniol, and

M. Di Penta. Threats on building models from cvs and
bugzilla repositories: the mozilla case study. In
CASCON’07, pages 215–228, 2007.

[3] Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: a practical and powerful approach to
multiple testing. J. R. Stat. Soc. Series B
(Methodological), pages 289–300, 1995.

[4] M. L. Bernardi, C. Sementa, Q. Zagarese, D. Distante,
and M. Di Penta. What topics do firefox and chrome
contributors discuss? In MSR’11.

[5] P. Bhattacharya, I. Neamtiu, and C. R. Shelton.
Automated, highly-accurate, bug assignment using
machine learning and tossing graphs. Journal of
Systems and Software, 85(10):2275–2292, 2012.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. In
SOSP’01, pages 73–88, 2001.

[7] D. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. In
SOSP’03, pages 237–252, 2003.

[8] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues. A
study of the internal and external effects of
concurrency bugs. In DSN’10, pages 221–230, 2010.

[9] G. Jeong, S. Kim, and T. Zimmermann. Improving
bug triage with bug tossing graphs. In FSE’09.

[10] KDE Bugtracking System. https://bugs.kde.org/.
[11] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and

A. Zeller. Predicting faults from cached history. In
ICSE’07, pages 489–498, 2007.

[12] J. Koskinen. Software maintenance costs, Sept 2003.
http://users.jyu.fi/~koskinen/smcosts.htm.

[13] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals.
Predicting the severity of a reported bug. In MSR’10.

[14] M. Linares-Vasquez, K. Hossen, H. Dang, H. H.
Kagdi, M. Gethers, and D. Poshyvanyk. Triaging
incoming change requests: Bug or commit history, or
code authorship? In ICSM’12, pages 451–460, 2012.

[15] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. In ASPLOS’08.

[16] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting
atomicity violations via access interleaving invariants.
In ASPLOS XII, pages 37–48, 2006.

[17] B. Lucia, B. P. Wood, and L. Ceze. Isolating and
understanding concurrency errors using reconstructed
execution fragments. In PLDI’11.

[18] C. D. Manning, P. Raghavan, and H. Schtze.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[19] A. Moin and M. Khansari. Bug localization using
revision log analysis and open bug repository text
categorization. In Open Source Software: New
Horizons, IFIP AICT, pages 188–199. 2010.

[20] Mozilla Bugzilla. https://bugzilla.mozilla.org/.
[21] T. Ostrand, E. Weyuker, and R. Bell. Predicting the

location and number of faults in large software
systems. IEEE TSE’05, pages 340 – 355.

[22] J. Park, M. Kim, B. Ray, and D.-H. Bae. An empirical
study of supplementary bug fixes. In MSR’12.

[23] S. Rao and A. Kak. Retrieval from software libraries
for bug localization: a comparative study of generic
and composite text models. In MSR’11.

[24] I. Sommerville. Software Engineering (7th Edition).
Pearson Addison Wesley, 2004.

[25] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai.
Bug characteristics in open source software. Empir
Software Eng, pages 1–41, 2013.

[26] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and
I. Vlahavas. Mulan: A java library for multi-label
learning. Journal of Machine Learning Research,
12:2411–2414, 2011.

[27] W. Wu, W. Zhang, Y. Yang, and Q. Wang. Time
series analysis for bug number prediction. In
SEDM’10.

