
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Understanding and Improving the Smartphone Ecosystem:
Measurements, Security and Tools

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Xuetao Wei

December 2013

Dissertation Committee:

Dr. Michalis Faloutsos, Co-Chairperson
Dr. Iulian Neamtiu, Co-Chairperson
Dr. Harsha V. Madhyastha

Copyright by
Xuetao Wei

2013

The Dissertation of Xuetao Wei is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

I would like to thank the people who gave me help during my Ph.D. study.

First of all, I would like to sincerely thank my advisor, Prof. Michalis Faloutsos,

for his excellent guidance on research projects throughout my Ph.D. study. He helped

me gain the confidence and enthusiasm to start research, tackle difficult problems and

try to make the real-world impact. His optimism and enthusiasm will be a great model

for me to work in academia.

I am also thankful for all my collaborators Prof. Iulian Neamtiu and Prof.

Harsha V. Madhyastha at University of California, Riverside, Prof. Christos Faloutsos

at Carnegie Mellon University and Prof. B. Aditya Prakash at Virginia Tech. Especially,

I greatly thank Prof. Iulian Neamtiu to give me a nice research topic, which I will

continue to devote myself to after I graduate. I am so fortunate to work with these

diligent, knowledgeable and excellent professors. The meetings and discussions with

them about research ideas and projects are really the fun part of my Ph.D. life. Their

inspiring attitude and insightful feeback help me improve the quality of research and

pave the way for my academia career.

Finally, I greatly want to thank my wife Yuan Li and my parents Kenan Wei

and Qingfang Wang, for their endless love and encouragement throughout the difficult

times during my Ph.D. study. This thesis is dedicated to them.

iv

To my family and my love.

v

ABSTRACT OF THE DISSERTATION

Understanding and Improving the Smartphone Ecosystem:
Measurements, Security and Tools

by

Xuetao Wei

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2013

Dr. Michalis Faloutsos, Co-Chairperson
Dr. Iulian Neamtiu, Co-Chairperson

The smartphone ecosystem encompasses smartphones’ hardware and software platform,

applications (apps) running on top of the platform, as well the infrastructural compo-

nents. As the smartphone ecosystem is becoming an important part of our daily life, it

is essential to profile, understand and, ultimately, secure the devices and the information

they collect and manipulate. To this end, we pave the way for understanding and im-

proving the smartphone ecosystem by designing tools as well as performing measurement

studies and security analyses.

In this dissertation, we describe several key steps that help us understand and

improve the Android smartphone ecosystem. First, we present the results of a long-term

evolution study on how the Android permission system is defined and used in practice;

our results indicate that the Android permission system is becoming less secure over

time. Second, we present a systematic approach and tool, named ProfileDroid, that

enables multi-layer profiling of Android apps. ProfileDroid has a myriad of applications

including behavioral app fingerprinting, enhancing users’ understanding and control of

app behavior, improving user experience, assessing performance and security implica-

vi

tions. Finally, the Bring Your Own Handheld-device (BYOH) phenomenon presents

novel management challenges to network administrators. We propose a systematic ap-

proach, Brofiler, for profiling the behavior of BYOHs along four dimensions: (a) protocol

and control plane, (b) data plane, (c) temporal behavior, and (d) across dimensions us-

ing the H-M-L model by considering the different levels of intensity in each dimension.

Using profiles from Brofiler, a network administrator can develop effective policies for

managing BYOHs.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation Overview . 2

1.2.1 Permission Evolution in the Android Ecosystem 2
1.2.2 Profiling Android Applications 4
1.2.3 Enabling BYOH Management via Behavior-aware Profiling . . . 6

1.3 Contributions . 8
1.4 Organization . 8

2 The Android Platform Basics 10
2.1 Android Platform . 10
2.2 Android Apps . 11
2.3 Android Permissions . 12

3 Evolution of the Android Permission System 14
3.1 Dataset Description . 14

3.1.1 Platform Permissions Dataset . 14
3.1.2 Apps Permissions Dataset . 15

3.2 Platform Permission Evolution . 17
3.2.1 The List of Permissions is Growing 17
3.2.2 Dangerous Group is Largest and Growing 18
3.2.3 Why are Permissions Added or Deleted? 19
3.2.4 No Tendency Toward Finer-grained Permissions 20

3.3 Third-party Apps . 21
3.3.1 Permission Additions Dominate 21
3.3.2 Apps Want More Dangerous Permissions 25
3.3.3 Macro and Micro Evolution Patterns 25
3.3.4 Apps Are Becoming Overprivileged 28

3.4 Pre-installed Apps . 29

viii

4 Multi-layer Profiling of Android Applications 40
4.1 Overview of Approach . 40

4.1.1 Implementation and Challenges 41
4.1.2 Experimental Setup . 43

4.2 Analyzing Each Layer . 45
4.2.1 Static Layer . 45
4.2.2 User Layer . 47
4.2.3 Operating System Layer . 49
4.2.4 Network Layer . 51

4.3 ProfileDroid: Profiling Apps . 56
4.3.1 Capturing Multi-layer Intensity 56
4.3.2 Cross-layer Analysis . 58
4.3.3 Free Versions of Apps Could End Up Costing More Than Their

Paid Versions . 59
4.3.4 Heavy VM&IPC Usage Reveals a Security-Performance Trade-off 60
4.3.5 Most Network Traffic is not Encrypted 61
4.3.6 Apps Talk to Many More Traffic Sources Than One Would Think 62
4.3.7 How Predominant is Google Traffic in the Overall Network Traffic? 62

4.4 Acknowledgement . 63

5 Enabling BYOH Management via Behavior-aware Profiling 72
5.1 Brofiler: Systematic Profiling . 72

5.1.1 Datasets and Initial Statistics . 72
5.1.2 Our Approach . 74
5.1.3 The Utility of Our Approach . 77

5.2 Studying and Profiling BYOHs . 78
5.2.1 Protocol and Control Plane . 80
5.2.2 Data Plane . 82
5.2.3 Temporal Behavior . 84
5.2.4 Multi-level Profiling and H-M-L Model 87

5.3 Operational Issues and Solutions . 94
5.3.1 Efficient DHCP Address Allocation 95
5.3.2 Enforcing Data Usage Quotas . 98
5.3.3 Towards Setting Access Control Policies 100

6 Related Work 104
6.1 Android Security . 104
6.2 Smartphone Measurements and Profiling 106
6.3 Studies on Campus Network . 107

7 Conclusions and Future Work 109
7.1 Future Directions . 110

Bibliography 112

ix

List of Figures

3.1 Protection Levels, e.g. Normal, Dangerous, Signature, signatureOrSys-
tem, evolving over API levels. 16

3.2 Functionally-similar permissions added and deleted between API levels. 19
3.3 Permission and protection level changes in the third-party apps. 22
3.4 Permission and protection level changes in the pre-installed apps. 23
3.5 Permission trajectories for popular apps. 27
3.6 Average number of permissions per app, for each protection level, from

stable and pre-installed datasets. 29
3.7 Overprivilege status and evolution in the stable dataset. 31

4.1 Overview and actual usage (left) and architecture (right) of ProfileDroid.
41

4.2 Profiling results of user layer; note that scales are different. 47

5.1 System architecture of Brofiler. 73
5.2 A visualization of Brofiler’s classification hierarchy: group designation

and number of BYOHs in each group. We use the H-M-L model to further
refine the leaves of the tree. 77

5.3 Distribution of traffic volume per BYOH. 82
5.4 Ratio of maximum daily traffic volume over total monthly traffic for each

device. 83
5.5 Active BYOHs at each hour. 85
5.6 Distribution of days of appearance. 87
5.7 Number of BYOHs per calendar day. 88
5.8 Number of IP leases vs. lease time. 90
5.9 Number of days that each REG and NRE BYOH appears. 91
5.10 Number of zero-traffic days in REG and NRE non-zero traffic BYOHs. . . 92
5.11 Coefficient of variance of normalized traffic between REG and NRE BYOHs. 93
5.12 DHCP traffic, measured as number of DHCP packets per day, before

(Original) and after applying our strategy (Emulation). 96
5.13 Number of active leases before and after applying our strategy. “Differ-

ence” shows the differences of number of active leases between “Original”
and “Emulation-30min.” . 97

x

List of Tables

3.1 Official releases of the Android platform before 2012; base and tablet
versions are excluded. 32

3.2 Permission changes per API level and permission categories. 33
3.3 Added Dangerous permissions and their categories. 34
3.4 App permission changes in the stable dataset.. 34
3.5 Most frequently added permissions in the stable dataset. 35
3.6 Most frequently deleted permissions in the stable dataset. 35
3.7 Top-20 most frequent permissions requested by malware. 36
3.8 Frequently used Dangerous Android permissions of stable dataset. . . . 37
3.9 Macro evolution patterns of permission usage in the stable dataset. . . . 37
3.10 Micro evolution patterns for the location permissions; Fine represents

the ACCESS FINE LOCATION permission, Coarse represents the ACCESS

COARSE LOCATION permission, and Both means both Fine and Coarse are
used. 38

3.11 Evolution patterns of the privilege levels of the stable dataset, where
Legitimate represents legitimate privilege and Over represents overprivilege. 38

3.12 Most added permissions from the Legitimate→Over (58.57%) subset of
apps. 39

3.13 Most dropped permissions from the Over→Legitimate (32.14%) subset of
apps. 39

4.1 The test apps; app-$$ represents the paid version of an app. 64
4.2 Profiling results of static layer; ‘X’ represents use via permissions, while

‘I’ via intents. 65
4.3 Touch intensity vs. swipe/press ratio . 66
4.4 Profiling results: operating system layer. 67
4.5 Profiling results of network layer; ‘–’ represents no traffic. 68
4.6 Thumbnails of multi-layer intensity in the H-M -L model (H:high, M :medium,

L:low). 69
4.7 The ranges for five-number summary . 70
4.8 Traffic sources for HTTPS. 70
4.9 Number of distinct traffic sources per traffic category, and the ratio of

incoming to outgoing Google traffic; ‘–’ means no Google traffic. 71

5.1 Distribution of devices in dataset DHCP-366. 74
5.2 Top 5 HTTPS domains in our data by percentage of HTTPS traffic. . . 82

xi

5.3 Time regions vs. percentage of devices. 85
5.4 Average IP requests per BYOH for each group. 89
5.5 Group definitions in the H-M-L model. 89
5.6 Days of appearance v. daily traffic intensity in REG non-zero traffic BYOHs. 90
5.7 Top 5 domains for HL and LH BYOHs in the REG group (percentage is

the traffic fraction of total traffic from that group of devices). 91
5.8 Average improvements in DHCP traffic and IP availability under different

lease times. 97
5.9 Effect of enforcing a monthly quota. 99
5.10 Effect of enforcing a daily quota. 100
5.11 The number of affected devices after enforcing blocking strategies at a

group level. 102

xii

Chapter 1

Introduction

1.1 Motivation

Smartphones are becoming the important devices for us in the post-PC era,

which aid in our daily tasks with the useful functionalities such as Internet, GPS, cam-

eras, NFC(Near Field Communication) and accelerometers. In addition, smartphone

applications are available in multiple application stores or markets(e.g., Google Play [4],

Amazon Android App Store [7] and iOS App Store [43]) that further spur the popularity

of smartphones. The smartphone ecosystem encompasses smartphones’ hardware and

software platform, applications (apps) running on top of the platform, as well the infras-

tructural components(e.g., networks and the cloud). In this dissertation, we focus on the

Android platform, which is open-source and the most popular mobile platform in current

market [31]. The popularity of the Android platform is driven by feature-rich Android

devices, as well as the myriad Android apps offered by a large community of developers.

Furthermore, users collect, store, and handle personal data via various Android applica-

tions. Android devices, Android applications and infrastructural components form the

whole “Android ecosystem” that influences our life significantly. However, we are just

1

beginning our understanding of the whole Android ecosystem. First, we have little un-

derstanding of the behaviors of various and diverse Android applications on the devices.

Second, the data on the device can be highly privacy-sensitive, hence there are increased

concerns about the security of the Android ecosystem and safety of private user data.

Finally, smartphones carried by people enter and impact networks, including personal

home networks and enterprise networks. Therefore, it is essential to profile, understand

and, ultimately, secure the devices and the information they collect and manipulate.

In this dissertation, we take steps to understand and improve the Android

ecosystem by designing tools as well as performing measurement studies and

security analyses.

1.2 Dissertation Overview

1.2.1 Permission Evolution in the Android Ecosystem

To ensure security and privacy, Android uses a permission-based security model

to mediate access to sensitive data, e.g., location, phone call logs, contacts, emails,

or photos, and potentially dangerous device functionalities, e.g., Internet, GPS, and

camera. The platform requires each app to explicitly request permissions up-front for

accessing personal information and phone features. App developers must define the

permissions their app will use in the AndroidManifest.xml file bundled with the app,

and then, users have the chance to see and explicitly grant these permissions as a

precondition to installing the app. At runtime, the Android OS allows or denies use

of specific resources based on the granted permissions. In practice, this security model

could use several improvements, e.g., informing users of the security implications of

running an app, revoking/granting app permissions without reinstalling the app, or

2

moving towards finer-grained permissions.

In fact, the Android permission model attracts emerging malware that chal-

lenges the system to exploit vulnerabilities in order to perform privilege escalation

attacks—permission re-delegation attacks [14], confused deputy attacks, and collud-

ing attacks [67]. As a result, users can have sensitive data leaked or subscription fees

charged without their consent (e.g., by sending SMS messages to premium numbers via

the SMS related Android permissions, as the well-known Android malwares Zsone and

Geinimi do [78]). While most of these attacks are first initiated when a user downloads

a third-party app to the device, to make matters worse, even stock Android devices

with pre-installed apps are prone to exposing personal privacy information due to their

higher privilege levels (e.g., the notorious HTCLogger app [11]).

Previous research efforts focus either on single-release permission characteriza-

tion and effectiveness [13,22,58] or on other permission-related security issues [14,15,67,

73]. Unfortunately, there have been no studies on how the Android permission system

has evolved over the years, which could uncover important security artifacts beneficial

to improving the security of the ecosystem.

In the first part of this dissertation, we study the evolution of the Android

ecosystem to understand whether the permission model is allowing the platform and its

apps to become more secure. Following a systematic approach, we use three different

types of characterizations (third-party app permissions vs pre-installed app permissions,

and two permission classifications from Google). We study multiple Android platform

releases over three years, from Cupcake (April 2009) to Ice Cream Sandwich (December

2011). We use a stable dataset of 237 evolving third-party apps covering 1,703 versions

(spanning a minimum of three years). Finally, we investigate pre-installed apps from

69 firmwares, including 346 pre-installed apps covering 1,714 versions. To the best of

3

our knowledge, this is the first longitudinal study on Android permissions and the first

study that sheds light on the co-evolution of the whole Android ecosystem: platform,

third-party apps, and pre-installed apps.

Our overall conclusion is that the security and privacy of the ecosystem (plat-

form and apps) do not improve, at least from the user’s point of view. For example,

the evolution moves more and more toward violating the principle of least privilege, a

fundamental security tenet [77].

1.2.2 Profiling Android Applications

Given an Android app, how can we get an informative thumbnail of its be-

havior? This is the problem we set to address here, in light of more than 800,000 apps

currently on Google Play (ex Android Market) [4, 8]. Given this substantial number of

apps, we consider scalability as a key requirement. In particular, we devise a profiling

scheme that works even with limited resources in terms of time, manual effort, and cost.

We define limited resources to mean: a few users with a few minutes of experimentation

per application. At the same time, we want the resulting app profiles to be comprehen-

sive, useful, and intuitive. Therefore, given an app and one or more short executions,

we want a profile that captures succinctly what the app did, and contrast it with: (a)

what it was expected or allowed to do, and (b) other executions of the same app. For

example, an effective profile should provide: (a) how apps use resources, expressed in

terms of network data and system calls, (b) the types of device resources (e.g., camera,

telephony) an app accesses, and whether it is allowed to, and (c) what entities an app

communicates with (e.g., cloud or third-party servers).

Who would be interested in such a capability? We argue that an inexpensive

solution would appeal to everyone who “comes in contact” with the app, including: (a)

4

the app developer, (b) the owner of an Android app market, (c) a system administrator,

and (d) the end user. Effective profiling can help us: (a) enhance user control, (b)

improve user experience, (c) assess performance and security implications, and (d) facil-

itate troubleshooting. We envision our quick and cost-effective thumbnails (profiles) to

be the first step of app profiling, which can then have more involved and resource-intense

steps, potentially based on what the thumbnail has revealed.

Despite the flurry of research activity in this area, there is no approach yet that

focuses on profiling the behavior of an Android app itself in all its complexity. Several

efforts have focused on analyzing the mobile phone traffic and show the protocol related

properties, but they do not study the apps themselves [34, 37]. Others have studied

security issues that reveal the abuse of personal device information [50, 74]. However,

all these works: (a) do not focus on individual apps, but report general trends, or (b)

focus on a single layer, studying, e.g., the network behavior or the app specification

in isolation. For example, some apps have negligible user inputs, such as Pandora, or

negligible network traffic, such as Advanced Task Killer, and thus, by focusing only

on one layer, the most significant aspect of an application could be missed.

We design and implement ProfileDroid, a systematic and comprehensive

system for profiling Android apps. A key novelty is that our profiling spans four layers:

(a) static, i.e., app specification, (b) user interaction, (c) operating system, and (d)

network. To the best of our knowledge, this is the first work that considers all these layers

in profiling individual Android app. Our contributions are twofold. First, designing the

system requires the careful selection of informative and intuitive metrics, which capture

the essence of each layer. Second, implementing the system is a non-trivial task, and we

have to overcome numerous practical challenges.1

1Examples include fine-tuning data collection tools to work on Android, distinguishing between

5

We demonstrate the capabilities of our system through experiments. We profile

19 free apps; for 8 of these, we also profile their paid counterparts, for a total of 27 apps.

For each app, we gather profiling data from 30 runs for several users at different times

of day. Though we use limited testing resources, our results show that our approach can

effectively profile apps, and detect surprising behaviors and inconsistencies. Finally, we

show that cross-layer app analysis can provide insights and detect issues that are not

visible when examining single layers in isolation [76].

1.2.3 Enabling BYOH Management via Behavior-aware Profiling

Smartphones and tablets are becoming ubiquitous in companies and universi-

ties. These devices are used more and more to complement, or even replace, desktops

and laptops for computational needs: Gartner market research indicates that in the sec-

ond quarter of 2013 worldwide PC shipments declined by 10.9%, while smartphone sales

grew by 46.5% [30,32]; hence the Bring Your Own Handheld-device (BYOH) practice is

going to increase. We use the term BYOH to describe only smartphones and tablets,

in accordance with the National Institute of Standards and Technology’s definition [57].

In other words, we consider a device as BYOH if it runs a mobile OS, such as Android,

iOS, or BlackBerry OS.

We argue that BYOHs deserve to be studied as a new breed of devices. First,

every time a new technology or a new killer app emerges, IT departments must re-

evaluate the way they manage their networks. Network administrators must understand

the behavior of BYOHs in order to manage them effectively. Second, it is clear that

BYOHs introduce different technologies and user behaviors: (a) BYOHs join and leave

the network frequently, (b) their form factor enables novel uses compared to desktops and

presses and swipes, and disambiguating app traffic from third-party traffic.

6

laptops, (c) they run different operating systems compared to other computing devices,

and (d) the apps that can run on them introduce a slew of management challenges [27,

42,76,78].

The problem we address here is: what does the network administrator need

to know about BYOHs? Specifically, we identify two key questions: (a) how do these

devices behave? and (b) how can we manage operational concerns, such as the stress

exerted on network resources? Given our interest in the network administrator’s point

of view, we have consulted with administrators of two different large networks, and our

study has been largely shaped by their concerns and feedback. Both administrators

admitted that there is a great need to better understand what BYOHs do, in order to

devise better policies to manage them.

Most prior efforts have focused on studying either the aggregate network traf-

fic incurred by smartphones and tablets, or performance and network protocol issues,

such as TCP and download times or mobility issues [6, 29, 34, 37, 70]. In addition, ex-

isting approaches for managing traffic assume certain software installations on devices

or embed tracking libraries in enterprise architectures. However, in practice, network

administrators usually have no control over the software running on BYOHs, which

makes it difficult to control the behavior of these devices [27]. To the best of our knowl-

edge, no prior work has focused on understanding individual BYOH behavior in campus

networks, with a view towards managing and provisioning network resources on-the-fly.

In this dissertation, we propose ProfileDroid (BYOH profiler), a system-

atic approach to profiling the behavior of BYOHs in a device-centric way. In addition,

we arguably provide the first multi-dimensional study on the behavior of BYOHs from

a network administrator’s point of view.

7

1.3 Contributions

In this dissertation, we describe several key steps that help us understand and

improve the Android smartphone ecosystem.

1. We present the results of a long-term evolution study on Android permission sys-

tem, the basic security mechanism in Android OS, is defined and used in practice;

our results indicate that the Android permission system is becoming less secure

over time.

2. We present a systematic approach and tool, named ProfileDroid, that enables

multi-layer profiling of Android apps. ProfileDroid has a myriad of applications

including behavioral app fingerprinting, enhancing users’ understanding and con-

trol of app behavior, improving user experience, assessing performance and security

implications.

3. The Bring Your Own Handheld-device (BYOH) phenomenon presents novel man-

agement challenges to network administrators. We propose a systematic approach,

Brofiler, for profiling the behavior of BYOHs along four dimensions: (a) protocol

and control plane, (b) data plane, (c) temporal behavior, and (d) across dimen-

sions using the H-M-L model by considering the different levels of intensity in

each dimension. Using profiles from Brofiler, a network administrator can develop

effective policies for managing BYOHs.

1.4 Organization

This dissertation is organized as follows: we present an overview of our disser-

tation(Chapter 1) in the beginning. Then, we present the Android platform in detail in

8

Chapter 2. In the following(Chapters 3, 4, 5), we present our three steps to understand

and improve the smartphone ecosystem. We discuss related work in Chapter 6 and

conclude our dissertation in Chapter 7.

9

Chapter 2

The Android Platform Basics

We now present an overview of the Android platform, Android permission

model and a set of definitions for the concepts used throughout the dissertation.

2.1 Android Platform

Android was launched as an open-source mobile platform in 2008 and is widely

used by smartphone manufacturers, e.g., HTC, Motorola, Samsung [31]. The software

stack consists of a custom Linux system, the Dalvik Virtual Machine (VM), and apps

running on top of the VM. Each app runs in its own copy of the VM with a different user

id, hence apps are protected from each other. A permission model, explained shortly,

protects sensitive resources, e.g., the hardware and stored data. In this model, resources

are protected by permissions, and only apps holding the permission (which is granted

when the app is installed) are given access to the permission-protected resource.

API Levels. To facilitate app construction, the Android platform provides a rich

framework to app developers. The framework consists of Android packages and classes,

attributes for declaring and accessing resources, a set of Intents, and a set of permis-

10

sions that applications can request. This framework is accessible to apps via the Android

application programming interface (API). The Android platform has undergone many

changes since its inception in 2008, and each major release forms a new API level. In

this dissertation, we studied the major API levels, from level 3 (April 2009) to level

15 (December 2011); levels 1 and 2 did not see wide adoption. With each API up-

grade, the older replaced parts are deprecated instead of being removed, so that existing

applications can still use them [10].

2.2 Android Apps

In addition to the platform, the Android ecosystem contains two main app

categories: third-party and pre-installed.

Third-party apps are available for download from Google Play (previously known as

Android Market [4]) and other app stores, such as Amazon. These Android apps are

developed by individual third-party developers, which can include software companies

or individuals around the world. Malicious apps, designed for nefarious purposes, form

a special class of third-party apps.

Pre-installed apps come along with the devices from the vendors; they are developed

and loaded in the devices before the devices ever reach the user in the market. These

apps can be designed and configured exclusively per device model depending on the

needs of particular manufacturers and phone service carriers by the vendor developers.

11

2.3 Android Permissions

The set of all Android permissions is defined in the AndroidManifest.xml

source file of the Android platfrom [33]. To access resources from Android devices, each

Android app, third-party and pre-installed alike, requests permissions for resources by

listing the permissions in the app’s AndroidManifest.xml file. When the user wants

to install an app, this list of permissions is presented and confirmation is requested; if

the user confirms the access, the app will have the requested permissions at all times

(until the app is uninstalled). The platform release of API Level 15 contains a list of

165 permissions; examples of permissions are INTERNET which allows the app to use the

Internet, ACCESS FINE LOCATION which gives an app access to the GPS location, and

NFC which lets the app use near-field communication. Android defines two categories of

Android permissions: Protection Level and Functionality Group, described next.

Protection level. The levels refer to the intended use of a permission, as well as the

consequences of using the permission.

1. Normal permissions present minimal risk to Android apps and will be granted

automatically by the Android platform without the user’s explicit approval.

2. Dangerous permissions provide access to the user’s personal sensitive data and

various device features. Apps requesting dangerous permissions can only be in-

stalled if the user approves the permission request. These are the only permissions

displayed to the user upon installation.

3. Signature permissions signify the highest privilege; they can only be obtained if

the requesting app is signed with the device manufacturer’s certificate.

4. signatureOrSystem permissions are only granted to apps that are in the Android

12

system image or are signed with the same certificate in the system image. Permis-

sions in this category are used for certain special situations where multiple vendors

have apps built into a system image and need to share specific features explicitly

because they are being built together.

Note that the definition of protection level clearly constrains the privilege for each

Android permission: third-party apps can only use Normal and Dangerous permissions.

However, pre-installed apps can use permissions in all four protection levels. When

third-party apps request Signature or signatureOrSystem permissions, the request is

ignored by the platform.

Functionality categories. Android also defines a set of permission categories based

on functionality; in total there are 11 categories, with self-explanatory names: Cost

Money, Message, Personal Info, Location, Network, Accounts, Hardware Controls,

Phone Calls, Storage, System Tools and Development Tools. There is also a Default

category that is used when no category is specified in the definition of an Android per-

mission [9].

13

Chapter 3

Evolution of the Android

Permission System

3.1 Dataset Description

In this section, we describe the process we used to collect the permission

datasets from the Android ecosystem.

3.1.1 Platform Permissions Dataset

Table 3.1 presents the evolution of the platform permissions: for each API level

(column 1) we show the platform release number (column 2), the textual codename of

the release (column 3), the number of permissions defined in that release (column 4),

and the release date (last column). Note that we exclude API levels 1 and 2, as the

platform only gained wide adoption starting with API level 3. Also, we exclude releases

3.x (named Honeycomb, API levels 11–13); Honeycomb can be regarded as a separate

evolutionary branch as it was designed for tablets only, not for smartphones, its source

14

code was not open-source at release, and it was eventually merged into platform version

4.0.

To obtain the permission definitions for each API level, we extracted the file

AndroidManifest.xml from each release [33]. We then analyzed the changes in permis-

sions between successive releases.

3.1.2 Apps Permissions Dataset

Third-party apps. We characterize permission usage evolution in third-party apps

based on a stable set of 237 popular apps with 1,703 versions that span at least three

years. We chose these apps because they are widely-used, have releases associated in

each API level, and have more than one release per year; hence we could observe how

apps evolve and how changes in the platform might lead to changes in apps.

Selecting this stable dataset was far from trivial, and was an involved process.

First, we seeded the dataset with 1,100 apps (Top-50 free apps from each category) [72].

Then we crawled historic versions of apps from online repositories, and then retrieved

their latest versions from Google Play [2,4]; in total, this initial set contained 1,420 apps

with 4,857 versions. Next, we selected only those apps that had at least one version each

year between 2009 and 2012. Finally, after eliminating those apps that did not match

our requirements, we obtained the stable dataset of 237 apps with 1,703 versions, with

each app’s evolution spanning at least three years.

Pre-installed apps. Pre-installed apps are much more difficult to obtain because

they are not distributed online by vendors—they come with the phone; moreover, the

sets of pre-installed apps vary widely among phones and manufacturers. Therefore, to

collect pre-installed apps, we used a different process compared to third-party apps.

First, we gathered the firmwares of multiple phone vendors—HTC, Motorola, Samsung,

15

3 4 5 6 7 8 9 10 14 15
0

10

20

30

40

50

60

API Level

N
u

m
b

e
r

o
f

P
e

rm
is

s
io

n
s

signatureOrSystem

Normal

Signature

Dangerous

Figure 3.1: Protection Levels, e.g. Normal, Dangerous, Signature, signatureOrSystem,
evolving over API levels.

and LG—from various online sources. Next, we unpacked the firmwares and extracted

the pre-installed apps inside. In total, we collected 69 firmwares over the years which

contained 346 pre-installed apps with 1,714 versions.

Permission collection. To obtain the permission list for each app, we use the tool

aapt on each app version to extract the AndroidManifest.xml file, which contains the

permissions requested by that version [33]. After obtaining the set of manifest files, we

parse the manifest files to get the full list of the permissions used by each app version.

Our analysis is based on these datasets. The datasets contain applications from

a large number of developers across a broad range of categories. Thus, we believe that

our datasets reflect Android app permission variation and evolution in a meaningful

way.

16

3.2 Platform Permission Evolution

We study the evolution of the Android platform permissions through a fine-

grained, qualitative and quantitative analysis of permission changes between API levels.

As we discussed in Chapter 2, the Android platform defines the list of all permissions

in the framework’s source code file AndroidManifest.xml for each API level. Since the

API level directly reflects what permissions Android platform offers, we use the API

level as the defining indicator to compare the Android permission changes.

3.2.1 The List of Permissions is Growing

As shown in Table 3.1, the number of Android permissions in each API level is

significantly increasing. In early 2009, API level 3 had 103 Android permissions, while

there are now 165 Android permissions in API level 15. The net gain of 62 permissions

was the result of adding 68 new permissions and removing 6 existing ones. We present

the permission evolution by protection level and functionality category.

In Figure 3.1, we show the permission evolution by protection levels (the levels

were described in Section 2). We observe that the number of permissions in each protec-

tion level is increasing. In addition, we find that most of the increased permissions across

different API levels belong to the protection levels Signature and signatureOrSystem,

which indicates that most of the introduced Android permissions are only accessible to

vendors, e.g., HTC, Motorola, Samsung, and LG. This raises significant security con-

cerns for at least two reasons: (1) users have no control over the pre-installed apps, as the

apps are already present when the phone is purchased, and (2) a flaw in a pre-installed

app will affect all phones whose firmware contained that app. To illustrate the dan-

ger associated with pre-installed apps, consider the notorious HTCLogger pre-installed

17

app, in which users of certain HTC phones were exposed to a significant security flaw.

HTCLogger was designed to log device information for the development community in

order to debug device-specific issues; as such, the app collects account names, call and

SMS data, GPS location, etc. Unfortunately, the app stored the collected information

without encrypting it and made it available to any application that had the Internet

permission [11].

In Table 3.2, we show the permission evolution by functionality categories:

each column contains a category, each row corresponds to an API level, and cell data

indicates the number of permissions added and deleted in that API level; note that, the

first row shows the number of permissions in each category of API 3. We find that the

number of permissions in nearly all the categories is increasing, with the exception of the

Personal Information category, which yielded a decrease in the number of permissions

from API 8 to 9, as shown in Table 3.2. After grouping the Android permissions into the

11 functionality categories, we find that the Default, System Tools and Development

Tools categories contribute to most of the increases. Newly-added permissions in these

categories allow developers and applications to take advantage of the evolving hardware

capabilities and features of the device. We now proceed to providing observations on

permission evolution at a finer-grained level.

3.2.2 Dangerous Group is Largest and Growing

From Figure 3.1, we can see that the Dangerous permission level vastly out-

numbers all other permission types at all times. Note that the Dangerous permission

set is still growing, even though it is already the largest. We further investigated the

growth of permissions in the Dangerous protection level.

18

.

.
API7

API8

API9

API10

API14

API15

READ_OWNER_DATA
(Dangerous)

READ_PROFILE
(Dangerous)

READ_SOCIAL_STREAM
(Dangerous)

SEND_SMS
(Dangerous)

SEND_SMS
(Dangerous)

SEND_SMS_NO_CONFIRMATION
(SignatureOrSystem)

READ_PHONE_STATE
(Dangerous)

READ_PHONE_STATE
(Dangerous)

READ_PRIVILEGED_PHONE_STATE
(SignatureOrSystem)

Figure 3.2: Functionally-similar permissions added and deleted between API levels.

As shown in Table 3.3, Dangerous permissions are added in 5 out of 11 cat-

egories. Most of them are from personal data-related categories, e.g, PERSONAL INFO,

STORAGE and ACCOUNTS. We believe that this evolutionary trend shows that the Android

platform provides more channels to harvest personal information from the device, which

could increase the privacy breach risk if these permissions may be abused by Android

apps.

3.2.3 Why are Permissions Added or Deleted?

To understand the rationale behind permission addition and deletion, we stud-

ied the commit history (log messages and source code diffs) of the Android developer

code repository [33].

We found that, in most cases, permissions are added and deleted to offer access

to more functionality offered by the device. Advances in the hardware strongly motivate

such permission evolution. For instance, in API level 9, new hardware technology for

near-field communication led to the introduction of a permission to access NFC. In API

level 15, a permission to access WiMAX is introduced in order to access 4G networks.

Permissions can also be deleted to accommodate new smartphone features when

19

they are removed and replaced by new permissions. For example, READ OWNER DATA was

deleted after API level 8, but two new, related permissions, READ PROFILE and READ

SOCIAL STREAM were added in level 14.

Interestingly, some permissions were added in the earlier API levels while

deleted later, as the associated functionalities are made available to public without

manifest-declared permissions. For example, BACKUP DATA was added in API level 5,

but deleted in level 8, because the backup/restore function was made available to all

apps by default.

Furthermore, most of the added permissions are permissions categorized as

Default, System Tools and Development Tools, which are mostly used to access sys-

tem level information to function and debug the Android apps. However, as we discussed

before, most of those permissions are in the Signature and signatureOrSystem pro-

tection levels that are only available to vendor developers in pre-installed apps. This

indicates that the added permissions facilitate the development of pre-installed apps by

vendor developers, instead of third-party apps by third-party developers. The extended

aid to vendors is somewhat adverse, since third-party developers are the dominant and

active force in the Android ecosystem.

3.2.4 No Tendency Toward Finer-grained Permissions

Finer-grained permissions in Android, e.g., separating the advertisement code

permissions from host app permissions [60], have been advocated by security groups

from both academia and industry [22, 54, 72]. The basis for finer-grained permissions

is the principle of least privilege, i.e., giving apps the minimum number of permissions

necessary to provide a certain level of service.

We investigated whether Android permissions are becoming more fine-grained

20

over time. After carefully examining the Android permissions from API level 3 to 15,

we observe that the permission changes do not tend to become more fine-grained(We

found only one possible example of a permission splitting in READ OWNER DATA). However,

there is no indication that the two new permissions were specifically designed to replace

the previous one, as shown in the first example of Figure 3.2. Overwhelmingly, the

permission changes indicate that the Android platform is giving more flexibility and

control to the phone vendors. For example, as shown in Figure 3.2, SEND SMS and

PHONE STATE permissions exist in both API level 10 and 14, but the newly added Android

permissions SEND SMS NO CONFIRMATION and READ PRIVILEGED PHONE STATE gives the

app a higher privileged access to the device. Further, those higher privileged permissions

are signatureOrSystem permissions, which can only used by vendor developers. In

summary, we do not observe the evolution of Android permissions that is trending to

provide more fine-grained permissions.

3.3 Third-party Apps

We now change our focus and investigate the variation and evolution of per-

missions from the perspective of the driving force of the Android ecosystem: the apps.

We investigate two types of apps, third-party apps and pre-installed apps; we present

and discuss the permission usage of Android apps across different versions and their

evolution.

3.3.1 Permission Additions Dominate

We analyzed the permissions added and deleted in the 1,703 versions of the

237 third-party apps in our stable dataset. In Figure 3.3(a) we show the distribution of

21

−10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Permission Changes of Stable Dataset

(a)

−3−2−1 0 1 2 3 4 5 6 7 8 9 10 14
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Dangerous Permission Changes of Stable Dataset

(b)

Normal Dangerous Sig Sig or Sys
−100

0

100

200

300

400

500

Protection Level

N
u

m
b

e
r

o
f

P
ro

te
c
ti
o

n
 L

e
v
e
l
C

h
a

n
g

e
s

Added and Dropped Permissions

(c)

Figure 3.3: Permission and protection level changes in the third-party apps.

permission changes; on the x-axis we show the number of permission changes: permission

additions are marked positive, permission deletions are marked negative. Note that the

bulk of the changes are to the right of the origin (0 changes means no permission change),

we can conclude that most apps add permissions over time, with some apps adding more

than 15 permissions. Only a small number of apps, about 10, delete permissions, and

the deletions are limited to at most 3 permissions.

We present the total numbers of permission addition and deletion events in

the stable dataset in Table 3.4: column 2 illustrates that the addition of permissions

occurs much more frequently than the deletion of permissions. To disambiguate between

22

−10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Permission Changes of Pre−installed Apps

(a)

−6 −3−2−1 0 1 2 3 4 5 6 7 8 9 11
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Dangerous Permission Changes of Pre−installed Apps

(b)

Normal Dangerous Sig Sig or Sys
−100

0

100

200

300

400

500

Protection Level

N
u

m
b

e
r

o
f

P
ro

te
c
ti
o

n
 L

e
v
e
l
C

h
a

n
g

e
s

Added and Dropped Permissions

(c)

Figure 3.4: Permission and protection level changes in the pre-installed apps.

genuine permission additions and additions induced by changes in the platform (e.g., as

a result of added functionality), we also computed the permission changes induced by

changes in the Android platform, which we show in column 3 of Table 3.4). Surpris-

ingly, these induced changes only account for a small number of the permission changes:

less than 3% of either additions or deletions. In sum, we were able to conclude that

permission changes, which consist mostly of additions, are not due to changes in the

platform.

We now set out to answer the question: what is the primary cause for the per-

mission additions? We show the Top-5 most frequently added and dropped permission

in the first column of Table 3.5 and Table 3.6; column 2 of these tables will be explained

23

shortly. For the added permissions, we found that Android apps became more aggressive

in asking for resources, by asking for new permissions. For instance, the Android apps

adopt permissions such as WAKE LOCK, GET ACCOUNTS, and VIBRATE. WAKE LOCK prevents

the processor from sleeping or the screen from dimming, hence allowing the app to run

constantly without bothering the user for wake-up actions. VIBRATE enables the phone

to vibrate for notifying the user when the corresponding apps invokes some functional-

ity. In order to meet the increasing requirement of storage, WRITE EXTERNAL STORAGE is

added to enable writing data into the external storage of the device such as an SD card.

We note that permissions that do not improve the user experience, e.g., ACCESS MOCK

LOCATION and INSTALL PACKAGES, the apps simply drop them.

As Android Apps are increasingly adding new permissions, users are naturally

have security and privacy concerns, e.g., how can they be sure that apps do not abuse

permissions?

For comparison, in Table 3.7, we list the Top-20 permissions that Android

malwares request (and abuse), as reported by Zhou and Jiang [78]. We now come back

to column 2 in Tables 3.5 and 3.6; the columns show the result of comparing the added

(and respectively, deleted) permissions in our stable dataset with the Top-20 malware

permission list. A ‘X’ means the corresponding Android permission is in the Top-20

malware permission list, while a ‘×’ means the permission is not in the list. We found

that most of the added permissions are on the malware list, while none of the dropped

permissions are on the list. Though we certainly can not claim these third-party apps are

malicious, the trend should concern users: as apps gain more powerful access, the overall

system becomes less secure. For example, in the confused deputy attack, a malicious app

could compromise and leverage a benign app to achieve its malevolent goals [67].

24

3.3.2 Apps Want More Dangerous Permissions

We now proceed to investigate the added permissions in the Dangerous pro-

tection level as they introduce more risks.

Figure 3.3(b) shows that 66.11% of permission increases in apps required at

least one more Dangerous permission. In more detail, we list the frequently used

Dangerous permissions in the first column of Table 3.8. We found that WRITE EXTERNAL

STORAGE is the most requested Dangerous permission, in which sensitive personal or en-

terprise files can be written to external media. This permission is also a hot-spot for

most malicious activities. INTERNET, READ PHONE STATE, and WAKE LOCK are also re-

quested frequently by the new versions of the apps. The first two are needed to allow

for embedded advertising libraries (ads), but these third-party ads are also raising pri-

vacy concerns of abusing the user’s personal information. We then cross-checked this list

with the Top-20 malware permissions [78], as shown in column 2 of Table 3.8. We ob-

served that 9 of the 16 frequent permissions listed are also frequently used by malicious

apps. This significant overlap intensifies our privacy and security concerns.

3.3.3 Macro and Micro Evolution Patterns

The characterization of permission changes we provided so far, in terms of

absolute numbers (added/deleted), reveals the general trend toward apps requiring more

and more permissions. In addition, we also performed an in-depth study where we looked

for a finer-grained characterization of permissions evolution in terms of “patterns”, e.g.,

repeated occurrences of permission changes.

25

Macro patterns. To construct the macro patterns, we use 0→1 and 1→0 as the basic

modes, where ‘0’ represents the state that the corresponding app does not use a par-

ticular permission, ‘1’ represents the state that the corresponding app uses a particular

permission, and ‘→’ represents a state transition. In Table 3.9, we tabulate the macro-

patterns we observed in the stable dataset, along with their frequencies. We found

that the permission additions dominate the permission changes (0→1 has a 90.46% fre-

quency), as pointed out earlier in Section 3.3.1. We also found occurrences of other

interesting patterns, e.g., permissions being deleted and then added back, though these

instances are much less frequent.

Micro patterns. Some Dangerous permissions appear to be confusing developers. For

example, the location permissions ACCESS COARSE LOCATION and ACCESS FINE LOCATION,

provide different levels of location accuracy, on GSM/WiFi position and GPS location,

respectively. Location tracking has been heavily debated because it could possibly be

used to violate the user’s privacy. We found that app developers handled the adding

and deleting of these Dangerous location permission in an interesting way; to reveal the

underlying evolution patterns of used by the Dangerous location permissions, we have

done a case study of micro-patterns on two widely used location permissions, ACCESS

COARSE LOCATION and ACCESS FINE LOCATION. We found that, although the most fre-

quent macro evolution pattern of location permission is 0→1, the micro evolution pat-

terns of the location permissions are quite diverse.

In Table 3.10, we tabulate the micro-patterns we observed for the location per-

mission alone. For instance, 0→Both→Fine means both location permissions are used

at first, then the ACCESS COARSE LOCATION permission is deleted in a later version of the

app. 0→Fine→0→Fine shows the app added ACCESS FINE LOCATION at first, dropped

26

0 5 10 15
0

5

10

15

Number of Dangerous Permissions

N
u
m

b
er

 o
f

N
o
rm

al
 P

er
m

is
si

o
n
s

NetQin

Facebook

KakaoTalk

Figure 3.5: Permission trajectories for popular apps.

it in a subsequent version, and finally, added back again. Though the table indicates

several micro-patterns, note that using both location permissions dominates, with 50%

of the total, which shows that more and more apps tend to include both location per-

missions for location tracking. We are able to make two observations. First, evolution

patterns requesting Dangerous permissions clearly show the struggling balance between

app usability and user privacy during the evolution of apps. Second, the patterns re-

veal that developers of third-party apps may be unclear with the correct usages of the

Dangerous location permissions, which highlights the importance for the platform to be

more clear on how to properly handle Dangerous permissions.

Permission trajectories. Due to the observed diverse permission evolution patterns,

we plot the number of Normal against Dangerous permissions to visualize trajectories as

apps evolve. We found many interesting trajectories, and highlight three, e.g., Facebook

(red), KakaoTalk (black) and NetQin (blue), in Figure 3.5. Facebook added Dangerous

27

permissions in great numbers early on, but recently they have removed many and instead

added more slowly. Both NetQin and KakaoTalk continue to add permissions from either

one permission level or both permission levels with each new version that is released.

These diverse trajectories of popular apps again highlight the need for the the platform

to provide better references of Android permissions to developers.

3.3.4 Apps Are Becoming Overprivileged

Extra permission usage may lead to overprivilege, a situation in which an app

requests the permission, but never uses the resource granted. This could increase vul-

nerabilities in the app and raise concern of security risks. In this section, we investigate

the privilege patterns to determine whether Android apps became overprivileged during

their evolution.

To detect overprivilege, we ran the Stowaway [15] tool on the stable dataset

(1,703 app versions). As shown in Figure 3.7, we found that 19.6% of the newer versions

of apps became overprivileged as they added permissions, and 25.2% of apps were ini-

tially overprivileged and stayed that way during their evolution. Although the overall

tendency is towards overprivilege, we could not ignore the fact that 11.6% of apps de-

creased from overprivileged to legitimate privilege, a positive effort to balance usability

and privacy concerns.

In addition, similar to the evolution patterns of permission usage, we also

study the evolution patterns of overprivilege status for each app; we present the results

in Table 3.11. We found that the patterns Legitimate→Over and Over→Legitimate

dominate at 58.57% and 32.14%, respectively. However, like in the patterns of permission

28

Normal Dangerous Sig Sig or Sys
0

1

2

3

4

5

Protection Level

A
v
e

ra
g

e
 #

 o
f

P
e

rm
is

is
o

n
s
 P

e
r

A
p

p

Stable

Preinstalled

Figure 3.6: Average number of permissions per app, for each protection level, from
stable and pre-installed datasets.

usage, we also found other diverse patterns during the evolution of apps, which again

shows that there may be confusion for third-party developers when deciding on what

permissions to use for their app.

In Table 3.12 and 3.13, we further refine the observations to show the kinds of

permissions involved in the dominating patterns: we observe that Dangerous permissions

are the major source that causes an app to be overprivileged, which again emphasizes

that developers should exercise more care when requesting Dangerous permissions.

3.4 Pre-installed Apps

Pre-installed apps have access to a richer set of higher-privileged permissions,

e.g., at the Signature and signatureOrSystem levels, compared to third-party apps,

which gives pre-installed apps access to more personal information on the device [52].

Thus, we should investigate how Android permissions are used in pre-installed apps.

29

We conducted a permission-change analysis for pre-installed apps in a manner similar

to the stable dataset. We present the results in Figure 3.4. Figures 3.4(a) and 3.4(b)

indicate that permission usage is relatively constant, e.g., 62.61% of pre-installed apps

do not change their permissions at all, which is significant when compared to our third-

party apps with only 15.68%. Further, from Figure 3.4(c) and 6, pre-installed apps

request many more Signature and signatureOrSystem level permissions than third-

party apps, while at the same time requesting nearly just as many Normal and Dangerous

level permissions. This shows that pre-installed apps have a much higher capability to

penetrate the smartphone. Interestingly, the vendors also have the ability to define their

own permissions inside the platform when they customize the Android platform for their

devices. For example, HTC defines its own app update permission, HTC APP UPDATE.

The power of pre-installed apps requires great responsibility by vendors to

ensure that this power is not abused. On one hand, vendors are able to customize pre-

installed apps to take full advantage of all the hardware capabilities of the device, as well

as create a brand-personalized look-and-feel to enhance user experience. On the other

hand, users cannot opt out of pre-installed apps, and in most cases, cannot uninstall

the pre-installed apps, which raises the question: why should users be forced to trust

pre-installed apps? Hindering that trust is our finding that, despite being developed by

vendors, 66.1% of pre-installed apps were overprivileged.

What if the power of pre-installed apps is used against the user with malicious

intent? For example, the marred pre-installed app HTCLogger and other reported secu-

rity compromised apps have already indicated such security risks do exist and can signif-

icantly damage the smartphone and/or the user data [11, 52]. The vendors’ Signature

and signatureOrSystem level permissions can be exploited by malicious apps to do an

array of damaging actions, such as wiping out user data, sending out SMS messages to

30

 Unchanged
(Overprivileged)
 25.2%

Overprivileged
 to Legitimate
 11.6%

 Legitimate to
Overprivileged
 19.6%

Unchanged
(Legitimate)
 43.6%

Figure 3.7: Overprivilege status and evolution in the stable dataset.

premium numbers, recording user conversations, or obtaining the device location data

of the device [52].

As we analyzed the evolution of Android platform permissions, it was inter-

esting to see the evolution trends benefit vendors, rather than users. With the power

vendors have in pre-installed apps, developers of pre-installed apps should be more care-

ful in their development as they represent the trusted computing base (TCB) of the

Android ecosystem. Up until now, there has not been any clear regulations or boundary

definitions that protect the user from pre-installed apps. We argue that, since pre-

installed apps have more power and privilege over Android devices, vendors need to

realize their responsibility to protect the end-user.

31

API Android SDK Total Release

level platform codename permissions (mm-dd-yy)

15 4.0.3 Ice Cream 165 12-16-11

Sandwich

MR1

14 4.0.2 Ice Cream 162 11-28-11

4.0.1 Sandwich 10-19-11

10 2.3.4 Gingerbread 137 04-28-11

2.3.3 MR1 02-09-11

9 2.3.2 Gingerbread 137 12-06-10

2.3.1

2.3

8 2.2.x Froyo 134 05-20-10

7 2.1.x Eclair MR1 122 01-12-10

6 2.0.1 Eclair 0 1 122 12-03-09

5 2.0 Eclair 122 10-26-09

4 1.6 Donut 106 09-15-09

3 1.5 Cupcake 103 04-30-09

Table 3.1: Official releases of the Android platform before 2012; base and tablet versions
are excluded.

32

API Dev Sys Accounts Cost Hardware Location Messages Network Personal Phone Storage Default

level tools tools Money Controls Info calls

3 36 35 1 2 6 4 5 5 6 3

4 -1 +2,-2 +1 +1 +2

5 +3 +4 +2 +7

6

7

8 +7 +6, -1

9 +1 +2 -2 +2

10

14 +2 +1 +2,-1 +1 +1 +5 +1 +1 +12

15 +1 +1 +1

Overall -1 +13 +4 +1 +2 +1 +1 +4 +5 +1 +2 +29

Table 3.2: Permission changes per API level and permission categories.

33

Dangerous permission Category

READ HISTORY BOOKMARKS Personal Info

WRITE HISTORY BOOKMARKS Personal Info

READ USER DICTIONARY Personal Info

READ PROFILE Personal Info

WRITE PROFILE Personal Info

READ SOCIAL STREAM Personal Info

WRITE SOCIAL STREAM Personal Info

WRITE EXTERNAL STORAGE Storage

AUTHENTICATE ACCOUNTS Accounts

MANAGE ACCOUNTS Accounts

USE CREDENTIALS Accounts

NFC Network

USE SIP Network

CHANGE WIFI MULTICAST STATE System Tools

CHANGE WIMAX STATE System Tools

Table 3.3: Added Dangerous permissions and their categories.

Total Induced by

changes platform changes

Add 857 14 (1.63%)

Delete 183 5 (2.73%)

Total 1040 19 (1.82%)

Table 3.4:App permission changes in the stable dataset.

34

Android permission In Top 20?

ACCESS NETWORK STATE X

WRITE EXTERNAL STORAGE X

WAKE LOCK X

GET ACCOUNTS ×

VIBRATE X

Table 3.5: Most frequently added permissions in the stable dataset.

Android Permission In Top 20?

ACCESS MOCK LOCATION ×

READ OWNER DATA ×

INSTALL PACKAGES ×

RECEIVE MMS ×

MASTER CLEAR ×

Table 3.6: Most frequently deleted permissions in the stable dataset.

35

Permission % of apps using it

INTERNET 97.8%

READ PHONE STATE 93.6%

ACCESS NETWORK STATE 81.2%

WRITE EXTERNAL STORAGE 67.2%

ACCESS WIFI STATE 63.8%

READ SMS 62.7%

RECEIVE BOOT COMPLETED 54.6%

WRITE SMS 52.2%

SEND SMS 43.9%

VIBRATE 38.3%

ACCESS COARSE LOCATION 38.1%

READ CONTACTS 36.3%

ACCESS FINE LOCATION 34.3%

WAKE LOCK 33.7%

CALL PHONE 33.7%

CHANGE WIFI STATE 31.6%

WRITE CONTACTS 29.7%

WRITE APN SETTINGS 27.7%

RESTART PACKAGES 26.4%

Table 3.7: Top-20 most frequent permissions requested by malware.

36

Dangerous permission In Top 20?

WRITE EXTERNAL STORAGE X

WAKE LOCK X

READ PHONE STATE X

ACCESS COARSE LOCATION X

CAMERA ×

INTERNET X

ACCESS FINE LOCATION X

READ LOGS ×

READ CONTACTS X

RECORD AUDIO ×

BLUETOOTH ×

CALL PHONE X

CHANGE WIFI STATE X

GET TASKS ×

MODIFY AUDIO SETTINGS ×

MANAGE ACCOUNTS ×

Table 3.8: Frequently used Dangerous Android permissions of stable dataset.

Macro pattern Frequency

0→1 90.46%

1→0 8.59%

1→0→1 0.84%

1→0→1→0 0.11%

Table 3.9: Macro evolution patterns of permission usage in the stable dataset.

37

Micro pattern Frequency

Both 6.67%

Fine→Both 10.00%

Fine→Coarse 3.33%

Coarse→Both 10.00%

0→Both 20.00%

0→Fine 10.00%

0→Coarse 26.70%

0→Fine→Both 3.33%

0→Both→Fine 3.33%

0→Both→Coarse 3.33%

0→Fine→0→Fine 3.31%

Table 3.10: Micro evolution patterns for the location permissions; Fine represents
the ACCESS FINE LOCATION permission, Coarse represents the ACCESS COARSE LOCATION

permission, and Both means both Fine and Coarse are used.

Micro pattern Frequency

Legitimate →Over 58.57%

Over→Legitimate 32.14%

Over→Legitimate→Over 7.86%

Over→Legitimate→Over→Legitimate 0.71%

Over→Legitimate→Over→Legitimate→Over 0.71%

Table 3.11: Evolution patterns of the privilege levels of the stable dataset, where Legit-
imate represents legitimate privilege and Over represents overprivilege.

38

Permission Protection level

GET TASKS Dangerous

MODIFY AUDIO SETTINGS Dangerous

WAKE LOCK Dangerous

NFC Dangerous

GET ACCOUNTS Normal

Table 3.12: Most added permissions from the Legitimate→Over (58.57%) subset of apps.

Permission Protection level

READ PHONE STATE Dangerous

ACCESS COARSE LOCATION Dangerous

WRITE EXTERNAL STORAGE Dangerous

ACCESS MOCK LOCATION Dangerous

VIBRATE Normal

Table 3.13: Most dropped permissions from the Over→Legitimate (32.14%) subset of
apps.

39

Chapter 4

Multi-layer Profiling of Android

Applications

4.1 Overview of Approach

We present an overview of the design and implementation of ProfileDroid.

We measure and profile apps at four different layers: (a) static, or app specification

(b) user interaction, (c) operating system, and (d) network. For each layer, our system

consists of two parts: a monitoring and a profiling component. For each layer, the

monitoring component runs on the Android device where the app is running. The

captured information is subsequently fed into the profiling part, which runs on the

connected computer. In Figure 4.1, on the right, we show a high level overview of our

system and its design. On the left, we have an actual picture of the actual system the

Android device that runs the app and the profiling computer (such as a desktop or a

laptop).

In the future, we foresee a light-weight version of the whole profiling system

40

Static

Network

User

OS

Static

Network

User

OS

Monitoring Profiling

ProfileDroid

APK
App
Profile

Behavioral
Patterns

Inconsistencies

Figure 4.1: Overview and actual usage (left) and architecture (right) of ProfileDroid.

to run exclusively on the Android device. The challenge is that the computation, the

data storage, and the battery consumption must be minimized. How to implement the

profiling in an incremental and online fashion is beyond the scope of the current work.

Note that our system is focused on profiling of an individual app, and not intended to

monitor user behavior on mobile devices.

From an architectural point of view, we design ProfileDroid to be flexible

and modular with level-defined interfaces between the monitoring and profiling compo-

nents. Thus, it is easy to modify or improve functionality within each layer. Further-

more, we could easily extend the current functionality to add more metrics, and even

potentially more layers, such as a physical layer (temperature, battery level, etc.).

4.1.1 Implementation and Challenges

We describe the implementation of monitoring at each layer, and briefly touch

on challenges we had to surmount when constructing ProfileDroid.

To profile an application, we start the monitoring infrastructure (described at

length below) and then the target app is launched. The monitoring system logs all

the relevant activities, e.g., user touchscreen input events, system calls, and all network

traffic in both directions.

41

Static Layer. At the static layer, we analyze the APK (Android application package)

file, which is how Android apps are distributed. We use apktool to unpack the APK file

to extract relevant data. From there, we mainly focus on the Manifest.xml file and the

bytecode files contained in the /smali folder. The manifest is specified by the developer

and identifies hardware usage and permissions requested by each app. The smali files

contain the app bytecode which we parse and analyze statically, as explained later in

Section 4.2.1.

User Layer. At the user layer, we focus on user-generated events, i.e., events that

result from interaction between the user and the Android device while running the

app. To gather the data of the user layer, we use a combination of the logcat and

getevent tools of adb. From the logcat we capture the system debug output and log

messages from the app. In particular, we focus on events-related messages. To collect

the user input events, we use the getevent tool, which reads the /dev /input/event*

to capture user events from input devices, e.g., touchscreen, accelerometer, proximity

sensor. Due to the raw nature of the events logged, it was challenging to disambiguate

between swipes and presses on the touchscreen. We provide details in Section 4.2.2.

Operating System Layer. At the operating system-layer, we measure the operating

system activity by monitoring system calls. We collect system calls invoked by the app

using an Android-specific version of strace. Next, we classify system calls into four cat-

egories: filesystem, network, VM/IPC, and miscellaneous. As described in Section 4.2.3,

this classification is challenging, due to the virtual file system and the additional VM

layer that decouples apps from the OS.

Network Layer. At the network layer, we analyze network traffic by logging the

data packets. We use an Android-specific version of tcpdump that collects all network

42

traffic on the device. We parse, domain-resolve, and classify traffic. As described in

Section 4.2.4, classifying network traffic is a significant challenge in itself; we used infor-

mation from domain resolvers, and improve its precision with manually-gathered data

on specific websites that act as traffic sources.

Having collected the measured data as described above, we analyze it using

the methods and the metrics of Section 4.2.

4.1.2 Experimental Setup

Android Devices. The Android devices monitored and profiled in this dissertation

were a pair of identical Motorola Droid Bionic phones, which have dual-core ARM

Cortex-A9 processors running at 1GHz. The phones were released on released September

8, 2011 and run Android version 2.3.4 with Linux kernel version 2.6.35.

App Selection. As of September 2013, Google Play lists more than 800,000 apps [17],

so to ensure representative results, we strictly follow the following criteria in selecting our

test apps. First, we selected a variety of apps that cover most app categories as defined in

Google Play, such as Entertainment, Productivity tools, etc. Second, all selected apps

had to be popular, so that we could examine real-world, production-quality software

with a broad user base. In particular, the selected apps must have at least 1,000,000

installs, as reported by Google Play, and be within the Top-130 free apps, as ranked by

the Google Play website. In the end, we selected 27 apps as the basis for our study: 19

free apps and 8 paid apps; the 8 paid apps have free counterparts, which are included

in the list of 19 free apps. The list of the selected apps, as well as their categories, is

shown in Table 4.1.

Conducting the experiment. In order to isolate app behavior and improve preci-

sion when profiling an app, we do not allow other manufacturer-installed apps to run

43

concurrently on the Android device, as they could interfere with our measurements.

Also, to minimize the impact of poor wireless link quality on apps, we used WiFi in

strong signal conditions. Further, to ensure statistics were collected of only the app in

question, we installed one app on the phone at a time and uninstalled it before the next

app was tested. Note however, that system daemons and required device apps were still

able to run as they normally would, e.g., the service and battery managers.

Finally, in order to add stability to the experiment, the multi-layer traces for

each individual app were collected from tests conducted by multiple users to obtain

a comprehensive exploration of different usage scenarios of the target application. To

cover a larger variety of running conditions without burdening the user, we use capture-

and-replay, as explained below [46]. Each user ran each app one time for 5 minutes; we

capture the user interaction using event logging. Then, using a replay tool we created,

each recorded run was replayed back 5 times in the morning and 5 times at night, for

a total of 10 runs each per user per app. The runs of each app were conducted at

different times of the day to avoid time-of-day bias, which could lead to uncharacteristic

interaction with the app; by using the capture-and-replay tool, we are able to achieve

this while avoiding repetitive manual runs from the same user. For those apps that

had both free and paid versions, users carried out the same task, so we can pinpoint

differences between paid and free versions. To summarize, our profiling is based on 30

runs (3 users × 10 replay runs) for each app.

44

4.2 Analyzing Each Layer

In this section, we first provide detailed descriptions of our profiling method-

ology, and we highlight challenges and interesting observations.

4.2.1 Static Layer

The first layer in our framework aims at understanding the app’s functionality

and permissions. In particular, we analyze the APK file on two dimensions to identify

app functionality and usage of device resources: first, we extract the permissions that

the app asks for, and then we parse the app bytecode to identify intents, i.e., indirect

resource access via deputy apps. Note that, in this layer only, we analyze the app with-

out running it—hence the name static layer.

Functionality usage. Android devices offer several major functionalities, labeled as

follows: Internet, GPS, Camera, Microphone, Bluetooth and Telephony. We present the

results in Table 4.2. A ‘X’ means the app requires permission to use the device, while

‘I’ means the device is used indirectly via intents and deputy apps. We observe that

Internet is the most-used functionality, as the Internet is the gateway to interact with

remote servers via 3G or WiFi—all of our examined apps use the Internet for various

tasks. For instance, Pandora and YouTube use the Internet to fetch multimedia files,

while Craigslist and Facebook use it to get content updates when necessary.

GPS, the second most popular resource (9 apps) is used for navigation and

location-aware services. For example, Gasbuddy returns gas stations near the user’s lo-

cation, while Facebook uses the GPS service to allow users to check-in, i.e., publish their

45

presence at entertainment spots or places of interests. Camera, the third-most popular

functionality (5 apps) is used for example, to record and post real-time news information

(CNN), or for for barcode scanning Amazon. Microphone, Bluetooth and Telephony are

three additional communication channels besides the Internet, which could be used for

voice communication, file sharing, and text messages. This increased usage of various

communication channels is a double-edged sword. On the one hand, various commu-

nication channels improve user experience. On the other hand, it increases the risk of

privacy leaks and security attacks on the device.

Intent usage. Android intents allow apps to access resources indirectly by using

deputy apps that have access to the requested resource. For example, Facebook does

not have the camera permission, but can send an intent to a deputy camera app to take

and retrieve a picture.1 We decompiled each app using apktool and identified instances

of the android.content.Intent class in the Dalvik bytecode. Next, we analyzed the

parameters of each intent call to find the intent’s type, i.e., the device’s resource to be

accessed via deputy apps.

We believe that presenting users with the list of resources used via intents (e.g.,

that the Facebook app does not have direct access to the camera, but nevertheless it can

use the camera app to take pictures) helps them make better-informed decisions about

installing and using an app. Though legitimate within the Android security model,

this lack of user forewarning can be considered deceiving; with the more comprehensive

picture provided by ProfileDroid, users have a better understanding of resource usage,

direct or indirect [13].

1This was the case for the version of the Facebook app we analyzed in March 2012, the time we
performed the study. However, we found that, as of June 2012, the Facebook app requests the Camera
permission explicitly.

46

0

2.5

5.0

7.5

10.0

0

0.5

1.0

1.5

0

5

10

15

20

25

Di
cti
on
ar
y.c
om

($$
)D
ict
ion
ar
y.c
om

Ti
ny
 Fl
ash
lig
ht

Ze
dg
e

W
ea
the
r B
ug

($$
)W
ea
the
r B
ug

Ad
vT
ask
Ki
lle
r

($$
)A
dv
Ta
sk
Ki
lle
r

Fli
xst
er

Pic
say

($$
)P
ics
ay
ES
PN

Ga
sb
ud
dy

Pa
nd
or
a

Sh
az
am

($$
)Sh
az
am

Yo
utu
be

Am
az
on

Fa
ceb
oo
k

Do
lph
in

($$
)D
olp
hin

An
gr
y B
ird
s

($$
)A
ng
ry
 B
ird
s

Cr
aig
sli
st
CN
N

In
stH
ea
rtR
ate

($$
)In
stH
ea
rtR
ate

Touch Event Intensity (Events/Sec)

Swipe/Press Ratio

Phone Event Intensity (Events/Sec)

Figure 4.2: Profiling results of user layer; note that scales are different.

4.2.2 User Layer

At the user layer, we analyze the input events that result from user interac-

tion. In particular, we focus on touches—generated when the user touches the screen—as

touchscreens are the main Android input devices. Touch events include presses, e.g.,

pressing the app buttons of the apps, and swipes—finger motion without losing contact

with the screen. The intensity of events (events per unit of time), as well as the ra-

tio between swipes and presses are powerful metrics for GUI behavioral fingerprinting

(Section 4.3.2); we present the results in Figure 4.2 and now proceed to discussing these

metrics.

Technical challenge. Disambiguating between swipes and presses was a challenge,

because of the nature of reported events by the getevent tool. Swipes and presses are re-

ported by the touchscreen input device, but the reported events are not labeled as swipes

or presses. A single press usually accounts for 30 touchscreen events, while a swipe usu-

47

ally accounts for around 100 touchscreen events. In order to distinguish between swipes

and presses, we developed a method to cluster and label events. For example, two events

separated by less than 80 milliseconds are likely to be part of a sequence of events, and

if that sequence of events grows above 30, then it is likely that the action is a swipe

instead of a press. Evaluating and fine-tuning our method was an intricate process.

Touch events intensity. We measured touch intensity as the number of touch events

per second—this reveals how interactive an app is. For example, the music app Pandora

requires only minimal input (music control) once a station is selected. In contrast, in

the game Angry Birds, the user has to interact with the interface of the game using

swipes and screen taps, which results in a high intensity for touch events.

Swipe/Press ratio. We use the ratio of swipes to presses to better capture the nature

of the interaction, and distinguish between apps that have similar touch intensity. Note

that swipes are used for navigation and zooming, while touches are used for selection.

Figure 4.2 shows that apps that involve browsing, news-page flipping, gaming, e.g., CNN,

Angry Birds, have a high ratio of swipes to presses; even for apps with the same touch

intensity, the swipe/press ratio can help profile and distinguish apps, as seen in the

table 4.3.

Phone event intensity. The bottom chart in Figure 4.2 shows the intensity of events

generated by the phone itself during the test. These events contain a wealth of contextual

data that, if leaked, could pose serious privacy risks. The most frequent events we

observed were generated by the accelerometer, the light proximity sensor, and for some

48

location-aware apps, the compass. For brevity, we omit details, but we note that phone-

event intensity, and changes in intensity, can reveal the user’s proximity to the phone,

the user’s motion patterns, and user orientation and changes thereof.

4.2.3 Operating System Layer

We first present a brief overview of the Android OS, and then discuss metrics

and results at the operating system layer.

Android OS is a Linux-based operating system, customized for mobile devices.

Android apps are written in Java and compiled to Dalvik executable (Dex) bytecode.

The bytecode is bundled with the app manifest (specification, permissions) to create

an APK file. When an app is installed, the user must grant the app the permissions

specified in the manifest. The Dex bytecode runs on top of the Dalvik Virtual Machine

(VM)—an Android-specific Java virtual machine. Each app runs as a separate Linux

process with a unique user ID in a separate copy of the VM. The separation among

apps offers a certain level of protection and running on top of a VM avoids granting

apps direct access to hardware resources. While increasing reliability and reducing the

potential for security breaches, this vertical (app–hardware) and horizontal (app–app)

separation means that apps do not run natively and inter-app communications must

take place primarily via IPC. We profile apps at the operating system layer with several

goals in mind: to understand how apps use system resources, how the operating-system

intensity compares to the intensity observed at other layers, and to characterize the

potential performance implications of running apps in separate VM copies. To this end,

we analyzed the system call traces for each app to understand the nature and frequency

of system calls. We present the results in Table 4.4.

49

System call intensity. The second column of Table 4.4 shows the system call inten-

sity in system calls per second. While the intensity differs across apps, note that in all

cases the intensity is relatively high (between 30 and 1,183 system calls per second) for

a mobile platform.

System call characterization. To characterize the nature of system calls, we group

them into four bins: file system (FS), network (NET), virtual machine (VM&IPC), and

miscellaneous (MISC). Categorizing system calls is not trivial.

Technical challenge. The Linux version running on our phone (2.6.35.7 for Arm) sup-

ports about 370 system calls; we observed 49 different system calls in our traces. While

some system calls are straightforward to categorize, the operation of virtual filesystem

calls such as read and write, which act on a file descriptor, depends on the file descrip-

tor and can represent file reading and writing, network send/receive, or reading/altering

system configuration via /proc. Therefore, for all the virtual filesystem calls, we cate-

gorize them based on the file descriptor associated with them, as explained below. FS

system calls are used to access data stored on the flash drive and SD card of the mo-

bile device and consist mostly of read and write calls on a file descriptor associated

with a space-occupying file in the file system, i.e., opened via open. NET system calls

consist mostly of read and write calls on a file descriptor associated with a network

socket, i.e., opened via socket; note that for NET system calls, reads and writes mean

receiving from and sending to the network. VM&IPC system calls are calls inserted by

the virtual machine for operations such as scheduling, timing, idling, and IPC. For each

50

such operation, the VM inserts a specific sequence of system calls. We extracted these

sequences, and compared the number of system calls that appear as part of the sequence

to the total number, to quantify the VM and IPC-introduced overhead. The most com-

mon VM/IPC system calls we observed (in decreasing order of frequency) were: clock

gettime, epoll wait, getpid, getuid32, futex, ioctl, and ARM cacheflush. The

remaining system calls are predominantly read and write calls to the /proc special

filesystem are categorized as MISC.

The results are presented in Table 4.4: for each category, we show both in-

tensity, as well as the percentage relative to all categories. Note that FS and NET

percentages are quite similar, but I/O system calls (FS and NET) constitute a rela-

tively small percentage of total system calls, with the VM&IPC dominating. We will

come back to this aspect in Section 4.3.4.

4.2.4 Network Layer

The network-layer analysis summarizes the data communication of the app via

WiFi or 3G. Android apps increasingly rely on Internet access for a diverse array of

services, e.g., for traffic, map or weather data and even offloading computation to the

cloud. An increasing number of network traffic sources are becoming visible in app

traffic, e.g., Content Distribution Networks, Cloud, Analytics and Advertisement. To

this end, we characterize the app’s network behavior using the following metrics and

present the results in Table 4.5.

Traffic intensity. This metric captures the intensity of the network traffic of the

app. Depending on the app, the network traffic intensity can vary greatly, as shown in

Table 4.5. For the user, this great variance in traffic intensity could be an important

51

property to be aware of, especially if the user has a limited data plan. Not surprisingly,

we observe that the highest traffic intensity is associated with a video app, YouTube.

Similarly, the entertainment app Flixster, music app Pandora, and personalization

app Zedge also have large traffic intensities as they download audio and video files. We

also observe apps with zero, or negligible, traffic intensity, such as the productivity app

Advanced Task Killer and free photography app Picsay.

Origin of traffic. The origin of traffic means the percentage of the network traffic

that comes from the servers owned by the app provider. This metric is particularly in-

teresting for privacy-sensitive users, since it is an indication of the control that the app

provider has over the app’s data. Interestingly, there is large variance for this metric, as

shown in Table 4.5. For example, the apps Amazon, Pandora, YouTube, and Craigslist

deliver most of their network traffic (e.g., more than 95%) through their own servers

and network. However, there is no origin traffic in the apps Angry Birds and ESPN.

Interestingly, we observe that ony 67% of the Facebook traffic comes from Facebook

servers, with the remaining coming from content providers or the cloud.

Technical challenge. It is a challenge to classify the network traffic into different

categories (e.g., cloud vs. ad network), let alone identify the originating entity. To

resolve this, we combine an array of methods, including reverse IP address lookup,

DNS and whois, and additional information and knowledge from public databases and

the web. In many cases, we use information from CrunchBase (crunchbase.com) to

identify the type of traffic sources after we resolve the top-level domains of the network

traffic [18]. Then, we classify the remaining traffic sources based on information gleaned

52

from their website and search results.

In some cases, detecting the origin is even more complicated. For example,

consider the Dolphin web browser—here the origin is not the Dolphin web site, but

rather the website that the user visits with the browser, e.g., if the user visits CNN,

then cnn.com is the origin. Also, YouTube is owned by Google and YouTube media

content is delivered from domain 1e100.net, which is owned by Google; we report the

media content (96.47%) as Origin, and the remaining traffic (3.53%) as Google which

can include Google ads and analytics.

CDN+Cloud traffic. This metric shows the percentage of the traffic that comes from

servers of CDN (e.g., Akamai) or cloud providers (e.g., Amazon AWS). Content Distri-

bution Network (CDN) has become a common method to distribute the app’s data to its

users across the world faster, with scalability and cost-effectively. Cloud platforms have

extended this idea by providing services (e.g., computation) and not just data storage.

Given that it is not obvious if someone using a cloud service is using it as storage, e.g.,

as a CDN, or for computation, we group CDN and cloud services into one category.

Interestingly, there is a very strong presence of this kind of traffic for some apps, as

seen in Table 4.5. For example, the personalization app Zedge, and the video-heavy app

Flixster need intensive network services, and they use CDN and Cloud data sources.

The high percentages that we observe for CDN+Cloud traffic point to how important

CDN and Cloud sources are, and how much apps rely on them for data distribution.

Google traffic. Given that Android is a product of Google, it is natural to wonder how

involved Google is in Android traffic. The metric is the percentage of traffic exchanged

53

with Google servers (e.g., 1e100.net), shown as the second-to-last column in Table 4.5.

It has been reported that the percentage of Google traffic has increased significantly over

the past several years [19]. This is due in part to the increasing penetration of Google

services (e.g., maps, ads, analytics, and Google App Engine). Note that 22 of out of the

27 apps exchange traffic with Google, and we discuss this in more detail in Section 4.3.7.

Third-party traffic. This metric is of particular interest to privacy-sensitive users.

We define third party traffic as network traffic from various advertising services (e.g.,

Atdmt) and analytical services (e.g., Omniture) besides Google, since advertising and

analytical services from Google are included in the Google traffic metric. From Ta-

ble 4.5, we see that different apps have different percentages of third-party traffic. Most

apps only get a small or negligible amount of traffic from third parties (e.g., YouTube,

Amazon and Facebook). At the same time, nearly half of the total traffic of ESPN and

Dolphin comes from third parties.

The ratio of incoming traffic and outgoing traffic. This metric captures the role

of an app as a consumer or producer of data. In Table 4.5, we see that most of the apps

are more likely to receive data than to send data. As expected, we see that the network

traffic from Flixster, Pandora, and YouTube, which includes audio and video content,

is mostly incoming traffic as the large values of the ratios show. In contrast, apps such

as Picsay and Angry Birds tend to send out more data than they receive.

Note that this metric could have important implications for performance op-

timization of wireless data network providers. An increase in the outgoing traffic could

challenge network provisioning, in the same way that the emergence of p2p file shar-

54

ing stretched cable network operators, who were not expecting large household upload

needs. Another use of this metric is to detect suspicious variations in the ratio, e.g.,

unusually large uploads, which could indicate a massive theft of data. Note that the

goal is to provide the framework and tools for such an investigation, which we plan to

conduct as our future work.

Number of distinct traffic sources. An additional way of quantifying the inter-

actions of an app is with the number of distinct traffic sources, i.e., distinct top-level

domains. This metric can be seen as a complementary way to quantify network interac-

tions, a sudden increase in this metric could indicate malicious behavior. In Table 4.5

we present the results. First, we observe that all the examined apps interact with at

least two distinct traffic sources, except Advanced Task Killer. Second, some of the

apps interact with a surprisingly high number of distinct traffic sources, e.g., Weather

bug, Flixster, and Pandora. Note that we count all the distinct traffic sources that

appear in the traces of multiple executions.

The percentage of HTTP and HTTPS traffic. To get a sense of the percentage

of secure Android app traffic, we compute the split between HTTP and HTTPS traffic,

e.g., non-encrypted and encrypted traffic. We present the results in the last column

of Table 4.5 (‘–’ represents no traffic). The absence of HTTPS traffic is staggering in

the apps we tested, and even Facebook has roughly 22 % of unencrypted traffic, as we

further elaborate in section 4.3.4.

55

4.3 ProfileDroid: Profiling Apps

In this section, we ask the question: How can ProfileDroid help us better un-

derstand app behavior? In response, we show what kind of information ProfileDroid

can extract from each layer in isolation or in combination with other layers.

4.3.1 Capturing Multi-layer Intensity

The intensity of activities at each layer is a fundamental metric that we want

to capture, as it can provide a thumbnail of the app behavior. The multi-layer intensity

is a tuple consisting of intensity metrics from each layer: static (number of functionali-

ties), user (touch event intensity), operating system (system call intensity), and network

(traffic intensity).

Presenting raw intensity numbers is easy, but it has limited intuitive value.

For example, reporting 100 system calls per second provides minimal information to a

user or an application developer. A more informative approach is to present the relative

intensity of this app compared to other apps.

We opt to represent the activity intensity of each layer using labels: H (high),

M (medium), and L (low). The three levels (H,M,L) are defined relative to the intensi-

ties observed at each layer using the five-number summary from statistical analysis [24]:

minimum (Min), lower quartile (Q1), median (Med), upper quartile (Q3), and maxi-

mum (Max). Specifically, we compute the five-number summary across all 27 apps at

each layer, and then define the ranges for H, M , and L as follows:

Min < L ≤ Q1 Q1 < M ≤ Q3 Q3 < H ≤Max

The results are in the following table:

56

Note that there are many different ways to define these thresholds, depending

on the goal of the study, whether it is conserving resources, (e.g., determining static

thresholds to limit intensity), or studying different app categories (e.g., general-purpose

apps have different thresholds compared to games). In addition, having more than three

levels of intensity provides more accurate profiling, at the expense of simplicity. To sum

up, we chose to use relative intensities and characterize a wide range of popular apps to

mimic testing of typical Google Play apps.

Table 4.6 shows the results of applying this H-M -L model to our test apps.

We now proceed to showing how users and developers can benefit from an H-M -L-based

app thumbnail for characterizing app behavior. Users can make more informed decisions

when choosing apps by matching the H-M -L thumbnail with individual preference and

constraints. For example, if a user has a small-allotment data plan on the phone, perhaps

he would like to only use apps that are rated L for the intensity of network traffic; if

the battery is low, perhaps she should refrain from running apps rated H at the OS or

network layers.

Developers can also benefit from the H-M -L model by being able to profile their

apps with ProfileDroid and optimize based on the H-M -L outcome. For example, if

ProfileDroid indicates an unusually high intensity of filesystem calls in the operating

system layer, the developer can examine their code to ensure those calls are legitimate.

Similarly, if the developer is contemplating using an advertising library in their app, she

can construct two H-M -L app models, with and without the ad library and understand

the trade-offs.

In addition, an H-M -L thumbnail can help capture the nature of an app. Intu-

itively, we would expect interactive apps (social apps, news apps, games, Web browsers)

to have intensity H at the user layer; similarly, we would expect media player apps to

57

have intensity H at the network layer, but L at the user layer. Table 4.6 supports these

expectations, and suggests that the the H-M -L thumbnail could be an initial way to

classify apps into coarse behavioral categories.

4.3.2 Cross-layer Analysis

We introduce a notion of cross-layer analysis to compare the inferred (or ob-

served) behavior across different layers. Performing this analysis serves two purposes:

to identify potential discrepancies (e.g., resource usage via intents, as explained in Sec-

tion 4.2.1), and to help characterize app behavior in cases where examining just one

layer is insufficient. We now provide some examples.

Network traffic disambiguation. By cross-checking the user and network layers

we were able to distinguish advertising traffic from expected traffic. For example, when

profiling the Dolphin browser, by looking at both layers, we were able to separate adver-

tisers traffic from web content traffic (the website that the user browses to), as follows.

From the user layer trace, we see that the user surfed to, for example, cnn.com, which,

when combined with the network traffic, can be used to distinguish legitimate traffic

coming from CNN and advertising traffic originating at CNN; note that the two traffic

categories are distinct and labeled Origin and Third-party, respectively, in Section 4.2.4.

If we were to only examine the network layer, when observing traffic with the source

cnn.com, we would not be able to tell Origin traffic apart from ads placed by cnn.com.

Application disambiguation. In addition to traffic disambiguation, we envision

cross-layer checking to be useful for behavioral fingerprinting for apps. Suppose that we

58

need to distinguish a file manager app from a database-intensive app. If we only exam-

ine the operating system layer, we would find that both apps show high FS (filesystem)

activity. However, the database app does this without any user intervention, whereas

the file manager initiates file activity (e.g., move file, copy file) in response to user input.

By cross-checking the operating system layer and user layer we can distinguish between

the two apps because the file manager will show much higher user-layer activity. We

leave behavioral app fingerprinting to future work.

4.3.3 Free Versions of Apps Could End Up Costing More Than Their

Paid Versions

The Android platform provides an open market for app developers. Free apps

(69% of all apps on Google Play [17]) significantly contributed to the adoption of Android

platform. However, the free apps are not as free as we would expect. As we will explain

shortly, considerable amounts of network traffic are dedicated to for-profit services, e.g.,

advertising and analytics.

In fact, we performed a cross-layer study between free apps and their paid

counterparts. As mentioned above, users carried out the same task when running the free

and paid versions of an app. We now proceed to describe findings at each layer. We found

no difference at the static layer (Table 4.2). At the user-layer, Figure 4.2 shows that

most of behaviors are similar between free and paid version of the apps, which indicates

that free and paid versions have similar GUI layouts, and performing the same task

takes similar effort in both the free and the paid versions of an app. The exception was

the photography app Picsay. At first we found this finding counterintuitive; however,

the paid version of Picsay provides more picture-manipulating functions than the free

version, which require more navigation (user input) when manipulating a photo.

59

Differences are visible at the OS layer as well: as shown in Table 4.4, system

call intensity is significantly higher (around 50%–100%) in free apps compared the their

paid counterparts, which implies lower performance and higher energy consumption.

The only exception is Picsay, whose paid version has higher system call intensity; this

is due to increased GUI navigation burden as we explained above.

We now move on to the network layer. Intuitively, the paid apps should not

bother users with the profit-making extra traffic, e.g., ads and analytics, which consumes

away the data plan. However, the results only partially match our expectations. As

shown in Table 4.5, we find that the majority of the paid apps indeed exhibit dramatically

reduced network traffic intensity, which help conserve the data plan. Also, as explained

in Section 4.3.6, paid apps talk to fewer data sources than their free counterparts.

However, we could still observe traffic from Google and third party in the paid apps. We

further investigate whether the paid apps secure their network traffic by using HTTPS

instead of HTTP. As shown in Table 4.5, that is usually not the case, with the exception

of Instant Heart Rate.

To sum up, the “free” in “free apps” comes with a hard-to-quantify, but no-

ticeable, user cost. Users are unaware of this because multi-layer behavior is generally

opaque to all but most advanced users; however, this shortcoming is addressed well by

ProfileDroid.

4.3.4 Heavy VM&IPC Usage Reveals a Security-Performance Trade-

off

As mentioned in Section 4.2.3, Android apps are isolated from the hardware

via the VM, and isolated from each other by running on separate VM copies in separate

processes with different UIDs. This isolation has certain reliability and security advan-

60

tages, i.e., a corrupted or malicious app can only inflict limited damage. The flip side,

though, is the high overhead associated with running bytecode on top of a VM (instead

of natively), as well as the high overhead due to IPC communication that has to cross

address spaces. The VM&IPC column in Table 4.4 quantifies this overhead: we were

able to attribute around two-thirds of system calls (63.77% to 87.09%, depending on the

app) to VM and IPC. The precise impact of VM&IPC system calls on performance and

energy usage is beyond the scope of this dissertation, as it would require significantly

more instrumentation. Nevertheless, the two-thirds figure provides a good intuition of

the additional system call burden due to isolation.

4.3.5 Most Network Traffic is not Encrypted

As Android devices and apps manipulate and communicate sensitive data (e.g.,

GPS location, list of contacts, account information), we have investigated whether the

Android apps use HTTPS to secure their data transfer. Last column of Table 4.5 shows

the split between HTTP and HTTPS traffic for each app. We see that most apps use

HTTP to transfer the data. Although some apps secure their traffic by using HTTPS,

the efforts are quite limited. This is a potential concern: for example, for Facebook

77.26% of network traffic is HTTPS, hence the remaining 22.74% can be intercepted

or modified in transit in a malicious way. A similar concern is notable with Instant

Heart Rate, a health app, whose free version secures only 13.73% of the traffic with

HTTPS; personal health information might leak in the remaining 86.27% HTTP traffic.

We further investigate which traffic sources are using HTTPS and report the results in

Table 4.8. Note how HTTPS data sources (Origin, CDN, Google) also deliver services

over HTTP. These results reveal that deployment of HTTPS is lagging in Android

apps—an undesirable situation as Android apps are often used for privacy-sensitive

61

tasks.

4.3.6 Apps Talk to Many More Traffic Sources Than One Would Think

When running apps that have Internet permission, the underlying network

activity is a complete mystery: without access to network monitoring and analysis

capabilities, users and developers do not know where the network traffic comes from and

goes to. To help address this issue, we investigate the traffic sources; Table 4.5 shows

the number of distinct traffic sources in each app, while Table 4.9 shows the number

of distinct traffic sources per traffic category. We make two observations here. First,

Table 4.5 reveals that most of the apps interact with at least two traffic sources, and

some apps have traffic with more than 10 sources, e.g., Pandora and Shazam, because

as we explained in Section 4.2.4, traffic sources span a wide range of network traffic

categories: Origin, CDN, Cloud, Google and third party. Second, paid apps have fewer

traffic sources than their free counterparts (3 vs. 8 for Dictionary.com, 4 vs. 13 for

Shazam, 9 vs. 22 for Dolphin), and the number of third-party sources is 0 or 1 for

most paid apps. This information is particularly relevant to app developers, because

not all traffic sources are under the developer’s control. Knowing this information makes

both users and developers aware of the possible implications (e.g., data leaking to third

parties) of running an app.

4.3.7 How Predominant is Google Traffic in the Overall Network Traf-

fic?

Android apps are relying on many Google services such as Google maps,

YouTube video, AdMob advertising, Google Analytics, and Google App Engine. Since

62

Google leads the Android development effort, we set out to investigate whether Google

“rules” the Android app traffic. In Table 4.5, we have presented the percentage of

Google traffic relative to all traffic. While this percentage varies across apps, most apps

have at least some Google traffic. Furthermore, Google traffic dominates the network

traffic in the apps Tiny Flashlight (99.79%), Gasbuddy (81.37%) and Instant Heart

Rate (85.97%), which shows that these apps crucially rely on Google services. However,

some apps, such as Amazon and Facebook, do not have Google traffic; we believe this

information is relevant to certain categories of users.

In addition, we further break down the Google traffic and analyze the ratio of

incoming traffic from Google to outgoing traffic to Google. The ratios are presented in

Table 4.9. We find that most apps are Google data receivers (in/out ratio > 1). However,

Advanced Task Killer, Picsay and Flixster, are sending more data to Google than

they are receiving (in/out ratio < 1); this is expected.

4.4 Acknowledgement

The design, implementation and evaluation of ProfileDroid are the result of

joint work. Lorenzo Gomez developed the replay part used in ProfileDroid.

63

App name Category

Dictionary.com, Reference

Dictionary.com-$$

Tiny Flashlight Tools

Zedge Personalization

Weather Bug, Weather

Weather Bug-$$

Advanced Task Killer, Productivity

Advanced Task Killer-$$

Flixster Entertainment

Picsay, Photography

Picsay-$$

ESPN Sports

Gasbuddy Travel

Pandora Music & Audio

Shazam, Music & Audio

Shazam-$$

Youtube Media & Video

Amazon Shopping

Facebook Social

Dolphin, Communication (Browsers)

Dolphin-$$

Angry Birds, Games

Angry Birds-$$

Craigslist Business

CNN News & Magazines

Instant Heart Rate, Health & Fitness

Instant Heart Rate-$$

Table 4.1: The test apps; app-$$ represents the paid version of an app.

64

App In
te

rn
e
t

G
P

S

C
a
m

e
ra

M
ic

ro
p

h
n

e

B
lu

e
to

o
th

T
e
le

p
h

o
n
y

Dictionary.com X I I

Dictionary.com-$$ X I I

Tiny Flashlight X X

Zedge X

Weather Bug X X

Weather Bug-$$ X X

Advanced Task Killer X

Advanced Task Killer-$$ X

Flixster X X

Picsay X

Picsay-$$ X

ESPN X

Gasbuddy X X

Pandora X X

Shazam X X X

Shazam-$$ X X X

YouTube X

Amazon X X

Facebook X X I X

Dolphin X X

Dolphin-$$ X X

Angry Birds X

Angry Birds-$$ X

Craigslist X

CNN X X

Instant Heart Rate X X I I

Instant Heart Rate-$$ X X I I

Table 4.2: Profiling results of static layer; ‘X’ represents use via permissions, while ‘I’
via intents.

65

App Touch intensity Swipe/Press ratio

Picsay medium low

CNN medium high

Table 4.3: Touch intensity vs. swipe/press ratio

66

App Syscall FS NET VM& MISC

intensity IPC

(calls/sec.) (%) (%) (%) (%)

Dictionary.com 1025.64 3.54 1.88 67.52 27.06

Dictionary.com-$$ 492.90 7.81 4.91 69.48 17.80

Tiny Flashlight 435.61 1.23 0.32 77.30 21.15

Zedge 668.46 4.17 2.25 75.54 18.04

Weather Bug 1728.13 2.19 0.98 67.94 28.89

Weather Bug-$$ 492.17 1.07 1.78 75.58 21.57

AdvTaskKiller 75.06 3.30 0.01 65.95 30.74

AdvTaskKiller-$$ 30.46 7.19 0.00 63.77 29.04

Flixster 325.34 2.66 3.20 71.37 22.77

Picsay 319.45 2.06 0.01 75.12 22.81

Picsay-$$ 346.93 2.43 0.16 74.37 23.04

ESPN 1030.16 2.49 2.07 87.09 8.35

Gasbuddy 1216.74 1.12 0.32 74.48 24.08

Pandora 286.67 2.92 2.25 70.31 24.52

Shazam 769.54 6.44 2.64 72.16 18.76

Shazam-$$ 525.47 6.28 1.40 74.31 18.01

YouTube 246.78 0.80 0.58 77.90 20.72

Amazon 692.83 0.42 6.33 76.80 16.45

Facebook 1030.74 3.99 2.98 72.02 21.01

Dolphin 850.94 5.20 1.70 71.91 21.19

Dolphin-$$ 605.63 9.05 3.44 68.45 19.07

Angry Birds 1047.19 0.74 0.36 82.21 16.69

Angry Birds-$$ 741.28 0.14 0.04 85.60 14.22

Craigslist 827.86 5.00 2.47 73.81 18.72

CNN 418.26 7.68 5.55 71.47 15.30

InstHeartRate 944.27 7.70 1.73 75.48 15.09

InstHeartRate-$$ 919.18 12.25 0.14 72.52 15.09

Table 4.4: Profiling results: operating system layer.

67

App Traffic Traffic Origin CDN+Cloud Google Third Traffic HTTP/HTTPS

intensity In/Out party sources split

(bytes/sec.) (ratio) (%) (%) (%) (%) (%)

Dictionary.com 1450.07 1.94 – 35.36 64.64 – 8 100/–

Dictionary.com-$$ 488.73 1.97 0.02 1.78 98.20 – 3 100/–

Tiny Flashlight 134.26 2.49 – – 99.79 0.21 4 100/–

Zedge 15424.08 10.68 – 96.84 3.16 – 4 100/–

Weather Bug 3808.08 5.05 – 75.82 16.12 8.06 13 100/–

Weather Bug-$$ 2420.46 8.28 – 82.77 6.13 11.10 5 100/–

AdvTaskKiller 25.74 0.94 – – 100.00 – 1 91.96/8.04

AdvTaskKiller-$$ – – – – – – 0 –/–

Flixster 23507.39 20.60 2.34 96.90 0.54 0.22 10 100/–

Picsay 4.80 0.34 – 48.93 51.07 – 2 100/–

Picsay-$$ 320.48 11.80 – 99.85 0.15 – 2 100/–

ESPN 4120.74 4.65 – 47.96 10.09 41.95 5 100/–

Gasbuddy 5504.78 10.44 6.17 11.23 81.37 1.23 6 100/–

Pandora 24393.31 28.07 97.56 0.91 1.51 0.02 11 99.85/0.15

Shazam 4091.29 3.71 32.77 38.12 15.77 13.34 13 100/–

Shazam-$$ 1506.19 3.09 44.60 55.36 0.04 – 4 100/–

YouTube 109655.23 34.44 96.47 – 3.53 – 2 100/–

Amazon 7757.60 8.17 95.02 4.98 – – 4 99.34/0.66

Facebook 4606.34 1.45 67.55 32.45 – – 3 22.74/77.26

Dolphin 7486.28 5.92 44.55 0.05 8.60 46.80 22 99.86/0.14

Dolphin-$$ 3692.73 6.05 80.30 1.10 5.80 12.80 9 99.89/0.11

Angry Birds 501.57 0.78 – 73.31 10.61 16.08 8 100/–

Angry Birds-$$ 36.07 1.10 – 88.72 5.79 5.49 4 100/–

Craigslist 7657.10 9.64 99.97 – – 0.03 10 100/–

CNN 2992.76 5.66 65.25 34.75 – – 2 100/–

InstHeartRate 573.51 2.29 – 4.18 85.97 9.85 3 86.27/13.73

InstHeartRate-$$ 6.09 0.31 – 8.82 90.00 1.18 2 20.11/79.89

Table 4.5: Profiling results of network layer; ‘–’ represents no traffic.

68

App Static User OS Network

(# of (events/ (syscall/ (bytes/

func.) sec.) sec.) sec.)

Dictionary.com L M H M

Dictionary.com-$$ L M M M

Tiny Flashlight M L M L

Zedge L M M H

Weather Bug M M H M

Weather Bug-$$ M M M M

AdvTaskKiller L M L L

AdvTaskKiller-$$ L M L L

Flixster M M L H

Picsay L M L L

Picsay-$$ L M M M

ESPN L M H M

Gasbuddy M M H M

Pandora M L L H

Shazam H L M M

Shazam-$$ H L H M

YouTube L M M H

Amazon M M M H

Facebook H H H M

Dolphin M H M H

Dolphin-$$ M H M M

Angry Birds L H M M

Angry Birds-$$ L H H L

Craigslist L H H H

CNN M M M M

InstHeartRate M L H M

InstHeartRate-$$ M L H L

Table 4.6: Thumbnails of multi-layer intensity in the H-M -L model (H:high,
M :medium, L:low).

69

Layer Min Q1 Med Q3 Max

Static 1 1 2 2 3

User 0.57 3.27 7.57 13.62 24.42

OS 30.46 336.14 605.63 885.06 1728.13

Network 0 227.37 2992.76 6495.53 109655.23

Table 4.7: The ranges for five-number summary

App HTTPS traffic sources HTTP

Pandora Pandora, Google yes

Amazon Amazon yes

Facebook Facebook, Akamai yes

Instant Heart Rate Google yes

Instant Heart Rate-$$ Google yes

Table 4.8: Traffic sources for HTTPS.

70

App CDN+ Google Third Google

Cloud party In/Out

Dictionary.com 3 1 4 2.42

Dictionary.com-$$ 2 1 0 1.92

Tiny Flashlight 0 1 3 2.13

Zedge 2 1 1 2.06

Weather Bug 5 1 7 4.93

Weather Bug-$$ 3 1 1 13.20

AdvTaskKiller 0 1 0 0.94

AdvTaskKiller-$$ 0 0 0 –

Flixster 4 1 4 0.90

Picsay 1 1 0 0.93

Picsay-$$ 1 1 0 0.94

ESPN 1 1 3 3.84

Gasbuddy 2 1 2 17.25

Pandora 3 1 6 3.63

Shazam 3 1 8 2.61

Shazam-$$ 1 1 1 0.84

YouTube 0 1 0 11.10

Amazon 3 0 0 –

Facebook 2 0 0 –

Dolphin 0 1 17 5.10

Dolphin-$$ 0 1 4 2.99

Angry Birds 1 1 6 2.26

Angry Birds-$$ 2 1 0 1.04

Craigslist 6 0 3 –

CNN 1 0 0 –

InstHeartRate 1 1 1 2.41

InstHeartRate-$$ 1 1 0 1.21

Table 4.9: Number of distinct traffic sources per traffic category, and the ratio of in-
coming to outgoing Google traffic; ‘–’ means no Google traffic.

71

Chapter 5

Enabling BYOH Management via

Behavior-aware Profiling

5.1 Brofiler: Systematic Profiling

We propose a systematic approach to profile BYOHs based on their behav-

ioral patterns. The goal is to develop a classification that is: intuitive and useful, so

that network administrators can monitor, manage, and reason about groups of BYOHs.

Our framework focuses on profiling user behavior based on multiple dimensions such as

frequency of appearance, data usage, and IP requests. At the same time, our profiling

can be integrated in a policy and traffic management system as shown in Figure 5.1. In

Section 5.3 we discuss the kind of policies our approach can help put in place.

5.1.1 Datasets and Initial Statistics

Our study is based on two datasets collected at a monitoring point inside a

large, educational, campus network. One dataset, denoted DHCP-366,1 consists of the

1The 366 stands for the days of 2012, which was a leap year.

72

3URILOHV

3ROLFLHV

7UDIILF�0DQDJHPHQW�
1HWZRUN�
7UDIILF

3ROLF\�(QIRUFHPHQW

0RQLWRU�DQG�3URILOLQJ

%URILOHU

6\V$GPLQ

Figure 5.1: System architecture of Brofiler.

campus WLAN’s year-long DHCP logs from January 2012 to December 2012. Another

dataset (denoted as Traffic-May) is network flow-level traffic for BYOHs during the

month May 2012, which is obtained as follows. First, WLAN traffic is filtered by the

WLAN IP address pool. We then identified those IP addresses associated with BYOHs

from DHCP logs during May 2012 (we use DHCP-May to denote the DHCP logs from May

2012). For each BYOH, we use the mapping between its IP addresses and MAC address

to identify the network traffic flows associated with the device in the flow-level traffic

dataset. In total, our year-long DHCP dataset (DHCP-366) comprises 22,702 BYOHs and

29,861 non-BYOHs. The month-long BYOHs’ traffic dataset (Traffic-May) comprises

6,482 BYOHs.

BYOH vs. non-BYOH. We identified BYOHs by examining the device’s

operating system keywords and MAC address as captured by the DHCP log file. First,

we extracted each device’s manufacturer; the MAC address contains an OUI (Orga-

nizationally Unique Identifier) which identifies the manufacturer [41]. Next, we use

73

Device Type Count Percentage

BYOHs 22,702 43.2%

Android 10,756 47.4%

iOS 11,328 50%

BlackBerry OS 618 2.6%

non-BYOHs 29,861 56.8%

Table 5.1: Distribution of devices in dataset DHCP-366.

the operating system and manufacturer information to distinguish between BYOH and

non-BYOHs. We identify BYOHs based on keywords (e.g., Android, iPad, iPhone, or

BlackBerry) in their operating system name [39, 41]. Table 5.1 shows the number of

devices in each category in the dataset DHCP-366. Note that BYOHs represent 43.2%

of WLAN-using devices during one year, thus constituting a significant presence on the

campus network.

Mobile platforms. We observe three mobile platforms in our DHCP-366

dataset: Android, iOS, and BlackBerry. As expected, Android and iOS are dominant

and together, they account for roughly 97.4% of BYOHs.

5.1.2 Our Approach

We first present our classification approach using three dimensions, and then

we combine multiple dimensions.

a. Data plane. In this dimension, we profile devices based on the traffic

that they generate. Clearly, there are many different aspects and properties of traffic;

in this work, we focus on traffic intensity. First, we determine whether the BYOH has

any network traffic. Note that we define network traffic as the traffic that goes over the

74

institution’s network, not over the mobile wireless carrier.

We define two categories of BYOHs: (a) Zero traffic BYOHs or or mobile

zombies, that do not generate any network traffic, and (b) Non-zero traffic BYOHs,

that generate traffic. Later, we show how we further study traffic behavior based on

traffic intensity. In our dataset, there are 3,040 zero traffic BYOHs and 3,442 non-zero

traffic BYOHs. We present the details in Section 5.2.2.

b. Temporal behavior. In this dimension, we profile devices based on

temporal behavior, focusing on device appearance frequency on the campus network. A

human-centric way to define frequency is by counting how many distinct weeks the device

appeared on campus. The intuition is that regular employees and diligent students

appear every week on the campus network. Clearly, profiling criteria depend on the

context and nature of the network, e.g., campus versus enterprise or a government

network. Here, we use the datasets DHCP-May and Traffic-May. Note that May 2012

began on a Monday and spanned five weeks, labeled as follows: Week 1 (May 1 to May

5), Week 2 (May 6 to May 12), Week 3 (May 13 to May 19), Week 4 (May 20 to May

26), and Week 5 (May 27 to May 31).

We define the following terms. If a BYOH appears in at least four of the five

weeks, we label it as REG (short for regular). Otherwise, we label the BYOH as NRE

(short for non-regular). This applies to both zero and non-zero traffic BYOHs. We

present the details in Section 5.2.3.

c. Protocol and Control plane. This dimension captures the operational

properties of every BYOH. There are many interesting aspects such as the OS it runs,

whether it conforms to protocol specifications, and whether it could pose security con-

cerns, e.g., using encryption. In this work, we mostly focus on: (a) the behavior of the

BYOH from a DHCP point of view, i.e., how it behaves in terms of acquiring an IP

75

address, and (b) the use of encryption in terms of HTTPS. In Section 5.3.3, we also

examine whether a BYOH communicates with internal servers, which could be benign

or raise security concerns. We present details in Section 5.2.1.

d. Multi-dimensional grouping using the H-M-L model. We propose

a profiling framework using an H-M-L model, which groups devices based on intensity

measures across different dimensions using three levels per dimension: H (High), M

(Medium), and L (Low). Though we could use a different number of levels, we have

opted for a three-level model because (a) it is more intuitive and thus easier to use, and

(b) three levels are statistically suitable for capturing the distribution of the users on

the dimensions of interest. Specifically, we used the X-means clustering algorithm [23]

on our data to identify the three clusters and derive the thresholds, which correspond

to our levels.

Flexibility and customizability. The main point here is to provide an initial

framework and showcase its usefulness. Clearly, our framework can be customized and

extended. Note that one could consider different or multiple metrics from each dimension

and appropriately define thresholds for defining the H-M-L levels. The selection of

metrics and thresholds could be dictated by: (a) what the network administrator wants

to identify, and (b) the nature of the traffic under scrutiny. For example, in a military

setting, devices could be expected to be present every day and a single unjustified

absence could be a cause for concern.

The value of an intuitive model. The rationale behind our H-M-L model

is that, often, relative and contextualized metrics are more useful than raw performance

numbers, depending on the task at hand. For example, reporting that a user generates

100MB of data in a month is more precise, but arguably less useful than knowing that a

user belongs to the network’s heavy-hitters. We argue that an intuitive model can help

76

All Users
6,482

Zero Traffic
3,040

Non-Zero Traffic
3,442

REG
799

NRE
2,241

REG
2,097

NRE
1,345

Figure 5.2: A visualization of Brofiler’s classification hierarchy: group designation
and number of BYOHs in each group. We use the H-M-L model to further refine the
leaves of the tree.

administrators form a conceptual picture and then dive deeper into more fine-grained

and quantitative analysis, as needed.

5.1.3 The Utility of Our Approach

To showcase how Brofiler helps us identify interesting groups of users, we use

two dimensions: days of appearance and daily average traffic. Days of appearance is

the number of days that each BYOH shows up in the campus network. Daily average

traffic is the ratio of total traffic per BYOH during one month over the number of days

it shows up. We argue that the metrics and dimensions defined above are sufficient to

give interesting results, and help administrators improve or devise new policies, as we

do in Section 5.3.

The classification (groups and number of devices in each group) is shown in

Figure 5.2. We further profile the REG and NRE group devices with the H-M-L model.

We present a more detailed discussion and related plots that lead to the observations

below in Section 5.2. Note that we use data from the month of May 2012, where we

77

have both DHCP, DHCP-May, and traffic information, Traffic-May. We now turn to

presenting some of the findings enabled by Brofiler.

1. In the Traffic-May dataset, nearly half of the BYOHs are mobile zombies,

which we define as BYOHs that hold IP addresses without transferring any data

through the campus network. Note that the data transferred while interacting

with the captive portal does not count; rather we mean no data is transferred

after the captive portal exchange.

2. We find that 23% of the BYOHs in Traffic-May are vagabonds, a term we use

to refer to BYOHs that appear only one day during that month. Vagabonds is a

sub-category of non-regular BYOHs, that we defined earlier.

3. We found that 3% of non-zero traffic BYOHs show low frequency of appearance

and high traffic (denoted as LH), which is an uncommon behavior. We investigated

this further and found the cause to be the use of video and streaming.

4. 26% of the mobile zombies appear frequently, each for more than 10 days in a

month. This group unnecessarily and repeatedly occupies IP addresses, and should

be managed accordingly.

5. We identify a group with high frequency of appearance during the month and

low traffic (denoted as HL in our H-M-L classification), which accounts for 4% of

non-zero traffic BYOHs.

5.2 Studying and Profiling BYOHs

We use Brofiler as a starting point towards a long-term study on real BYOH

traces. We show how Brofiler can help us profile and classify BYOHs, and reveal

78

performance and network management issues. The goal here is to highlight both the

usefulness of our approach, and interesting observations on BYOH behaviors. Even

for the rather expected behaviors, such as diurnal pattern and bimodal usage, this is

arguably the first study to quantify these behaviors for BYOHs in a systematic and

comprehensive way.

Summary of observations. We highlight our results grouped by the four

dimensions of our approach.

a. Protocol and Control Plane.

1. 68% of BYOHs misbehave, by not conforming to the DHCP protocol specifications.

2. 80.6% of the IP lease requests by BYOHs are non-conforming.

3. Most of the web data of BYOHs is not encrypted: less than 15% of web traffic

uses HTTPS.

b. Data Plane.

1. Of the BYOHs that produce traffic, 94% generate network traffic of less than

100MB (in a month). However, just 6% of BYOHs generate 82.1% of total BYOHs’

traffic.

2. Data generation is very bursty, with 70% of BYOHs generating half of their

monthly traffic in just one day. Surprisingly, 28.8% of BYOHs are active (sending

or receiving traffic) only one day during the month.

3. 42% of BYOHs talk to internal (campus) servers.

c. Temporal Behavior.

1. BYOHs’ patterns of appearance on the network follow weekly and daily patterns.

79

2. Intra-day behaviors of BYOHs are anthropocentric.

3. 55% of BYOHs are NRE devices while 45% of devices are REG devices.

4. Over 23% of the BYOHs are vagabonds that appear on only one day.

d. Multi-level profiling. The key results were listed in Section 5.1.3.

5.2.1 Protocol and Control Plane

There are many interesting aspects in this dimension. Here, we focus on the

DHCP operations of BYOHs and the use of encryption.

Non-conforming IP Lease Requests. We examine the DHCP operations

between BYOHs and DHCP servers. We find that 68% of BYOHs issue unnecessary IP

lease requests; this behavior is largely limited to BYOHs. We define a non-conforming

IP lease request as an IP lease request sent by a device which already has an IP address

from an earlier, unexpired lease. Note that this process begins with DHCPDISCOVER and

it is not the regular IP lease renewal process via DHCPREQUEST. In other words, clients

behave as if the IP acquisition process has failed, and they go back to the initial IP

discovery phase, as indicated by the DHCPDISCOVER message.

Roughly 80% of IP requests issued by BYOHs are non-conforming.

This erratic behavior significantly increases DHCP server workload and overloads the

networks’ DHCP service. In contrast, we find that non-BYOHs never issue such requests.

Recent anecdotal evidence suggests that software bugs (acknowledged by Google [3]) in

BYOHs are responsible for this misbehavior and argues that this erratic behavior is

not due to the events of disconnection, reconnection and roaming [1,3].This observation

suggests that network administrators should monitor and diagnose protocol operation

behaviors from BYOHs in order to detect malfunctioning devices.

80

Given the observation above, a question arises naturally: Are BYOHs making

more IP requests because of shorter IP lease times? We show that this is not the case.

BYOHs issue more IP lease requests, although they have longer lease times compared

to non-BYOHs. We identify lease times by analyzing the DHCPOFFER and DHCPACK

messages, which contain a variety of lease parameters, including IP address lease time.

We compute the average IP lease for both types of devices and find that the average

IP lease time of non-BYOHs is 28 minutes, whereas that of BYOHs is 2.6 hours. This

rules out a short lease time as the cause for the large number of IP lease requests from

BYOHs.

Encrypted Traffic. Our study confirms that HTTP traffic dominates BYOH

traffic [6,75]. However, we observe diverse HTTPS/HTTP ratios across BYOHs. We find

that roughly 24% of BYOHs have network traffic in which the fraction of traffic that uses

HTTPS is over 50%. Surprisingly, some BYOHs have 100% HTTPS traffic. We further

investigate the HTTPS domains that BYOHs talk to (Table 5.2). We see that most of

the HTTPS traffic is from popular online service providers. This is natural, as traffic to

these providers is privacy-sensitive. For example, Amazon provides shopping and cloud

services, and maintains personal or business transaction information. Facebook, the

popular social networking service, contains private content, such as personal messages

and photos. We see that web servers internal to the campus are among the top five web

servers in terms of HTTPS traffic volume, with 13.2% of the total HTTPS traffic; these

correspond to secure enterprise services, such as financial services, employee credentials,

and email. Though we find the percentage of HTTPS traffic to be small, it is not clear

that the presence of unencrypted HTTP traffic is necessarily a security risk. To verify

this, we need to do an in-depth analysis of the unencrypted traffic, which we could not

81

Amazon 17.95%

Facebook 13.3%

MSN 13.3%

internal web-servers 13.2%

Google 11.36%

Table 5.2: Top 5 HTTPS domains in our data by percentage of HTTPS traffic.

C
D

F

0

0.5

1.0

Device Traffic (MB)
0 500 1000 1500 2000 2500

Figure 5.3: Distribution of traffic volume per BYOH.

perform with our current data trace (lack of access to HTTP headers or payload data).

5.2.2 Data Plane

In this dimension, we focus on the traffic behavior of BYOHs. We first profile

and classify the BYOHs by looking at the traffic volume generated by each BYOH, then

further look at the traffic dynamics, and whether these BYOHs talk to internal servers

and malicious sites.

82

C
D

F

0

0.2

0.4

0.6

0.8

1.0

Ratio of Max Traffic vs. Total Traffic
10 20 30 40 50 60 70 80 90 100

Figure 5.4: Ratio of maximum daily traffic volume over total monthly traffic for each
device.

Traffic Volume. In Figure 5.3, we plot the distribution of traffic volume

across BYOHs, over the entire month. The distribution is highly skewed as roughly

94% of BYOHs generate less than 100MB during the month. The traffic volume per

BYOH varies significantly across BYOHs, e.g., traffic volume ranges from as little as

72 bytes to as large as 2.5GB. In fact, we find that 6% of BYOHs generate 82.1% of

the total traffic from BYOHs. This strongly indicates that a small fraction of BYOHs

consumed most of the network bandwidth, hence classifying such groups of users and

prioritizing network resources accordingly are desirable (see Section 5.3.2).

Traffic Dynamics. A natural question to ask is whether the traffic behavior is

consistent day to day. We find that it is not. In Figure 5.4, we plot the CDF of the ratio

between the maximum daily traffic over the total volume of the BYOH for the month.

If the traffic was equally distributed among the days of the month, then the maximum

daily traffic over the total monthly volume would be around 3.33% (100% divided by 30

days), hence the CDF would rise abruptly around the 3.33 point on the x-axis. Instead,

we see that more than 70% of BYOHs consume half of their total monthly traffic in

83

a single day (x = 50, y = 0.3). Surprisingly, 28.8% of BYOHs are active (sending or

receiving traffic) only one day in the entire month. The above observations are helpful

guidelines for managing and provisioning the network. At a high level, the observations

suggest that traffic volumes: (a) vary across devices significantly, and (b) are very bursty

in time. An effective management policy will need to consider these factors. In fact, we

will see how they can help devise policies in Section 5.3.2.

Talking to internal servers and malicious sites. We found that 42%

of BYOHs talk to internal servers (i.e., servers within the campus network) and 58%

talk only to outside servers. We also examine the traffic sources to see if any BYOHs

are connecting to blacklisted websites and IPs—we found no such devices. Overall,

understanding the typical behavior of users could provide profiles and patterns that

could help identify outliers and surprising behaviors.

5.2.3 Temporal Behavior

We now study the temporal behavior of BYOHs.

Weekly and Daily Patterns. Our study indicates that BYOHs’ patterns

of appearance on the network follow weekly and daily patterns. Our daily observations

along the entire month indicate that the number of BYOHs exhibits weekly periodicity:

the number of devices increases on Monday, reaches its peak point on Tuesday and

Thursday, and then decreases from Friday to Sunday. By considering these weekly and

daily patterns, network operators have an opportunity to provision and use network

resources more efficiently.

Intra-Day Behavior. To manage traffic on a per-hour basis, we need to

understand the intra-day behavior of BYOHs. In Figure 5.5, we plot the number of

84

N
um

be
r o

f B
YO

H
s

0

500

1000

1500

Hour of Day

12
am 1a
m

2a
m

3
am 4a
m

5a
m

6a
m

7a
m

8a
m

9a
m

10
am

11
am

12
pm 1p
m

2p
m

3p
m

4p
m

5p
m

6p
m

7p
m

8p
m

9p
m

10
pm

11
pm

Figure 5.5: Active BYOHs at each hour.

Number of time regions Devices appearing (%)

1 39.4

2 42.27

3 17.69

4 0.64

Table 5.3: Time regions vs. percentage of devices.

active devices at each hour of the day. We observe that the number of active BYOHs

(sending or receiving traffic) is low before 6 a.m. After 6 a.m., the number of active

BYOHs increases and reaches a peak point during 11 a.m.–1 p.m. After 1 p.m., the

number of active BYOHs decreases steadily until 11 p.m.

We further examine for how long devices are present during a day to enable a

more “anthropocentric” analysis. Based on this observed behavior, which was consistent

with other days, we define four distinct time regions during a day: Night (12 a.m.–6

a.m.), Morning (6 a.m.–12 p.m.), Afternoon (12 p.m.–6 p.m.), and Evening (6 p.m.–12

85

a.m.). In Table 5.3, we show how many time regions devices appear in. We can see that

most devices appear in 1 or 2 time regions, with 3 time regions being rare and 4 time

regions uncommon. We further find that among the 1-time-region devices, Afternoon

is the most popular. Among all devices that appear on two time regions, most devices

appear during Morning and Afternoon, as expected. Note that while this behavior is

unsurprising, we are the first to quantify these aspects.

Regularity of appearance. For every BYOH, we determine whether it ap-

pears regularly on campus. A human-centric way to define frequency is by counting

how many distinct weeks the BYOH has appeared on the network—the intuition is that

regular employees appear every week. This social behavior could allow us to estimate

which group of devices are used by regular employees, and which group of devices are

used by visitors, part-time contractors, and vagabonds. Recall that we classify BYOHs

into REG and NRE, as discussed earlier in Section 5.1. We apply this classification to both

BYOHs with zero and non-zero traffic, and identify 2,896 REG BYOHs and 3,586 NRE

BYOHs.

Vagabonds. In Figure 5.6, we see that over 23% of the BYOHs are vagabonds

that appear only one day. Furthermore, 32% of mobile zombies (Zero-traffic BYOHs,

see definition in Section 5.2.4), i.e., more than 1,000 BYOHs, belong to this group.

Identifying this group could prompt several actions at the operational level. First, we

could manage them separately, as they may not be employees. Second, we may want

to give them short IP leases, until they prove that they actually need them for sending

86

Zero Traffic BYOHs
Non-Zero Traffic BYOHs

N
um

be
r o

f B
YO

H
s

0

200

400

600

800

1000

1200

Number of Days of Appearances for Devices
0 5 10 15 20 25 30 35

Figure 5.6: Distribution of days of appearance.

data.

5.2.4 Multi-level Profiling and H-M-L Model

We find that nearly half of the BYOHs are mobile zombies. The mobile zombie

behavior can have significant implications for management purposes. First and foremost,

this behavior is potentially problematic as IP addresses are often a limited resource. As

a result, there is a need to allocate IPs in a more efficient way, for example, by not

allocating IPs to known zombie devices. Second, it is a useful observation in estimating

the required bandwidth for a group of BYOHs and defining user profiles. We highlight

how our profiling method helps us identify interesting groups of BYOHs.

Days of appearance of both Zero Traffic and Non-zero Traffic BY-

OHs. We present the distribution of devices by number of days of appearance in Fig-

ure 5.6. We can see that most of the zero traffic BYOHs appear on few days, typically

one or two. Furthermore, in Figure 5.7, we plot the number of non-zero and zero traffic

87

Zero Traffic BYOHs
Non-zero Traffic BYOHs

N
um

be
r o

f B
YO

H
s

0

500

1000

1500

Day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5.7: Number of BYOHs per calendar day.

BYOHs that appear on each calendar day. We observe that both non-zero traffic and

zero traffic BYOHs have similar distributions in terms of days of appearance within a

month, although there are fewer zero traffic BYOHs.

Intrigued, we investigated further and found that zero-traffic BYOHs that ap-

pear on only one day have a similar distribution across different weeks during the month.

In other words, there is a fairly consistent presence of vagabond devices on a daily basis.

In Table 5.4, we show the average number of IP requests for each group (for the month

of May 2012). Non-zero traffic BYOHs have a higher intensity of IP requests than zero

traffic BYOHs, as expected. In fact, non-zero traffic BYOHs place, on average, twice

as many IP requests as zero traffic BYOHs. Such an observation can help adminis-

trators estimate the number of DHCP requests, which indicates a potential use of our

device-centric profiling techniques.

Given this difference, we investigated whether there is a correlation between

traffic volume and IP lease time. In Figure 5.8, we show the distribution of IP lease times

for non-zero traffic and zero traffic BYOHs. The durations of IP lease time between zero

88

Group Avg. # IP requests

Non-zero Traffic BYOHs 66.8

REG Non-zero Traffic BYOHs 95.7

NRE Non-zero Traffic BYOHs 21.7

Zero Traffic BYOHs 34.3

REG Zero Traffic BYOHs 84.1

NRE Zero Traffic BYOHs 16.6

Table 5.4: Average IP requests per BYOH for each group.

L M H

Days of

appearance [0,8) [8,20) [20,+)

Daily average

traffic (MB) [0, 1.13) [1.13, 10.01) [10.01, +)

Table 5.5: Group definitions in the H-M-L model.

traffic and non-zero traffic BYOHs are similar, which shows that a single IP allocation

strategy is being used across all devices. This is an inefficient use of scarce IP resources,

and a differential group-based IP allocation is necessary.

Regularity of Non-zero Traffic BYOHs. We now proceed to further profile

non-zero traffic BYOHs in more detail, in a way that will help us define the thresholds

for our H-M-L model. We focus this analysis on non-zero BYOHs to understand how

device traffic, and to an extent user behavior, changes from day to day.

In Figure 5.9, we present the number of days of appearance for REG and NRE BY-

OHs. As expected, REG BYOHs appear more frequently than NRE BYOHs and most of

the NRE BYOHs show up on fewer than 8 days. As a point of reference, some students

89

Zero Traffic BYOHs
Non-Zero Traffic BYOHs

N
um

be
r o

f I
P

Le
as

es

0

20000

40000

60000

80000

Lease Time in Minutes
0 100 200 300 400 500 600 700 800

Figure 5.8: Number of IP leases vs. lease time.

Days of Daily traffic

appearance L M H

L 17% 9% 3%

M 29% 22% 8%

H 4% 5% 3%

Table 5.6: Days of appearance v. daily traffic intensity in REG non-zero traffic BYOHs.

have classes on Tuesdays and Thursdays, which would lead to 10 days of appearance in

our dataset. In addition, we see that 20 days seems to also be an important threshold

in this distribution, that aligns with users appearing more than four days a week, every

week, pointing to full-time students and campus employees. This higher frequency of

appearances of REG BYOHs on campus networks results in a higher number of IP lease

requests to the DHCP server. In Table 5.4, we can see that, in the categories of non-

zero traffic BYOHs, the intensity of IP requests from REG BYOHs is significantly larger

(by a factor of four) compared to that of NRE BYOHs. Table 5.4 shows similar results

when comparing REG with NRE in zero traffic BYOHs. Again, these observations can be

90

REG BYOHs
NRE BYOHs

N
um

be
r o

f B
YO

H
s

0

50

100

150

200

250

300

350

Number of Days of Appearances for Devices
0 5 10 15 20 25 30 35

Figure 5.9: Number of days that each REG and NRE BYOH appears.

HL BYOHs LH BYOHs

Google (22.09%) Google (21.09%)

Facebook (8.18%) Amazon (16.03%)

Amazon (7.25%) Level3 (12.15%)

Twitter (4.76%) LimeLight (9.24%)

NTT (4.4%) Akamai (7.11%)

Table 5.7: Top 5 domains for HL and LH BYOHs in the REG group (percentage is the
traffic fraction of total traffic from that group of devices).

helpful for estimating and provisioning purposes. An NRE BYOH is more likely to have

a zero-traffic day, a term we use to describe a day on which a BYOH is present but with

no traffic activity. In Figure 5.10, we see that the number of zero-traffic days in most

REG BYOHs is greater than 2, largely skewed towards more days. This indicates that

even non-zero traffic BYOHs do not necessarily use the network every day they appear.

This is another opportunity for improving the efficiency of IP address usage, assuming

the ability to identify such days. REG BYOHs exhibit more variable daily traffic behav-

ior. In Figure 5.11, we plot the distribution of the coefficient of variance of the daily

91

REG BYOHs
NRE BYOHs

N
um

be
r o

f B
YO

H
s

0

5

10

15

20

25

30

35

Zero-traffic Days
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 5.10: Number of zero-traffic days in REG and NRE non-zero traffic BYOHs.

traffic volume for REG and NRE BYOHs. We see that roughly 23% of REG BYOHs have

a coefficient larger than 1 (x = 1, y = 77) which indicates high variability.

In summary, there are significant differences between the behaviors of

REG and NRE BYOHs. This suggests that: (a) our classification can identify groups

with distinct behaviors, and (b) establishing different management policies can help

optimize resource utilization.

Using the H-M-L model for a deeper investigation. Table 5.5 shows

the thresholds that we identify using our H-M-L based classification of BYOHs. In

Table 5.6, we show the distribution of non-zero traffic REG BYOHs (in percentages) for

all possible groups in these two dimensions. The table provides a quick and intuitive

snapshot of the activity. For example, we can identify a specific group of interest that

we want to monitor and analyze further, or we can observe a surprising change in the

size of a group. Such a change could signal a new trend in the user base. For example,

an increase in the LH groups could indicate the emergence of a new high-bandwidth

application used by low-appearance users.

92

REG BYOHs
NRE BYOHs

C
D

F

0

0.2

0.4

0.6

0.8

1.0

Coefficient of Variance

Figure 5.11: Coefficient of variance of normalized traffic between REG and NRE BYOHs.

As a case-study of our model, we further analyze two of the resulting groups.

We find that 3% of REG BYOHs are in group LH: low days of appearance and high

daily average traffic. In addition, 4% of REG BYOHs form group HL: high days of

appearance and low daily average traffic. These two groups of BYOHs have rather

counter-intuitive behaviors, which we investigate next by examining the applications

that these two different groups use. To do that, we resolve the IP addresses to domain

names, as we do not have access to the HTTP headers. In Table 5.7, we present the top

five domain names for LH and HL BYOHs. We observe that most of the traffic in either

group is with Google. This is not surprising, as Google is one of the most frequently

accessed web sites and Google applications (e.g., Google Maps, Google Voice, Gmail)

are widely used by BYOHs. Similarly, Amazon’s cloud services serve many popular

smartphone applications (e.g., Hootsuite and Foursquare). In the HL group, we can

see that a sizable fraction of traffic goes to Facebook and Twitter, which are the most

popular social network applications. Facebook typically uses Akamai to serve sizable

static content (e.g., video), and uses its own servers to serve dynamic content directly

(e.g., wall posts). However, in the LH group, a lot of traffic goes to content delivery

93

networks (CDNs), such as Limelight and Akamai, that deliver large volume traffic (e.g.,

video). These domain differences between LH and HL groups could explain why LH

devices generate a lot of traffic, while HL devices do not. At the same time, it also

provides an indication of the interests of end-users in that group.

5.3 Operational Issues and Solutions

So far, we have applied the Brofiler framework to profile BYOHs along

multiple dimensions and to identify groups with common behaviors. Here, we close the

loop by showing how Brofiler enables administrators to employ intuitive and effective

policies to manage their network. We revisit the implications that our observations have,

and propose solutions to some of the operational issues that we have identified focusing

on the efficient use of resources.

A major advantage of our approach is that it is easy to deploy without requir-

ing any software installation on the device, or device registration. It can be deployed

by a network administrator, and it will learn BYOH behavior on-the-fly, and label and

manage devices according to a desired policy, as we explain below. However, the ad-

ministrator has the ability to label specific devices (e.g. the tablet of the president) and

treat them differently.

Note that we do not claim that our approaches are the best (or the only) ap-

proaches. Rather, we showcase the benefit of having a deep and intuitive understanding

of the BYOH traffic, which our approach provides.

94

5.3.1 Efficient DHCP Address Allocation

In the previous sections, we found that the operation of DHCP in our network

is far from ideal: (a) BYOHs issue a large number of non-conforming IP lease requests,

(b) nearly half of BYOHs acquire IP addresses, but do not send any traffic over campus

network, and (c) many “vagabond” BYOHs appear in the campus network. To address

these issues, we propose a strategy, based on three design principles, for tailoring IP

lease allocations to BYOHs. We then evaluate the effect of our proposed strategy and

show that it can substantially improve lease request behavior.

Principle #1: Device-centric priviledges: The on-the-fly learning of our approach

could lead to the creation of device profiles, which can be stored and then used to provide

different privileges and permissions to each device.

One reasonable implementation of device-centric management could be as fol-

lows: (a) all never-before seen devices are given IP addresses, (b) verified zombie devices

may be entered in a blacklist that will preclude them from procuring an IP address, un-

less the user makes an explicit request to be removed from that list, (c) there could be

a priviledged-list of devices that receive preferential treatment, with respect to DHCP

but also bandwidth as we will see later, and (d) periodically, we could flush old entries

in the database and the lists. This way, we allow visitors to use the network as guests,

but we eliminate inefficiencies for devices that do not use the network anyway, and allow

administrators to hard-code policies for particular devices.

Principle #2: Compliance validation: To cope with non-conforming IP lease re-

quests, we mandate that the DHCP server ignore non-conforming IP lease requests by

maintaining a BYOH’s current state of IP lease allocation. If a BYOH currently holds

one active IP lease, the DHCP server will ignore any subsequent non-conforming or

95

Original
Emulation-30min

D
H

C
P

Tr
af

fic

0

10000

20000

30000

May
5 10 15 20 25 30

Figure 5.12: DHCP traffic, measured as number of DHCP packets per day, before
(Original) and after applying our strategy (Emulation).

unnecessary IP lease requests.

Principle #3: Traffic-aware resource allocation: We contend that campus net-

works should be aware of BYOH usage patterns in how they allocate resources. A key

idea is to give larger IP lease times to BYOHs that send data over the network.

As proof of concept, we introduce a process for configuring IP lease times,

which we call traffic-aware exponential adaptation.

1. We issue initial leases with a small lease time on the first day of appearance of a

BYOH in the campus network; based on our observations, we set this time to 30

minutes.

2. After the first day of appearance, we configure the IP lease time for a BYOH based

on whether it sent any traffic during the previous day. If there was data transfer

in the previous day, we double the lease time; if not, we halve the lease time.

Our intention is not to find the optimal lease time protocol. Rather, our goal is

96

Original
Emulation-30min

#A
ct

iv
e

Le
as

es

0

500

D
iff

er
en

ce

0

200

Minutes
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 5.13: Number of active leases before and after applying our strategy. “Difference”
shows the differences of number of active leases between “Original” and “Emulation-
30min.”

15 min 30 min 45 min

DHCP Traffic 52.9% 55% 50%

IP Availability 42.5% 28.4% 10.2%

Table 5.8: Average improvements in DHCP traffic and IP availability under different
lease times.

to show the significant improvements such a strategy can have on DHCP operation. All

three of our principles require the system to maintain client state. The features necessary

to implement such a scheme are supported, though not required, by the DHCP RFC [65].

NAT (Network Address Translation) is an alternative, but NAT has its own issues that

sysadmins often want to avoid [66]. Managing address allocation properly is an issue

of efficient resource usage which management approaches should strive for, as resource

waste can be particularly problematic in large networks.

We evaluate our strategy on our BYOH traces by using an emulation process

similar to Khadilkar et al. [53]. We then measure IP availability and DHCP traffic.

We reduce DHCP message traffic by 55%. In Figure 5.12, we present

the amount of DHCP traffic, before applying our strategy (original, real trace) and

after applying our strategy (emulation), on dataset DHCP-May. We see that our strategy

97

reduces DHCP traffic from BYOHs on all days; the reduction is more marked on working

days. On average, our strategy reduces BYOHs’ DHCP traffic by 55%.

We increase IP availability by 28.4%. In Figure 5.13 we show the number

of active leases without (original) and with (emulation) using our strategy. We see that

the number of active leases decreases, hence our strategy improves IP availability on

most days. Overall, we improve the IP availability by an average of 28.4%.

Note that we set the initial lease time as 30 minutes in our emulation and a

different lease time setting may result in different performance improvements (Table 5.8).

For example, a 15-minute lease time could result in reducing DHCP overhead by an

average of 53% and increasing IP availability by 42.5%.

5.3.2 Enforcing Data Usage Quotas

The large number of BYOHs and the rapid growth in data demands can po-

tentially complicate the task of managing the campus network and fill up the available

capacity. We found that in our case, this increase is driven by a small fraction of BYOHs:

6% of BYOHs generate 82.1% of total BYOHs’ traffic, as noted in Section 5.2.2. The

lopsided data usage patterns of these “heavy users” could affect other users. Therefore,

we set out to explore the effectiveness of enforcing limits on the data usage per device.

Introducing data quotas per user. In a manner similar to data plan limits

imposed by commercial wireless cellular carriers or ISPs, we propose and analyze the

effects of imposing a maximum volume of data that each BYOH consumes per month

and per day. We propose quotas at two time granularities: (a) monthly quota, in

which we vary the data limits from 100MB to 500MB per-month, and (b) daily quota,

which we vary from 10MB to 300 MB per-day.

98

Data quota Affected users Saved bandwidth

(MB) (%) (%)

100 6.1 64.3

200 3.4 51.3

300 2.4 43

400 1.8 37

500 1.2 32.5

Table 5.9: Effect of enforcing a monthly quota.

Data limits can double the available bandwidth by limiting only 3–

6% of the users. We evaluate the impact of imposing different rate limits on our real

traces as follows. We replay the Traffic-May network trace, and when a BYOH device

has reached the preset data limit, we throttle that BYOH so it cannot generate more

traffic. We present the effect of per-month limits in Table 5.9 and per-day limits in

Table 5.10. In each table, the first column contains the limit, the second column shows

the percentage of users that are affected by imposing the limit, and the third column

shows the saved bandwidth, computed as the percent reduction in traffic after imposing

the specified limit. We believe that, for our campus setting, data limits are a very

effective mechanism for freeing up available bandwidth. As Tables 5.9 and 5.10 indicate,

limits such as 300MB per month and 50MB per day would save about 50% bandwidth—

effectively doubling the available bandwidth—while inconveniencing a small percentage

(3.4%–6.1%) of users.

Deployment issues. In practice, bandwidth management is a concern: the

consulted network administrators said that they impose traffic shaping near their egress

point of the network. They also expressed the desire to ensure that users get a “fair”

99

Data quota Affected users Saved bandwidth

(MB) (%) (%)

10 17.7 78.95

20 12.3 68.67

30 9.1 61.53

40 7.4 55.91

50 6.1 51.34

100 3.3 36.09

150 2.1 27.54

200 1.5 21.83

250 1.1 17.7

300 0.8 14.59

Table 5.10: Effect of enforcing a daily quota.

share of bandwidth, and they were interested in the idea of grouping users based on

their profiles (e.g., users who are streaming) and managing the usage per groups. Our

work shows that limiting heavy-hitters on a daily or monthly basis could reduce data

usage significantly, and ensure that light users are not dominated by heavy-hitters. The

specifics of the solution have to do with the network architecture, the user base behavior,

and the optimization goals (fairness, differentiated services, resource utilization, etc.),

and extends beyond the scope of this work.

5.3.3 Towards Setting Access Control Policies

Security is one of the most pressing BYOHs concerns inside the network perime-

ter of a campus or an enterprise. Management of security risks introduced by BYOHs

is still in its infancy [27]. The concern stems from: (a) lack of standard policies for BY-

100

OHs in contrast to the well established policies and tools to ensure the safety of laptops

and desktops, (b) large variations among devices OS or device OS versions, and (c) the

vulnerabilities introduced by apps, easily bought for as little as $0.99, whose behavior

and potential risks are not well-understood.

Brofiler’s profiling can provide a basis to start the discussion on providing

security policies, and enable administrators to begin reasoning about security issues. As

a showcase, we discuss how an administrator can think about establishing access control

policies. This case-study is more tentative than the two previous studies, where we

demonstrated tangible benefits. Nevertheless, we show that having intuitive groups can

provide a good starting point for developing security policies.

We now state our assumptions; while reasonable to us, in practice the specific

needs for access policies might vary across organizations or administrators. For the sake

of the case-study, we focus on non-zero traffic BYOHs. Specifically, we could assess

the security threat of each such device considering three aspects of its behavior: (a)

is the device talking to Internal Servers (IS)? (b) does it belong to the group of non-

regular devices (NRE)?, (c) does the device use unencrypted HTTP flows (HTTP)?

Clearly, the three aspects capture indications that the BYOH may pose a risk. The

first aspect captures whether the device accesses sensitive information of the institution.

The second aspect represents the regularity of the BYOH with the consideration that a

regular BYOH could be treated differently from an ephemeral BYOH. The third aspect

provides an indication of how security-sensitive is the device owner or the apps that

the device runs. For example, using unencrypted traffic could allow an eavesdropper

to gain access to sensitive personal information, and subsequently, allow the hacker to

impersonate that user, including potentially the student account, and thus putting the

network at risk.

101

Blocking Strategy Affected users Affected flows

(%) (%)

Block-All-IS 42 19

Block-NRE-IS 14 2.7

Block-All-IS-HTTP 40 11

Block-NRE-IS-HTTP 12 1.8

Table 5.11: The number of affected devices after enforcing blocking strategies at a group
level.

While this is not a comprehensive list of security aspects—depending on the

scenario and the network configuration, other issues may also be of interest in the context

of device security—note how Brofiler-supplied information allows administrators to

quantify risk and design polices to mitigate this risk.

Enforcing an access control policy per group. Given this profile-driven

approach, an administrator could restrict access to or completely block traffic to po-

tentially sensitive resources for certain groups of BYOHs. For example, let us assume

that the goal is to protect the internal servers from being accessed by BYOHs that raise

concerns, e.g., vagabonds.

Based on the groups obtained above, we consider enabling different blocking

strategies per group. We also provide an assessment of how many BYOHs will be

affected by such a restriction in Table 5.11. Block-All-IS means we block all the connec-

tions that talk to internal resources from BYOHs. Block-NRE-IS means we only block

the NRE BYOHs that talk to internal servers. Block-All-IS-HTTP or Block-NRE-IS-

HTTP means we block BYOHs with unencrypted HTTP flows from all or NRE BYOHs

correspondingly.

To sum up, we have illustrated how behavioral profiles and groups facilitate

102

an intuitive discussion on how to enforce security policies. Evaluating the effectiveness

of the aforementioned policies in a real deployment is beyond the scope of this work;

nevertheless, Brofiler has allowed us to draw up policies that have intuitive appeal.

103

Chapter 6

Related Work

In the following, we discuss research efforts that are closely related to the

problems we have addressed in this dissertation.

6.1 Android Security

Barrera et al. [22] introduced a self-organizing method to visualize permissions

usage in different app categories. A comprehensive usability study of Android per-

missions was conducted through surveys in order to investigate Android permissions’

effectiveness at warning users, which showed that current Android permission warnings

do not help most users make correct security decisions [13]. Chia et al. [58] focused

on the effectiveness of user-consent permission systems in Facebook, Chrome, and An-

droid apps; they have shown that app ratings were not a reliable indicator of privacy

risks. Enck et al. [73] presented a framework that reads the declared permissions of

an application at install time and compared it against a set of security rules to detect

potentially malicious applications. Ongtang et al. [54] described a fine-grained Android

permission model for protecting applications by expressing permission statements in

104

more detail. Felt et al. [15] examined the mapping between Android APIs and permis-

sions and proposed Stowaway, a static analysis tool to detect over-privilege in Android

apps. Our method profiles the phone functionalities in static layer not only by explicit

permission request, but also by implicit Intent usage. Comdroid found a number of

exploitable vulnerabilities in inter-app communication in Android apps [25]. Permission

re-delegation attack were shown to perform privileged tasks with the help of an app with

permissions [14]. Taintdroid performed dynamic information-flow tracking to identify

the privacy leaks to advertisers or single content provider on Android apps [74]. Fur-

thermore, Enck et al. [72] found pervasive misuse of personal identifiers and penetration

of advertising and analytics services by conducting static analysis on a large scale of

Android apps. Our work profiles the app from multiple layers, and furthermore, we

profile the network layer with a more fine-grained granularity, e.g., Origin, CDN, Cloud,

Google and so on. AppFence extended the Taintdroid framework by allowing users to

enable privacy control mechanisms [59]. Dietz et al. [49] extended the Android IPC

mechanisms to address confused deputy attacks. A behavior-based malware detection

system Crowdroid was proposed to apply clustering algorithms on system calls statis-

tics to differentiate between benign and malicious apps [38]. pBMDS was proposed

to correlate user input features with system call features to detect anomalous behav-

iors on devices [47]. Grace et al. [52] used Woodpecker to examined how the Android

permission-based security model is enforced in pre-installed apps of stock smartphones.

Capability leaks were found that could be exploited by malicious activities. DroidRanger

was proposed to detect malicious apps in official and alternative markets [79]. AdSplit

was proposed to separate the advertisement from the host app as a different process [68].

Zhou et al. characterized a large set of Android malwares and a large subset of malwares’

main attack was accumulating fees on the devices by subscribing to premium services by

105

abusing SMS-related Android permissions [78]. Colluding applications could combine

their permissions and perform activities beyond their individual privileges. They can

communicate directly [20], or exploit covert or overt channels in Android core system

components [64]. An effective framework was developed to defense against privilege-

escalation attacks on devices, e.g., confused deputy attacks and colluding attacks [67].

Peng et al. [35] proposed to use probabilistic generative models to rank the risks of

apps based on permissions and provide risk score with a real value between 0 to 100.

Grace et al. [51] proposed a system to discover malwares with two order analysis. The

first-order analysis includes discovering high-risk apps by looking at the vlunerability

specific signature and detecting medium-risk apps by looking at control and data flow

graphs. The second order analysis is to detect the malwares that use intensively en-

crypts or dynamically changes its payload. Pandita et al. [63] used natural language

processing techniques to understand why an app uses a permission.

6.2 Smartphone Measurements and Profiling

Falaki et al. [34] analyzed network logs from 43 smartphones and found com-

monly used app ports, properties of TCP transfer and the impact factors of smartphone

performance. Furthermore, they also analyzed the diversity of smartphone usage, e.g.,

how the user uses the smartphone and apps [37]. Maier et al. [29] analyzed proto-

col usage, the size of HTTP content and the types of handheld traffic. These efforts

aid network operators, but they do not analyze the Android apps themselves. Recent

work by Xu et al. [61] did a large scale network traffic measurement study on usage

behaviors of smartphone apps, e.g., locality, diurnal behaviors and mobility patterns.

Qian et al. [28] developed a tool named ARO to locate the performance and energy

106

bottlenecks of smartphones by considering the cross-layer information ranging from ra-

dio resource control to application layer. Huang et al. [44] performed the measurement

study using smartphones on 3G networks, and presented the app and device usage of

smartphones. Falaki et al. [36] developed a monitoring tool SystemSens to capture the

usage context, e.g., CPU and memory, of smartphone. Livelab [21] is a measurement

tool implemented on iPhones to measure iPhone usage and different aspects of wireless

network performance. Powertutor [48] focused on power modeling and measured the

energy usage of smartphone. All these efforts focus on studying other layers, or device

resource usage, which is different from our focus. Shafiq et al. [56] have studied the

traffic of smartphones as aggregated over backbone Internet links. Sommers et al. [45]

compared the performance of cellular and WiFi in metropolitan areas. Gember et al. [5]

developed guidelines to accurately assess smartphone performance from the perspective

of in-context.

6.3 Studies on Campus Network

Prior research on DHCP has focused on studying and optimizing DHCP per-

formance [53,71]; these are earlier studies, around 2007, when smartphones and tablets

were not widely used. A fingerprinting technique was proposed to classify devices by

type and to manage IP lease time according to device type [39]. Here, we take into ac-

count the important factor, network traffic, to optimize DHCP resource. Very few prior

efforts focus on BYOH management over campus WiFi networks, which is our main

focus here, and those efforts had largely different goals. Gember et al. [6] have studied

the user-perceived performance differences between handheld devices and non-handheld

devices(e.g., laptops) in campus networks. They found that smartphones tend to have

107

smaller flow size and smaller range of flow durations. Chen et al. [75] have studied

the network performance of smartphones in campus networks, focusing on delay and

congestion. In contrast, we focus on BYOH management from the point of view of the

network administrator and focus on individual BYOH behavior, behavior-based profiles,

which are not addressed in the aforementioned studies.

108

Chapter 7

Conclusions and Future Work

In this dissertation, we have presented several key steps to help us understand

and improve the smartphone ecosystem.

First, we have investigated how Android permission and their use evolve in the

Android ecosystem via a rigorous study on the evolution of the platform, third-party

apps, and pre-installed apps. We found that the ecosystem is becoming less secure and

offer our recommendations on how to remedy this situation. We believe that our study

is beneficial to researchers, developers, and users, and that our results have the potential

to improve the state of practice in Android security.

Second, we have presented ProfileDroid, a monitoring and profiling sys-

tem for characterizing Android app behaviors at multiple layers: static, user, OS and

network. We proposed an ensemble of metrics at each layer to capture the essential

characteristics of app specification, user activities, OS and network statistics. Through

our analysis of top free and paid apps, we show that characteristics and behavior of

Android apps are well-captured by the metrics selected in our profiling methodology,

thereby justifying the selection of these metrics. Finally, we illustrate how, by using

109

ProfileDroid for multi-layer analysis, we were able to uncover surprising behavioral

characteristics.

Finally, taking a network administrator’s point of view, we have designed and

implemented a systematic framework, Brofiler, for profiling the behavior of BYOHs

along four dimensions: (a) protocol and control plane, (b) data plane, (c) temporal

behavior, and (d) across dimensions using the H-M-L model by considering the different

levels of intensity in each dimension. We arguably provided the first multi-dimensional

study of BYOHs, which shows how our profiling can provide interesting insights. We

also showed that using profiles, a network administrator can develop effective policies

for managing BYOHs. To that end, we showcased its usefulness and the gains that it

can lead to in: (a) DHCP management, with a 28.5% increase in address availability,

and (b) bandwidth management, with a doubling of the bandwidth availability by only

rate limiting 6% of the users.

7.1 Future Directions

In the future, we will continue to extend our previous work in the following

directions:

1. We will continue to investigate and characterize the Android apps security prob-

lems from other three layers, e.g., network layer, user layer and operating system

layers, which includes resourceful information. In the following, we will plan to

defend against the Android malware from a systematic perspective, namely, by

combining the knowledge from multiple layers.

2. Based on ProfileDroid, we will continue to develop a framework that gives a

finer-grained categorization of applications on Google Play. The scope of selected

110

apps for this dissertation was small. In the following, we will try to test a signifi-

cantly larger portion of the applications on the market, and categories based off of

the metrics of our layers could be created, e.g, “Network Heavy” if the app had a

high outcome in network traffic, “Very Interactive” if the app had a high intensity

of touchscreen events. These new categories could help users select applications

according to their usage preference. When new categories are combined with the

market’s current categories, the user will have a greater ability to select the app

that best fits their preferences.

3. We will continue to expand Brofiler to: (a) reveal more interesting behaviors,

by introducing more metrics within each dimension, and (b) apply our approach to

address more BYOH-related management problems under the guidance of network

administrators. For example, integrating comprehensive access control into our

framework Brofiler. We will also continue to extend the work into more broad

domains of different networks.

111

Bibliography

[1] Android Rapidly Repeats DHCP Transactions Many Times, November 2012.
http://www.net.princeton.edu/android/android-rapidly-repeats-dhcp-transactions-
many-times-33590.html.

[2] Freewarelovers, May 2012. http://www.freewarelovers.com/android.

[3] iOS Requests DHCP Too Often, September 2012. http://www.net.princeton.edu/
apple-ios/ios40-requests-DHCP-too-often.html.

[4] Google Play. https://play.google.com/store, September 2013.

[5] A. Gember, A. Akella, J. Pang, A. Varshavsky, and R. Caceres. Obtaining In-
context Measurements of Cellular Network Performance. In ACM IMC, 2012.

[6] A. Gember, A. Anand, and A. Akella. A Comparative Study of Handheld and
Non-Handheld Traffic in Campus Wi-Fi Networks. In PAM, 2011.

[7] Amazon App Store. http://www.amazon.com/mobile-apps/b?ie=UTF8&node=
2350149011, September 2013.

[8] Android- and iOS-Powered Smartphones Expand Their Share of the Market. http:
//www.idc.com/getdoc.jsp?containerId=prUS23503312, May 2012.

[9] Android-defined Permission Category. http://developer.android.com/reference/
android/Manifest.permission group.html, September 2013.

[10] Android Developer. Android API. http://developer.android.com/guide/appendix/
api-levels.html, September 2013.

[11] Android Police. Massive Security Vulnerability In HTC Android De-
vices. http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-
htc-android-devices, October 2011.

[12] Android SDK. http://developer.android.com/sdk/android-2.2.html, September 2013.

[13] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin and D. Wagner. Android Permis-
sions: User Attention, Comprehension, and Behavior . In SOUPS, 2012.

[14] A.P. Felt, H. Wang, A. Moshchuk, S. Hanna and E. Chin. Permission Re-Delegation:
Attacks and Defenses. In USENIX Security Symposium, 2011.

112

[15] A.P.Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Permissions De-
mystified. In ACM CCS, 2011.

[16] Appannie. Google Play Passes Apples App Store In Total Downloads, July 2013.
http://blog.appannie.com/app-annie-index-market-q2-2013/.

[17] Appbrain. Number of Android Apps, September 2013. http://www.appbrain.com/
stats/number-of-android-apps.

[18] B. Krishnamurthy and C. E. Willis. Privacy diffusion on the web: A longitudinal
perspective. In WWW, 2009.

[19] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian. In-
ternet inter-domain traffic. In ACM SIGCOMM, 2010.

[20] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun. Analysis of the Com-
munication between Colluding Applications on Modern Smartphones. In ACSAC,
2012.

[21] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. LiveLab: Measuring
Wireless Networks and Smartphone Users in the Field. In HotMetrics, 2010.

[22] D. Barrera, H.G. Kayacik, P.C. van Oorschot and A. Somayaji. A Methodology
for Empirical Analysis of Permission-based Security Models and its Application to
Android. In ACM CCS, 2010.

[23] D. Pelleg, A.W.Moore. X-means: Extending K-means with Efficient Estimation of
the Number of Clusters. In ICML, 2000.

[24] D.C. Hoaglin, F. Mosteller and J. W. Tukey. Understanding robust and exploratory
data analysis, 1983. Wiley.

[25] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-Application
Communication in Android. In ACM MobiSys, 2011.

[26] Engadget. Google now at 1.5 million Android activations per day,
April 2013. http://www.engadget.com/2013/04/16/eric-schmidt-google-now-at-1-5-
million-android-activations-per/.

[27] Enterasys. Trends in BYOD:Network Management and Security Are Leading Con-
cerns, March 2013. http://blogs.enterasys.com/trends-in-byod-network-security-and-
management-are-leading-concerns/.

[28] F. Qian, Z. Wang, A. Gerber, Z. Morley Mao, S. Sen, and O. Spatscheck. Profiling
Resource Usage for Mobile apps: a Cross-layer Approach. In ACM MobiSys, 2011.

[29] G. Maier, F. Schneider, and A. Feldmann. A First Look at Mobile Hand-held
Device Traffic. In PAM, 2010.

[30] Gartner. Smartphone Sales Grew 46.5 Percent in Second Quarter of 2013 and
Exceeded Feature Phone Sales for First Time, 2013. http://www.gartner.com/
newsroom/id/2573415.

[31] Gartner. Nearly 75% Of All Smartphones Sold In Q1 Were Android. http://www.
gartner.com/newsroom/id/2482816, June 2013.

113

[32] Gartner. Worldwide PC Shipments in the First Quarter of 2013 Drop to Lowest
Levels, 2013. http://www.gartner.com/newsroom/id/2420816.

[33] Google. Android Open Source Project, September 2013. http://source.android.
com/.

[34] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin. A First
Look at Traffic on Smartphones. In ACM IMC, 2010.

[35] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru and
I. Molloy. Using Probabilistic Generative Models For Ranking Risks of Android
Apps. In ACM CCS, 2012.

[36] H.Falaki, R.Mahajan, and D. Estrin. SystemSens: A Tool for Monitoring Usage in
Smartphone Research Deployments. In ACM MobiArch, 2011.

[37] H.Falaki, R.Mahajan, S. Kandula, D.Lymberopoulos, R.Govindan, and D.Estrin .
Diversity in Smartphone Usage. In ACM MobiSys, 2010.

[38] I. Burguera,U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based mal-
ware detection system for Android. In SPSM, 2011.

[39] I. Papapanagiotou,E. M Nahum and V. Pappas. Configuring DHCP Leases in the
Smartphone Era. In ACM IMC, 2012.

[40] IDC-Press Release. Smartphones Expected to Grow 32.7% in 2013. http://www.
idc.com/getdoc.jsp?containerId=prUS24143513, June 2013.

[41] IEEE Standards. Vendors of Mac Address, November 2012. http://standards.ieee.
org/develop/regauth/oui/oui.txt.

[42] Increased Smartphone Usage Increases Network Complaints. http:
//www.telecompetitor.com/j-d-power-increased-smartphone-usage-increases-network-
complaints/, March 2012.

[43] iOS App Store. https://itunes.apple.com/us/app/apple-store/id375380948?mt=8,
September 2013.

[44] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing app
Performance Differences on Smartphones. In ACM MobiSys, 2010.

[45] J. Sommers and P. Barford. Cell vs. WiFi: On the Performance of Metro Area
Mobile Connections. In ACM IMC, 2012.

[46] L. Gomez, I. Neamtiu, T. Azim and T. Millstein. RERAN: Timing- and Touch-
Sensitive Record and Replay for Android . In ICSE, 2013.

[47] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu. pBMDS: A Behavior-based Malware
Detection System for Cellphone Devices. In ACM WiSec, 2010.

[48] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M. Mao, and L. Yang. Accurate
Online Power Estimation and Automatic Battery Behavior Based Power Model
Generation for Smartphones. In CODES+ISSS, 2010.

114

[49] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S. Wallach. Quire: lightweight
provenance for smart phone operating systems. In USENIX Security Symposium,
2011.

[50] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Detecting Privacy Leaks in iOS
apps. In NDSS, 2011.

[51] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang. RiskRanker: Scalable and Accurate
Zero-day Android Malware Detection. In ACM MobiSys, 2012.

[52] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic Detection of Capability
Leaks in Stock Android Smartphones . In NDSS, 2012.

[53] M. Khadilkar, N. Feamster, M. Sanders and R. Clark. Usage-based DHCP lease
time optimization . In ACM IMC, 2007.

[54] M. Ongtang, S. McLaughlin, W. Enck and P. McDaniel. Semantically Rich
Application-Centric Security in Android. In ACSAC, 2009.

[55] Malware Patrol. http://www.malware.com.br/.

[56] M.Z.Shafiq, L. Ji, Alex X. Liu and J. Wang. Characterizing and Modeling Internet
Traffic Dynamics of Cellular Devices. In ACM Sigmetrics, 2011.

[57] NIST (National Institute of Standards and Technology). Guidelines for Managing
and Securing Mobile Devices in the Enterprise, July 2012. http://csrc.nist.gov/
publications/drafts/800-124r1/draft sp800-124-rev1.pdf.

[58] P. H. Chia, Y. Yamamoto, and N. Asokan. Is this App Safe? A Large Scale Study
on Application Permissions and Risk Signals . In WWW, 2012.

[59] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These arent the
Droids youre looking for: Retrotting Android to protect data from imperious ap-
plications. In ACM CCS, 2011.

[60] P. Pearce, A.P. Felt, G. Nunez and D. Wagner. AdDroid: Privilege Separation for
Applications and Advertisers in Android . In ACM AsiaCCS, 2012.

[61] Q. Xu, J. Erman, A. Gerber, Z. Morley Mao, J. Pang, and S. Venkataraman.
Identify Diverse Usage Behaviors of Smartphone Apps. In ACM IMC, 2011.

[62] Q. Xu, J. Huang, Z. Wang F. Qian A. Gerber and Z. Morley Mao. Cellular Data
Network Infrastructure Characterization and Implication on Mobile Content Place-
ment. In ACM Sigmetrics, 2011.

[63] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. WHYPER: Towards Automat-
ing Risk Assessment of Mobile Applications. In USENIX Security Symposium, 2013.

[64] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Sound-
comber: A Stealthy and Context-Aware Sound Trojan for Smartphones. In NDSS,
2011.

[65] RFC. Dynamic Host Configuration Protocol, March 1997. http://www.ietf.org/rfc/
rfc2131.txt.

115

[66] RFC. Architectural Implications of NAT, 2000. ftp://ftp.ripe.net/rfc/rfc2993.txt.

[67] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B.Shastry. Towards
Taming Privilege-Escalation Attacks on Android . In NDSS, 2012.

[68] S. Shekhar, M. Dietz, and D.S. Wallach. AdSplit: Separating smartphone adver-
tising from applications. In USENIX Security Symposium, 2012.

[69] S.Fahl, M.Harbach, T.Muders L.Baumgärtner B.Freisleben M. Smith. Why Eve
and Mallory Love Android: An Analysis of Android SSL (In)Security . In ACM
CCS, 2012.

[70] T. Henderson, D. Kotz and I. Abyzov. The Changing Usage of a Mature Campus-
wide Wireless Network. In Computer Networks 52(14), pages 2690–2712, 2008.

[71] V. Birk, J. Stroik, and S. Banerjee. Debugging DHCP Performance . In IMC, 2004.

[72] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study of Android Appli-
cation Security. In USENIX Security Symposium, 2011.

[73] W. Enck, M. Ongtang and P. McDaniel. On Lightweight Mobile Phone Application
Certification. In ACM CCS, 2009.

[74] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In OSDI, 2010.

[75] X. Chen, R. Jin, K. Suh, B. Wang and W. Wei. Network Performance of Smart
Mobile Handhelds in a University Campus WiFi Network. In ACM IMC, 2012.

[76] X.Wei, L.Gomez, I.Neamtiu, and M. Faloutsos. ProfileDroid: Multi-layer Profiling
of Android Applications . In ACM MobiCom, 2012. DOI:10.1145/2348543.2348563.

[77] X.Wei, L.Gomez, I.Neamtiu, and M. Faloutsos. Permission Evolution in the An-
droid Ecosystem . In ACSAC, 2012. DOI:10.1145/2420950.2420956.

[78] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and Evolu-
tion. In IEEE S&P, 2012.

[79] Y. Zhou, Z. Wang, Wu Zhou and X. Jiang. Hey, You, Get off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets . In NDSS,
2012.

116

