
Improving Cloud Availability with
On-the-fly Schema Updates

Iulian Neamtiu
Department of Computer
Science and Engineering
University of California,

Riverside, CA, USA
neamtiu@cs.ucr.edu

Jonathan Bardin
Laboratoire d’Informatique de

Grenoble
Université de Grenoble,

France
jonathan.bardin@imag.fr

Md. Reaz Uddin
Department of Computer
Science and Engineering
University of California,

Riverside, CA, USA
uddinm@cs.ucr.edu

Dien-Yen Lin
Department of Computer
Science and Engineering
University of California,

Riverside, CA, USA
dienyen@cs.ucr.edu

Pamela Bhattacharya
Department of Computer
Science and Engineering
University of California,

Riverside, CA, USA
pamelab@cs.ucr.edu

ABSTRACT
Database applications undergo frequent schema changes. To
change the schema, the application has to be shut down
and migrated to the new version, or run in a mixed mode
that supports old and new clients, e.g., via schema version-
ing. Shutdowns are problematic for applications that cannot
tolerate downtime such as embedded, real-time or mission-
critical systems; in the Cloud, shutdowns can lead to Service
Level Agreement violations or worse, to service interruptions
for critical platforms such as healthcare. Mixed-mode oper-
ation raises programmability, consistency and performance
degradation issues. In this paper we present a system that
exploits the march-forward nature of many database appli-
cations (no need to support old schema versions after the
schema update) to provide on-the-fly updates while ensur-
ing consistency, and being transparent to clients. We first
study schema evolution and database usage based on lon-
gitudinal studies of four popular open source applications.
Next, we implement support for safe on-the-fly schema up-
dates on top of the popular SQLite database engine. Finally,
we evaluate our approach using real-world schema changes
and database usage scenarios for applications running in the
Cloud on the Amazon Web Services platform, and on server
systems. We show how on-the-fly schema updates can in-
crease Cloud applications’ availability from less than two
nines (99%) to more than six nines (99.9999%). More gen-
erally, our experiments indicate that SQLite-based applica-
tions can enjoy fully automatic on-the-fly schema updates
at a low, transient overhead.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 19th International Conference on Management of Data (COMAD),
19th-21st Dec, 2013 at Ahmedabad, India.
Copyright c©2013 Computer Society of India (CSI).

1. INTRODUCTION
Software evolves at a high cadence, with a recent study

showing that some cloud applications are updated more than
once a week [11]. Application developers are under pres-
sure to update their database schemas and code in order to
fix bugs and add new features. Unfortunately, the require-
ment that updates be released often and applied quickly is
at odds with providing a seamless, uninterrupted service.
In particular, Software as a Service (SaaS) and Platform
as a Service (PaaS) providers are bound by Service Level
Agreements (SLA) to provide high-availability services, and
stopping service to update a database schema might lead
to long periods of unavailability which violate the SLA. For
example, the Google Apps for Business SLA stipulates that
applications must be available 99.9% of the time, otherwise
Google is liable to compensate users for unavailability [15].
As another example, when upgrading MediaWiki (the wiki
platform used in Wikipedia), out of the 55 possible up-
grades among versions 1.1–1.10, only 5 can be performed
online [10]. One such upgrade, from version 1.4 to 1.5, re-
quired 22 hours of Wikipedia downtime [39].

Furthermore, for high-availability applications, such as
healthcare, where 24/7 service is essential, stopping an ap-
plication to update the database schema is unacceptable.
For server and desktop applications, stopping/restarting a
program or the OS is disruptive to users. Therefore, there
is a tension between the need to frequently update software
and the need to abide by high-availability provisions (e.g., as
stipulated in the SLA). To solve this tension, we could use
solutions such as such as query rewriting [9], schema version-
ing and temporal querying [25, 28], schema mapping [41, 37],
or schema matching [29]. However, the flexibility offered by
these solutions must be weighed against their potential cost
and operating constraints. For example, a recent schema
evolution system can exhibit response lags of up to 30 sec-
onds per schema change while computing mappings between
schema versions [25]—depending on the SLA, this unavail-
ability might lead to SLA violations. In another system,
rewritten queries run with a permanent overhead and are on
average 4.5 times slower than original queries [9]—however,

SQLite	 server	

SQL	
queries	

Schema	
updates	

1	

1	

1	
1	

1	
1	

2	

1	

2	
2	

1	
1	

2	

2	

2	
2	

2	
2	

Data	 ν	

On-‐the-‐fly	 table	 updates	

Trigger	 on-‐the-‐fly	
table	 updates	

Safety	 checks	

Ta
bl
es
	

Amazon	 AWS	 Standalonee	

Deployment	

Cl
ie
nt
s	

Figure 1: Overview of our system: use, implementation, and deployment.

high overhead is difficult to accept in a pay-for-service envi-
ronment, e.g., the cloud. Therefore, such solutions might
have limited applicability for those non-stop applications
that are resource-constrained, cost-sensitive, performance-
critical, or do not tolerate high response times.

We propose an alternative solution to this tension between
frequent updates and high availability. Specifically, we tar-
get march-forward applications—cloud and server applica-
tions whose database schemas change, but multi-version sup-
port is not a requirement. We call this scenario “march for-
ward”, i.e., applications do not need to access data using
the old version schema. To support applying updates while
sustaining continuous service, we introduce an on-the-fly
schema update technique that exploits the march-forward
nature of many applications. Our system allows marching-
forward, i.e., switching to a new schema at runtime, without
having to shut down the database and compromise avail-
ability. Through experiments, we show that our technique
supports fully automatic, on-the-fly schema updates with
an update lag of at most 593 milliseconds; assuming one up-
date per week, the lag is lower than 605 msec, the six nines
(99.9999%) threshold [2]. Moreover, our approach has no
permanent performance, memory or disk overhead.

Note how these two features are essential, especially for
cloud software: the short update lag will ensure that ap-
plication providers abide by the SLA, while the lack of a
permanent overhead will ensure that no additional costs are
incurred when using the pay-for-service cloud computing
model. We emphasize that our approach is complemen-
tary to the schema versioning/mapping/matching systems
presented above, as it targets a different set of applications
with a different set of requirements.

Roddick et al. have identified “experience [with change] in
real systems” as an important research challenge in evolving
DBMSs [30]. We pick up this challenge and present an ap-
proach for enabling on-the-fly schema updates in SQLite,
a very popular 1 SQL engine [16] used in the construc-

1As of October 2013, an estimate by the SQLite develop-

tion of cloud software (e.g., the OpenNebula open source
toolkit for cloud computing, Ruby on Rails), operating sys-
tems (e.g., Mac OS X, Solaris 10, OpenSolaris), and desk-
top applications (e.g., Apple Mail, Safari, iTunes, Mozilla,
McAfee antivirus, Dropbox). Our design and evaluation are
based on studying long-term schema evolution in popular
open source programs, some of which are migrating into the
cloud (Monotone, 6 years; BiblioteQ, 2 years) or running on
desktops (Mozilla, 3.5 years; Vienna, 4 years).

Figure 1 presents a high-level view of the use, implemen-
tation, deployment, and experimental setup for our system.
Clients (left) interact with the database server (right) via
SQL queries; the server can be deployed either in the Ama-
zon AWS cloud or as a standalone server (bottom).

A schema update is triggered when the server receives a
schema update command specifying the new schema. The
technique works transparently to clients: once the server has
received a schema update command, our implementation
will trigger an on-the-fly update across the entire database;
the update proceeds lazily in the background, but control
returns immediately to the client, so clients can actually per-
form database operations (queries or updates), right away,
at the new schema, hence sustaining service and abiding by
SLAs. Clients are not aware of the lazy update proceeding in
the background except for the fact that an operation might
take slightly longer than what it would take if the database
was started directly at the new schema. This overhead, how-
ever, is transient: after the lazy update process has finished,
the database operations will run at full speed and the system
is ready for another update. While an update is in progress,
queries are subject to safety checks (dotted box) and in each
table affected by the update, tuples are converted from the
old version (ν = 1 in Figure 1) to the new version (ν = 2);
we will explain the safety checks and lazy updates in great
detail later on.

In constructing our on-the-fly update system, we started

ment team puts the number of SQLite installations upwards
of 500 million [35].

with a study on schema evolution and post-update query
failure rate. The study looks at the evolution of four popular
march-forward open source applications, BiblioteQ, Mozilla,
Monotone and Vienna, and identifies how databases evolve
and what kind of queries are most popular in practice. We
found that, over the evolution periods we analyzed, there
were 19 schema updates in BiblioteQ, 42 schema updates in
Mozilla, 11 in Monotone, and 7 in Vienna; these updates
consist of 150 table or attribute changes in BiblioteQ, 120
in Mozilla, 39 in Monotone and 10 in Vienna. The complete
results of our study are presented in Section 2.2.

Allowing a client to run queries that assume a new schema
while the database is at the old schema (or naively allow-
ing queries to execute without checks when the database is
partially converted) is unsafe. For example, if the schema
update adds a new table or a new attribute, the client
might ask for it, even though it still doesn’t exist in the
database, leading to a runtime error. In Section 3, we show
how we prevent such errors via safety checks that guarantee
that database operations are always safe, even though the
database is in a partially-updated state.

In Section 4 we present a sample scenario of how clients
can use our system in practice. In Section 5 we describe the
implementation techniques we used to extend SQLite with
on-the-fly update support. To evaluate our implementation
(Section 6) we used real-world schema updates and queries
from our examined programs; based on changes and usage
patterns we observed in these programs, we construct a va-
riety of benchmarks meant to quantify the impact of lazy
on-the-fly updates on applications linking with SQLite. We
conducted experiments on both Amazon AWS cloud and
on standalone servers. The databases we used in our ex-
periments ranged from 1 million to 11 million tuples, and
we measured overhead by performing 1,000 queries after
each update. We found that the performance, memory and
disk overheads are low and temporary, and after signaling a
schema update, control returns in 593 milliseconds or less.
With traditional migration techniques, a schema update can
take up to 6,206 seconds (103 minutes). This difference
is substantial: assuming one update per week, on-the-fly
schema updates can increase cloud availability from less
than two nines (99%) to more than six nines (99.9999%).
Finally, we verified that our implementation is correct by
comparing lazily-updated database contents and query re-
sults with new-version contents and results and found them
to be identical.

Though we built on SQLite, we believe that our tech-
niques and safety condition can be leveraged for on-the-fly
schema evolution support in any relational DBMS. To il-
lustrate this, consider a July 2009 survey on databases sup-
porting online reorganization [34]; the survey identifies three
key requirements for such systems. These requirements were
explicit goals of our work: (1) correctness, i.e., “users must
be able to query and update correctly. Similarly, the ac-
tions of reorganization must be correct.”; (2) performance,
i.e., “the degradation (if any) of users’ performance must be
tolerable” and “[the reorganization process] must eventually
complete its work.”; (3) error tolerance, i.e., “data must be
recoverable during online reorganization.”

In short, this paper makes the following contributions:

• A study of query usage and post-evolution query fail-
ures in four popular SQLite-based applications.

• An implementation that extends SQLite with support
for march-forward, on-the-fly updates, and runs on
both desktop/server systems and in the cloud (Ama-
zon AWS); the implementation fulfills the three main
requirements of correctness, performance, and error
tolerance.

• An evaluation of our approach using real-world schema
evolution and query benchmarks on both cloud and
server platforms.

2. MOTIVATION
In this section we describe the motivating factors that

lead us to pursue on-the-fly database updates and the em-
pirical findings that drove our selection of schema changes
and database operations supported in our system.

2.1 Rationale for On-the-fly Updates
SQLite is used in the construction of many critical applica-

tions, from cloud software to server OSes, to version control
servers, to file storage programs and antivirus suites. These
applications do not tolerate restarts and unavailability: long
periods of cloud unavailability lead to SLA violations [6, 11];
an unresponsive server OS affects multiple users; shutting
down the version control software inconveniences develop-
ers; shutting down the antivirus leaves a system vulnerable.

Therefore, we need to find a way to keep these applica-
tions running continuously while being able to update them
with new features and bug fixes. Dynamic software updating
systems such as Ksplice [4] and Jvolve [36] allow on-the-fly
updates to code and in-memory data, but not to persistent
data. Therefore, such dynamic updating systems are in-
sufficient for performing on-the-fly updates to applications
that require changes to database schemas. For example,
in the update from Monotone 0.44 to Monotone 0.45, the
attributes id and keypair in table revision certs were re-
named to revision id and keypair id; in table public key,
the attribute hash was deleted and the attribute name was
added. If we use a dynamic updating system for Mono-
tone, we can update the code, but the information stored
in the database remains at the old version, which will lead
to incompatibility when the new code tries to access the
database. Our system gives the application the option to
perform an on-the-fly database update whenever necessary.

2.2 Schema Evolution Study
The development of our system was driven by an empir-

ical analysis of schema evolution, query usage, and post-
update query failures. Previous efforts have investigated
schema evolution: Mandalapa [21] has studied schema evo-
lution in TikiWiki, Joomla, Slash, MediaWiki (23 years, cu-
mulative); Curino et al. [8] have analyzed schema evolu-
tion for Wikipedia (4.5 years); Sjøberg [33] has looked into
the schema evolution of a health management system (1.5
years). However, the domain of these studies was not SQLite
applications, so the evolution trends and patterns they iden-
tified might not translate to our domain. Therefore, to un-
derstand how SQLite-based relational databases evolve and
are used in practice, in this and prior work we performed our
own analysis, covering a cumulative 15.5 years of evolution,
on four popular open source programs: BiblioteQ, Mozilla,
Monotone, and Vienna.2

2The studies of query usage and query failure rates are new

Table 1: Schema evolution in our test applications.

SMO
Mozilla Monotone Vienna BiblioteQ

count % count % count % count %
ADD COLUMN 58 48 11 28 10 100 27 18
DROP COLUMN 30 25 9 23 - - 28 18.6
CREATE TABLE 20 17 9 23 - - 4 2.7
DROP TABLE 4 3.3 8 20 - - 8 5.3
RENAME TABLE 5 4.2 1 2.6 - - - -
RENAME COLUMN 2 1.7 1 2.6 - - - -
COLUMN TYPE CHG 1 0.8 - - - - 83 55.3

Table 2: Query failure rate in Mozilla in the absence
of migration or updates.

File
Failure rate (%)
min avg. max

nsNavBookmarks.cpp 6 46 76
nsAnnotationService .cpp 20 51 100
nsUrlClassifierDBService .cpp 16 28 33
nsCookieService .cpp 25 34 40
nsDownloadManager.cpp 17 27 33

BiblioteQ [1] is a catalog and library management suite.
Mozilla [26] is a large open source project, that contains,
among others, the Firefox browser and the Thunderbird
email client. Mozilla uses SQLite to store the browsing his-
tory, input forms, cookies, etc. Monotone [24] is a version
control system; it uses SQLite to store file revisions, deltas,
and branch information. Vienna [38] is a popular RSS/Atom
newsreader for Mac OS X; it uses SQLite to store news fold-
ers and messages. Our analysis covers the recent evolution
(each official release) of the four examined systems: 3.5 years
for Mozilla, 6 years for Monotone, 4 years for Vienna, and
23 months for BiblioteQ.

In Table 1 we summarize the schema evolution study re-
sults, as Schema Modification Operators (SMOs) [32, 9]. For
each SMO we provide both the total count and percentages.
For example, there were 58 ADD COLUMN changes in Mozilla,
which constitute 48% of the total number of changes for
that application. As we can see, the most frequent opera-
tions alter table schemas to add or delete columns, followed
by table addition/deletion/renaming, column renaming and
column type change.

3. SAFETY

3.1 The Need for Safety
In prior work we have shown that schema update in Mozilla

is sometimes ad-hoc, i.e., the application does not check the
schema version in the database prior to executing queries [19].
Without migration after updating the schema, the new queries
will run against the old schema, which can lead to data loss
or runtime errors. In our approach, new queries always run
against the new schema and safety is guaranteed. In Table 2
we present the query failure rates (in the absence of mi-
gration or updates) for the Mozilla files exhibiting frequent

for this work; similar schema evolution analysis results were
reported in our prior work, albeit with some differences in
projects examined and time spans [40, 19].

schema changes. The numbers show the percentage of new
queries that would fail if run against the old schema. For
example, for nsNavBookmarks.cpp, there were 8 updates (schema
changes) for the period we analyzed. If we tried to execute
the post-update queries on the pre-update database, at least
6%, at most 76% (on average 46%) of the new queries would
fail; the minimum, maximum and averages are computed
across all 8 updates. As we can see, the situation is more
dire for nsAnnotationService .cpp where, for one of the updates,
the 100% figure indicates that all post-update queries would
fail if run against the pre-update schema. We now present
some examples of how post-update queries could fail if they
execute on pre-update schemas.

Example 1. If an update adds a new table R, then run-
ning a post-update query SELECT ∗ FROM R on a pre-update
schema will result in a “Table R does not exist” error.

Example 2. If an update changes the schema of a table
R from 〈A1, A2〉 to 〈A1, A2, A3〉, and the pre-update table
instance is:

{〈A1 : 10, A2 : 20〉, 〈A1 : 20, A2 : 40〉}

then a possible post-update scenario is a partially-converted
table with two tuples at two different versions:

{〈A1 : 10, A2 : 20〉, 〈A1 : 20, A2 : 40, A3 : 30〉}

A post-update query SELECT A3 . . . FROM R will lead to a
safety violation, as the attribute A3 does not exist for each
tuple in R.

Example 3. The converse situation from example 2 is equally
problematic: if an update changes the schema of a table R
from 〈A1, A2, A3〉 to 〈A1, A2〉, then a post-update SELECT ∗
FROM R could also return values for the deleted attribute A3

which will confuse or even crash the client.

3.2 Versions
The key idea behind lazy updates is to allow old and new

tuples to coexist, and when a post-update query comes in,
perform a safety check to determine whether the query can
be answered immediately or must wait until the lazy update
has completed for all the tuples involved in the query. From
this point on, we will use the terms “old”/“version 1”, as
well as “new”/“version 2” interchangeably. Note that, for
simplicity but without loss of generality, we assume a single
update, from version 1 to version 2, in our exposition. In
practice, though, a database can undergo multiple, sequen-
tial updates, hence in our implementation the “new” and

1 −− clients: create and populate database
2 −− at schema version 1
3 CREATE TABLE R1(schema R1)
4 CREATE TABLE R2(schema R2)
5 INSERT INTO R1 ...
6
7 −− clients: use database at version 1
8 SELECT ∗ FROM R2 ...
9 INSERT INTO R2 ...

10
11 −− trigger the update; the argument
12 −− passed to UPDATEDB is schema version 2

13 UPDATEDB(CREATE TABLE R1(schema R1′) ;
14 CREATE TABLE R3(schema R3));
15
16 −− clients: use database at version 2
17 INSERT INTO R1 ...
18 SELECT ∗ FROM R3 ...

Figure 2: Sample use case for our system.

“old” schemas and tuples always refer to the latest version
and the version prior to it.

A convenient aspect of our SQLite-based model is that we
need not perform any query rewriting, because the schema
update is client-initiated. Hence, clients only send an UPDATEDB

(new schema) command to the server when the client code con-
tains the new query versions; the UPDATEDB will switch the
server schema and contents to the new version, hence the
queries and the database are in-sync.

3.3 Safety Checks
Let RS = {R.A1, R.A2, . . . , R.An} be the schema of table

R consisting of the set of all attributes A1, A2, . . . , An in
R, prefixed with the table name. Then the schema R of
the entire database is the union of RS ’s over all tables R.
Let the old database schema be R1, and the new database
schema beR2. We denote withR∆ the symmetric difference
between R1 and R2. In effect, R∆ contains all the tables
and attributes that were deleted or added. Whenever a table
R with schema RS is accessed after the schema update (but
before the lazy schema update has finished), we perform a
safety check RS∩R∆ prior to each query. The safety check is
the crucial mechanism for safety; it ensures that all accesses
to a table R with schema RS are performed at version 2.
We have two cases:

1. If the schema update does not alter the schema RS ,
i.e.,
RS ∩R∆ = ∅, then we can safely access any tuple in
the table as the contents of data is the same in both
version 1 and version 2.

2. If the schema update alters RS , i.e., RS ∩ R∆ 6= ∅,
then in theory we would have to “stall” the query until
the lazy schema update has completed for that table,
i.e., the conversion of all the tuples from version 1 to
version 2 has finished.

As we will describe in Section 5, however, in practice our
implementation does not stall any query, but rather uses the
RS ∩R∆ check to optimize log propagation; this speeds up
query processing significantly, while still preserving safety.

4. USE CASE
Our implementation is designed to be transparent to clients:

they trigger the schema update, but the inner workings of

the update process, i.e., lazily converting the database, are
invisible. To show how our implementation is meant to be
used in practice, in Figure 2 we present an actual use case.
The clients can either create the database, or open an exist-
ing database. Suppose a database instance is created, that
contains two tables, R1 and R2 (lines 3–4). After using the
database (lines 8–9) we decide to update the schema. To ac-
complish this, an UPDATEDB command is sent to the server
with the new schema as argument (lines 13–14). Note that
the new schema contains two tables, R1 and R3, meaning that
relation R2 has been deleted, relation R3 has been added, and
possibly, though not necessarily, the schema of relation R1

has changed, e.g., by adding or deleting attributes. Upon re-
ceiving the UPDATEDB command, our update-capable SQLite
will then initiate the lazy database update process and im-
mediately return control to clients. From this point on, the
clients can safely assume the database has been updated to
version 2, and can start using the database (lines 17–18).

In our current implementation, the entire new schema has
to be specified as an argument to UPDATEDB; this is simply
an implementation choice, as we could have just as easily
chosen to specify the differences between the new and old
schema using SMOs instead [32, 9].

5. IMPLEMENTATION
Our on-the-fly schema update implementation extends SQLite

version 3.6.16. The implementation does not require any
pre-update preparation on behalf of the application, and
does not impose any runtime cost prior to the update, or
after the update is completed. The application simply links
with our update-capable SQLite; clients signal an update by
sending an UPDATEDB command. After an update has been
signaled, our system first waits for pending queries to finish,
then executes three main tasks before returning control to
the client: (1) computes the differences between the old and
new schemas, (2) performs some immediate updates, and
(3) starts a background thread which will carry out the lazy
(deferred) updates. These three tasks must be completed
quickly, to avoid delaying the client; in Section 6 we show
that, on our workloads, UPDATEDB finished in at most 593
milliseconds. After the lazy update is complete, i.e., all the
tuples in the database are at version 2, the safety checks are
turned off, and our system imposes no query overhead.

Schema differencing. The difference between the old and
new schemas (the R∆ from Section 3.3) must be computed
for two reasons: to implement the safety check, and to dis-
cern between immediate and deferred updates. The differ-
encing algorithm is straightforward: we compare the tables,
attributes and attribute types in the old and new schemas
and identify all additions, deletions, renamings, and type
changes.

Immediate updates. After detecting schema differences,
our implementation proceeds to performing some immedi-
ate changes, i.e., change the database schema to the new
schema. Table additions, deletions and renamings (CREATE
TABLE, DROP TABLE, RENAME TABLE) are performed immedi-
ately, using the built-in SQLite primitives for these oper-
ations. Some table schema changes (ADD COLUMN, RENAME

COLUMN) are also done immediately since SQLite natively
supports column addition and renaming via the ALTER TABLE

statement. For DROP COLUMN, we hide the column so it won’t
be visible to queries, and initiate a lazy update, as described
next. Finally, for COLUMN TYPE CHANGED, we change the
affinity (SQLite term for “preferred” storage type) associ-
ated with that column, and initiate a lazy update. As men-
tioned in Section 3.2, immediate updates ensure that table
and database schemas are always at the newest version.

Once the immediate updates have completed, we initiate
the lazy update process that gradually converts the database
instance (i.e., all the tuples) to the new version. At this
point we are ready to process client requests at the new
version. Any query that tries to use the old schema will
result in an error, since such use is unsafe.

Lazy updates. To perform lazy updates, we introduce a
new SQLite thread, called the “background thread” that es-
sentially carries out the tuple-by-tuple, table-by-table con-
version to the new version.

We now present a high-level view of background thread’s
operations. The thread iterates over all the tables that re-
quire conversion. For each table R, the thread’s operations
depend on the schema modification operator (SMO) that
R has undergone. If the SMO is ADD COLUMN or RENAME

COLUMN, which SQLite supports natively, the thread does not
have anything to do. If the SMO is DROP COLUMN or COLUMN

TYPE CHANGE, then a new shadow table R′ is silently filled
out by the background thread with tuples copied from R and
updated. For the other changes that require lazy updates,
we have changed the SQLite low-level methods in charge
of handling queries to allow query processing to proceed in
parallel with the lazy update yet maintain consistency, as
follows. In each SQLite method corresponding to an SQL
clause (e.g., SELECT, DELETE, REPLACE, INSERT, WHERE) we
check whether an update is pending, and whether the query
is done on an updated table. If both conditions are true, and
the current thread is not the background thread in charge
of the update, we change the targeted table and attribute
names so that they correspond to the old version. Further-
more, if the request involves writing to the database (e.g.,
DELETE, REPLACE, INSERT) we duplicate the original query
on the shadow table—a mechanism also known as log prop-
agation [23]. The query rewriting is straightforward and rel-
atively costless since we change the column and table index
rather than rewriting the query.

To maintain consistency, the operations of the background
thread and the main SQLite thread (or “foreground thread”,
which is responsible for processing queries from clients) are
mutually exclusive. The main thread has higher priority,
and can preempt the background thread; we implementing
this by having the background thread call yield() before
each INSERT request to relinquish the CPU to any waiting
foreground thread.

Finally, when all the shadow tables R′ are filled out, our
implementation atomically switches the old tables with the
shadow ones, which effectively marks the end of the lazy
update process. At this point we are ready to proceed with
another schema update.

Safety and optimizations. We now describe how the safety
checks and lazy updates introduced in Section 3.2 are actu-
ally implemented. To ensure that R and R′ are consistent,
all modification requests (INSERT, UPDATE, DELETE, REPLACE)
on those R’s that had a change in schema are replicated

into R′ as well; the technique is similar to log propaga-
tion [20, 23, 17]. Modification requests on new tables or ta-
bles whose schemas were not changed proceed right through,
without replication. These techniques effectively implement
the RS ∩R∆ = ∅ check. Moreover, in the implementation
we do not actually store a version ν with each tuple. Rather,
the background thread keeps track (using SQLite’s internal
ROWID) of the tuples that have been, or are yet to be, con-
verted from version 1 to version 2; this reduces overhead.

Error tolerance. Our system is fail-stop and transactional
for the immediate update phase, i.e., if an errors occurs
during this phase, or power goes down, UPDATEDB returns an
error and the database remains unchanged. Before starting
the lazy update process, we write all the necessary update
steps in a persistent table that is hidden from the user. If
SQLite is shut down abruptly, i.e., due to power loss, we
resume the lazy update process the next time SQLite starts,
based on the update information in our persistent table.

6. EVALUATION
To evaluate the impact our approach has upon on-the-fly

updateable databases, we performed cloud- and standalone-
system experiments based on real-world schema update sce-
narios and database benchmarks. The scenarios and bench-
marks are based on actual updates and queries we observed
in practice (Section 2.2). While similar schema evolution
work [25] has also measured system usability (user effort
saved for query rewriting), such a measure does not apply
to our system, as there is no query rewriting in our model—
when the application code is updated, the new queries are
part of it.

6.1 Schema Update Scenarios and Benchmarks

Schema update scenarios. Table 3 describes each sce-
nario. The “old schema” and “new schema” columns show
a summary of old and new database schemas i.e., total num-
ber of tables and attributes. The “changes” columns show
how the schema has changed. For example, scenario 1 starts
with 2 tables and 6 attributes in total, and the schema up-
date adds 3 attributes; scenario 6 starts with 10 tables and
46 attributes, and the schema update adds a table, renames
an attribute, and changes the type of an attribute; scenario
10 starts with 8 tables and 26 attributes, and the schema up-
date adds 6 attributes and changes the type of an attribute.

Benchmark configurations. To quantify the on-the-fly up-
date overhead, we measured query completion time, mem-
ory, and disk usage in two configurations: R1→2, i.e., create
and populate the database at schema version 1, and then
perform an update that changes the schema from version 1
to version 2; and R2, i.e., create and populate the database
directly at schema version 2.

Query benchmarks. Prior work in enterprise-grade schema
evolution has used databases containing a total 2.13 mil-
lion tuples [9]. Therefore, to effectively compare our work
with prior efforts, each table we used in our experiments
was populated with 1 million tuples, which means the entire
database contained between 1 million and 11 million tuples,
depending on the scenario. Our performance experiments

Table 3: Schema update scenarios: old schemas, new schemas, and changes to tables/attributes.

Scenario
Old Schema New Schema Changes

ID
Tables Attributes Tables Attributes Tables Attributes

add delete rename add delete rename type
change

1 2 6 2 9 - - - 3 - - -
2 1 4 1 6 - - - 2 - - -
3 3 18 3 21 - - 1 3 - - -
4 2 7 2 5 - - - - 2 - -
5 1 7 1 7 - - - 1 1 - 1
6 10 46 11 55 1 - - - - 1 1
7 3 18 3 18 - - - - - - 1
8 3 17 3 17 1 1 - - - - -
9 10 46 11 55 1 - 1 - - 1 -
10 8 26 8 32 - - - 6 - - 1

focus on four aspects: update time, query performance,
disk space overhead, and memory footprint. To measure the
temporary overhead our approach imposes, i.e., how much
slower the queries run while the database is being updated,
how much memory and disk space is used, we compared
the time to run 1,000 queries against the new schema for
the database (R2) and 1,000 queries to be executed during
the lazy update (R1→2). The queries model the statement
frequency observed in our study on open source programs:
40% SELECT, 30% INSERT, 20% UPDATE, 10% DELETE. The
database contents, as well as the new tuples and attributes
used in INSERT and UPDATE have been created randomly.

6.2 Experimental Setup
To quantify the impact of our approach, on both cloud

and desktop/server systems, we performed measurements,
and report results, in two settings: Amazon AWS and Stan-
dalone. In particular, we are interested in how much our
approach increases availability, and in quantifying the avail-
ability vs. overhead trade-off. The overhead is especially rel-
evant in the cloud setting, as the cloud uses a pay-for-service
model; we found however, that this overhead is small and
temporary. We now proceed to describing the experimental
setups and results.

Amazon AWS. The cloud experiments were conducted on
a Amazon EC2 Micro instance. The Micro instance offers
613MB of RAM, 8GB of disk and up to 2 EC2 Comput-
ing Units (for short periodic bursts). One EC2 Computing
unit provides the equivalent CPU capability of a 1.0–1.2GHz
2007 Xeon processor. The system ran 32-bit Linux with a
Red Hat distribution (the Amazon EC2 default image for a
Micro instance).

Standalone. We conducted the standalone experiments on
a two-CPU, quad-core 2.33GHz Xeon system with 12GB
of RAM and a RAID5 array of three Western Digital RE3
1TB@7200 rpm hard drives. The test system ran 32-bit
CentOS 5.5, Linux kernel version 2.6.18.

In both setups, SQLite was compiled with gcc, flags -g -O2

(these are the out-of-the-box compilation options for the of-
ficial SQLite distribution). Time measurements were per-
formed using the CPU’s time stamp counter (TSC).

In all cases, we report the median of 5 runs.

6.3 Results

Table 4: Amazon AWS: update time.

Scenario UPDATEDB Update
ID completion

(msec) (msec)
1 228 228
2 119 119
3 98 98
4 110 4,063,530
5 87 6,206,550
6 586 4,637,834
7 166 4,273,845
8 65 65
9 572 572
10 593 6,713,257

Update time. A key requirement of our system was to give
the client the appearance that the update has completed im-
mediately. We measured the time to execute the UPDATEDB

command, i.e., the time difference from the moment the
client signals a schema change to the moment when con-
trol returns to the client. Columns “UPDATEDB” in Tables 4
and 5 show these times for each schema change scenario, in
the cloud and standalone configurations, respectively. As we
can see, in the cloud we could always complete an UPDATEDB

in at most 593 milliseconds, which is crucial for ensuring our
approach disrupts the clients as little as possible. If we as-
sume one update per week, these 593 msec/week translate
to 30.8 seconds of unavailability per year, which is more
than six nines (99.9999%) availability. For the standalone
system, the unavailability is even smaller: we could always
complete an UPDATEDB in at most 251 milliseconds.

The last columns of Tables 4 and 5 show update comple-
tion time, i.e., the time it takes for the lazy update to finish
and the entire database to be converted; this is the time a
client would have to wait without on-the-fly updates. As we
can see in Table 4, in the cloud setup, without on-the-fly
updates some clients would need to wait 6,206 seconds (103
minutes), which is unacceptably long—assuming one update
per week, this translates to less than two nines (99%) avail-
ability. In the standalone case (Table 4), the longest un-
availability is 265,058 msec (4 minutes).

Query performance. We want to keep the client-perceived
query processing overhead low for the period the database is

Table 5: Standalone: update time.

Scenario UPDATEDB Update
ID completion

(msec) (msec)
1 61 61
2 32 32
3 115 115
4 33 186,436
5 47 265,058
6 209 209,171
7 81 195,251
8 72 72
9 251 251
10 193 230,767

tim
e

(s
)

0

1,000

2,000

3,000

4,000

5,000

6,000

Scenario
1 2 3 4 5 6 7 8 9 10

no update
while updating

Figure 3: Amazon AWS: query execution time in
the no update case (R2) v. query execution time
while updating (R1→2).

undergoing lazy updating. Therefore, we measured the time
to complete 1,000 queries in the no-update case (R2) and the
completion times when the 1,000 queries are executed dur-
ing the lazy update of the database (R1→2). Figures 3 and 4
show the result of our benchmark. In each figure, the x-axis
represents the scenario id, the grey bar is the no-update
query completion time (R2) and the white bar is the lazy-
update query completion time (R1→2). Columns 2 of Ta-
ble 6 and Table 7 show the same information but expressed
as time increase, in percents, for R1→2 when compared with
R2. For example, in scenario 1, the lazy update version took
4.85% longer (cloud) and 1% longer (standalone) to com-
plete the benchmark; in scenario 2 the values are slightly
negative due to jitter and because we use medians rather
than averages. We emphasize that query processing over-
head is transient and goes to zero after the lazy update is
completed (at most 6,206 seconds in our scenarios).

Disk space footprint. The additional disk space used for
lazy updates (e.g., shadow tables) will temporarily result in
higher disk space usage. To get an idea of the temporary disk
overhead our approach imposes, we measured the size of the
on-disk database file in the R2 and R1→2 configurations; for

tim
e

(s
)

0

50

100

150

200

Scenario
1 2 3 4 5 6 7 8 9 10

no update
while updating

Figure 4: Standalone: query execution time in the
no update case (R2) v. query execution time while
updating (R1→2).

Table 6: Amazon AWS: overhead.

Scenario Query Disk Memory
ID (%) (%) (kB)
1 4.85 0 0
2 -3.69 0 0
3 14.93 0 0
4 19.77 30.23 29,824
5 17.06 67.69 29,824
6 30.76 8.05 29,628
7 5.34 7.12 29,628
8 9.63 0 0
9 7.65 0 0
10 20.40 5.24 29,628

the R1→2 configuration, we measured disk usage just before
deleting the shadow tables. We found (columns 3 of Ta-
bles 6 and 7) that the on-the-fly update case uses between
0% and 68% more disk space than the unmodified SQLite
(we present percentages, rather than actual disk space be-
cause the overhead depends on the database size). How-
ever, this overhead is temporary; after completing the lazy
update, the disk usages in both configurations are identical.
Note that disk usage would be higher if we used standard
migration techniques, as in that case we would need space
for both the old (R1) and new (R2) databases.

Memory footprint. The additional memory space used for
lazy updates will temporarily lead to higher SQLite memory
footprints in cases where shadow tables are used. To mea-
sure the temporary overhead, we compared the additional
peak memory footprint in the R1→2 case compared to the
R2 case. This information will give us an idea of maximum
additional memory requirements, which is especially impor-
tant for cloud settings and mobile devices where memory
is at a premium. We obtained peak memory usage from
the VmPeak field of /proc/<pid>/status as reported by the
Linux kernel. In columns 4 of Tables 6 and 7 we see that the
extra memory required ranged from 0 KB to 29,628 KB.

Table 7: Standalone: overhead.

Scenario Query Disk Memory
ID (%) (%) (kB)
1 1 0 0
2 -0.5 0 4
3 1.26 0 0
4 1.39 28.37 28,744
5 22.39 66.27 28,744
6 3.35 7.5 28,840
7 5.04 6.8 28,744
8 1.44 0 0
9 1.97 0 0
10 1.40 4.4 28,744

CPU utilization. There is a trade-off between completing
the lazy update quickly and having a responsive system, as
foreground and background threads compute for hardware
resources (mainly CPU). On one hand, we want the fore-
ground thread that carries out post-update client queries to
be slowed down as little as possible. On the other hand,
slowing down the background thread will delay completing
the update. We measured the parameters of this trade-off
in the cloud. Thanks to Amazon EC2’s monitoring facili-
ties, we found out that the CPU utilization is 100% dur-
ing the lazy update process, which means neither the client
queries, nor the update were slowed down unnecessarily. For
the standalone system, the lack of virtualization makes col-
lecting accurate information about CPU utilization difficult,
hence we did not attempt it.

Verifying correctness. To verify that our on-the-fly schema
update implementation is correct, for each scenario we com-
pared the results of running a query on R2 with the results
of running a query on R1→2. We also compared database
contents between a database constructed at version 2 (R2)
and the database contents after finishing the update from
version 1 to version 2 (R1→2). To do so, we saved query re-
sults and database contents in text form, and used the Unix
diff command to confirm that the texts corresponding to
R2 and R1→2 were identical.

Limitations. Our implementation does not yet support more
complex SMOs such as vertical/horizontal split or merge.
We believe that adding support for such SMOs is feasible
and plan to explore it in future work.

7. RELATED WORK

Online schema changes. PRISM [9] is a system aimed
at replacing the current manual schema evolution process
with a fully-automated one. The database admin has to
specify schema differences between the two versions, as SMOs.
PRISM then provides an assessment whether the schema
change is information-preserving, and automatically rewrites
the old queries into queries that can run on the new schema
version; it also generates an inverse (new to old) transfor-
mation automatically, as well as data migration scripts that
can migrate data between the old and new versions. At this
point, the system is ready to migrate and answer new queries
(directly), as well as old queries (via rewriting); old queries

incur a permanent performance overhead. For now we do
not require that SMOs be specified, but provide automatic
conversion to the new schema, though in the future we plan
to support more complicated schema changes which will re-
quire programmers to specify SMOs. We also do not perform
any query rewriting, because it is not necessary: when the
application switches to the new version, it already has the
new queries built in (Section 3.1). Finally, our system has no
notion of history beyond “old” and “new” versions; never-
theless, this does not preclude it from supporting long-term
evolution by simply applying updates in sequence.

Ronström [31] presents a system for online schema changes
in the context of telecommunication systems. The system
supports a more complex set of schema changes (e.g., split-
ting and merging tables horizontally or vertically, adding
indexes) than ours. To ensure safety, their approach relies
on user-supplied “test” transactions that are meant to be
executed after the schema change has completed; if the test
transactions fail, the schema change is aborted and the sys-
tem rolls back to the old schema. For now our system does
not support such complex schema changes (based on our em-
pirical study, these complex schema changes are infrequent)
though we plan to support them in the future. Our approach
to guaranteeing safety is different, too: we use safety checks
to prevent unsafe queries, rather than allowing all changes
and having to roll back. An evaluation of their system is
not provided.

Løland and Hvasshovd [20] describe a system for allowing
online full outer joins and vertical table splits. After an
update has been signaled, their system creates the required
new tables and starts populating them; for all the post-
update operations a log is kept, and just prior to phasing off
the old tables, log propagation will ensure the newly-added
tables contain all the required data. They provide proofs
sketches for ensuring the consistency of the old and new
tables. They also conduct an evaluation of their system and
show that the transient overhead imposed by their system
is typically 2% (and at most most 11%) for throughput and
typically 5% (and at most 30%) for response time. Our
safety guarantee is somewhat similar to theirs, though the
set of schema changes we support differs from theirs. Their
implementation consists of a Java-based prototype, whereas
we implement and evaluate our approach on a popular SQL
engine.

Schema evolution studies. Curino et al. [8] have studied
schema evolution for Wikipedia from April 2003 to Novem-
ber 2007. Their study provides both micro- and macro-
classification of changes. The micro-classifications corre-
spond to SMO syntax, which is a superset of the changes we
investigate; in particular, we do not collect data on DISTRIBUTE

TABLE, MERGE TABLE, COPY COLUMN, and MOVE COLUMN. Macro-
classifications include changes to indexes, keys, types, syn-
tax and engine; while we could collect such macro-level changes,
we decided to only consider changes to types, as these have a
direct impact on our implementation. Their study, just like
ours, finds that the most frequent changes are column ad-
dition and deletion; however, column renaming seems to be
much more frequent in Wikipedia than in our applications.
Interestingly, they find query failure rate in Wikipedia to
be about 10% short-term (i.e., when skipping one update or
migration) and 84% long term (if skipping 40 or more up-
dates or migrations). The short-term number is lower than

what we find for Mozilla (Table 2).
Sjøberg [33] presents a schema evolution study on a health

management system over 1.5 years; their findings are simi-
lar to ours, i.e., most frequent changes are column addition-
s/deletions and table additions/deletions.

Schema versioning, schema matching and schema map-
ping. Schema versioning and temporal querying approaches
such as PRIMA [25] or timetravel in Ganymed [28] store
data at multiple versions and allow queries that span mul-
tiple schema versions. Schema mapping systems such as
MACES [41] or ToMAS [37] allow heterogeneous systems
that assume different schemas to interact properly via map-
pings. Schema matching [29] and ontology mapping [18] ad-
dress the problem of accessing data where the client and
server formats (or languages) are different, by providing
matching or mapping functions between the two formats.

These approaches are complementary to ours, because
they target a different point in the design space. First, their
power comes at a cost—using dedicated systems or separate
applications—hence unlikely to be easily integrated in em-
bedded, mobile, desktop, or real-time applications. Second,
our applications do not go back to old versions (i.e., they
always “march forward”), therefore a transient performance
overhead is preferable to the continuous overhead associated
with storing old versions and schema mapping/matching, or
query rewriting.

Lazy updates. Lazy updates were used by other researchers
in prior work, in the context of object-oriented databases [12,
5] and persistent object stores [7]. Automatic object up-
grades on top of Thor [7] enjoy strong safety guarantees
(i.e., preserving object invariants) in the presence of lazy up-
grades; this is accomplished by using object encapsulation
and enforcing so-called modularity conditions (i.e., making
sure that any transaction that uses yet-to-be upgraded ob-
jects will first transform object to the new version). Our
system also guarantees that any post-update accesses to yet-
to-be-converted tuples will see the new version, though en-
forcing this condition in our system is simplified by the lack
of object dependencies.

Large-scale and commercial DBMSs. DBMSs used in
large applications provide limited support for schema changes,
and most frequent changes cannot be performed online. For
example, MySQL [3] and Microsoft SQL Server [22] per-
mit table renaming and column addition/deletion/renam-
ing/type change; IBM DB2 permits table renaming, col-
umn addition/renaming and a limited set of column type
changes [17]; however, as we explain next, these changes
are not performed on-the-fly, which affects availability. For
MySQL, according to the manual for version 5.1, all changes
except attribute renaming will create and fill out an extra
table that will replace the old one, and “updates and writes
to the [old] table are stalled until the new table is ready”.
Microsoft SQL Server “blocks all outside operations until
the [schema modification] lock is released”. IBM DB2 will
return new-schema results for SELECTs, though the underly-
ing data is not changed; it is changed whenever tuples are
inserted/updated [13].

Edition-based redefinition in Oracle 11g Release 2 [27] al-
lows online upgrades via “hot rollover”. Changes are in-
stalled in a new edition; new-version clients will see the data

at the new schema via the new-edition view, while old clients
will access the data at the old schema via the old-edition
view. Supporting both versions simultaneously is required
because of long-lived transactions [14] and clients who wish
to first test the new version before switching to it. Cross-
edition triggers propagate changes between the two views;
these triggers are programmer-defined, must be idempotent
and the question of invertibility (hence consistency between
the two editions) is left to the programmer. We take a dif-
ferent approach (one active version at a time) because the
update is client-initiated, hence there is no need to support
two versions simultaneously; this way we avoid consistency
issues and having to write triggers.

8. CONCLUSIONS
In this paper we present an approach for march-forward,

on-the-fly schema evolution that explores a different point
in the design space compared with current schema evolu-
tion approaches. This work was motivated by the non-stop
requirements of many cloud, desktop, and server applica-
tions; and by the ubiquity of SQLite and the march-forward
nature of applications using it. We have implemented sup-
port for on-the-fly changes to schemas by extending SQLite
in a client-transparent manner. We have evaluated our ap-
proach on both Amazon Web Services and standalone server
setups, found that support for online schema updates does
not significantly impact application performance and any
overhead is transient. Our system has the potential to im-
prove software availability and user experience for a variety
of non-stop applications that use persistent data; moreover,
it allows cloud service providers to sustain a high update
cadence without violating SLAs.

Acknowledgments
We thank Vassilis Tsotras and the anonymous referees for
their helpful comments on this work. This research was
supported in part by the United States National Science
Foundation grants CCF-0963996 and CCF-1149632.

9. REFERENCES
[1] BiblioteQ. http://biblioteq.sourceforge.net/.

[2] High availability. http://en.wikipedia.org/wiki/
High_availability#Percentage_calculation.

[3] MySQL 5.1 Reference Manual. http://dev.mysql.com/
doc/refman/5.1/en/alter-table.html.

[4] J. Arnold and F. Kaashoek. Ksplice: Automatic
rebootless kernel updates. In EuroSys, 2009.

[5] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth.
Semantics and implementation of schema evolution in
object-oriented databases. In SIGMOD ’87, pages
311–322.

[6] P. Bhattacharya and I. Neamtiu. Dynamic updates for
web and cloud applications. In Proceedings of the 2010
Workshop on Analysis and Programming Languages
for Web Applications and Cloud Applications,
APLWACA ’10, pages 21–25, 2010.

[7] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and
S. Richman. Lazy modular upgrades in persistent
object stores. In OOPSLA, 2003.

[8] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo.
Schema evolution in wikipedia - toward a web
information system benchmark. In ICEIS (1), 2008.

http://biblioteq.sourceforge.net/
http://en.wikipedia.org/wiki/High_availability#Percentage_calculation
http://en.wikipedia.org/wiki/High_availability#Percentage_calculation

[9] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: the prism workbench.
VLDB, 2008.

[10] T. Dumitraş and P. Narasimhan. No downtime for
data conversions: Rethinking hot upgrades. Technical
Report CMU-PDL-09-106, CMU, 2009.

[11] T. Dumitraş and I. Neamtiu. Cloud software upgrades:
Challenges and opportunities. In MESOCA’11.

[12] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and
J. Madec. Schema and database evolution in the o2
object database system. In VLDB, 1995.

[13] C. Friske. DB2 online schema changes - what’s new in
DB2 version 8. SHARE, Session 1323, February 2004.
ftp://ftp.software.ibm.com/software/data/db2/zos/
presentations/v8-new-function/online-schema-
evolution-imtc-2004-friske.pdf.

[14] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD
Conference, pages 249–259, 1987.

[15] Google. Google Apps service level agreement, 2012.
http://google.com/apps/intl/en/terms/sla.html.

[16] D. R. Hipp. Sqlite. http://www.sqlite.org/.

[17] IBM. DB2 Version 9.1 for z/OS information.
http://publib.boulder.ibm.com/infocenter/dzichelp/
v2r2/index.jsp?topic=/com.ibm.db29.doc/db2prodhome.htm.

[18] Y. Kalfoglou and M. Schorlemmer. Ontology mapping:
the state of the art. KER, 18(01):1–31, 2003.

[19] D.-Y. Lin and I. Neamtiu. Collateral evolution of
applications and databases. In ERCIM Workshop on
Software Evolution/International Workshop on
Principles of Software Evolution, pages 31–40, August
2009.

[20] J. Løland and S.-O. Hvasshovd. Online, non-blocking
relational schema changes. In EDBT 2006. LNCS
3896, pages 405–422, 2006.

[21] V. Mandalapa. A framework for understanding
schema evolution in web information systems.
Master’s thesis, Arizona State University, 2009.

[22] Microsoft Corporation. Microsoft SQL Server 2008 -
Locking in the Database Engine. http://msdn.micro
soft.com/en-us/library/ms175519.aspx.

[23] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, 1992.

[24] The monotone distributed version control system.
http://monotone.ca.

[25] H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou, and
C. Zaniolo. Managing and querying transaction-time
databases under schema evolution. VLDB, 2008.

[26] Mozilla Foundation. The Mozilla Project.
http://mozilla.org.

[27] Oracle. Edition-Based Redefinition.
http://www.oracle.com/technology/
deploy/availability/pdf/edition based redefinition.pdf.

[28] C. Plattner, A. Wapf, and G. Alonso. Searching in
time. In SIGMOD, pages 754–756, 2006.

[29] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[30] J. F. Roddick et al. Evolution and change in data

management — issues and directions. SIGMOD Rec.,
29(1):21–25, 2000.

[31] M. Ronström. On-line schema update for a telecom
database. In ICDE, 2000.

[32] B. Shneiderman and G. Thomas. An architecture for
automatic relational database system conversion.
ACM Trans. Database Syst., 7(2):235–257, 1982.

[33] D. Sjøberg. Quantifying schema evolution. In
Information and Software Technology, volume 35,
pages 35–44, January 1993.

[34] G. H. Sockut and B. R. Iyer. Online reorganization of
databases. ACM Comput. Surv., 41(3):1–136, 2009.

[35] SQLite Team. Most widely deployed SQL database.
http://www.sqlite.org/mostdeployed.html.

[36] S. Subramanian, M. Hicks, and K. S. McKinley.
Dynamic software updates: a vm-centric approach. In
PLDI, 2009.

[37] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping
adaptation under evolving schemas. In VLDB, 2003.

[38] The Vienna RSS/Atom reader.
http://http://vienna-rss.org.

[39] Wikimedia Foundation. MediaWiki 1.5 upgrade, 2005.

[40] S. Wu and I. Neamtiu. Schema evolution analysis for
embedded databases. Third Workshop on Hot Topics
in Software Upgrades (HotSWUp’11), pages 151–156,
April 2011.

[41] C. Yu and L. Popa. Semantic adaptation of schema
mappings when schemas evolve. In VLDB, 2005.

http://google.com/apps/intl/en/terms/sla.html
http://monotone.ca
http://mozilla.org
http://http://vienna-rss.org

	Introduction
	Motivation
	Rationale for On-the-fly Updates
	Schema Evolution Study

	Safety
	The Need for Safety
	Versions
	Safety Checks

	Use Case
	Implementation
	Evaluation
	Schema Update Scenarios and Benchmarks
	Experimental Setup
	Results

	Related Work
	Conclusions
	References

