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ABSTRACT
We present a collection of tools, DrDebug, that greatly ad-
vances the state-of-the-art of cyclic, interactive debugging
of multi-threaded programs based upon the record and re-
play paradigm. The features of DrDebug significantly in-
crease the efficiency of debugging by tailoring the scope of
replay to a buggy execution region or an execution slice of a
buggy region. In addition to supporting traditional debug-
ger commands, DrDebug provides commands for recording,
replaying, and dynamic slicing with several novel features.
First, upon a user’s request, a highly precise dynamic slice
is computed that can then be browsed by the user by nav-
igating the dynamic dependence graph with the assistance
of our graphical user interface. Second, a dynamic slice of
interest to the user can be used to compute an execution
slice whose replay can then be carried out. Due to narrow
scope, the replay can be performed efficiently as execution
of code segments that do not belong to the execution slice
is skipped. We also provide the capability of allowing the
user to step from the execution of one statement in the slice
to the next while examining the values of variables. To the
best of our knowledge, this capability cannot be found in
any other slicing tool. We have also integrated DrDebug
with the Maple tool that exposes bugs and records buggy
executions for replay. Our experiments demonstrate DrDe-
bug’s practicality.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Tracing

General Terms
design, experimentation
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Figure 1: Cyclic Debugging Process

1. INTRODUCTION
Cyclic debugging is the iterative process of narrowing down

the reason for a program failure. The failure, or the bug, has
a root cause (where the bug is introduced) and a symptom
(where the bug’s effect is seen). In each debug iteration, the
programmer gathers more information, adding to the knowl-
edge gained from previous debug iterations, finally zeroing
in on the root cause of the bug. The process, outlined in Fig-
ure 1, involves making a hypothesis about the cause of the
bug, fast-forwarding to the buggy region, and performing
a detailed state examination until the bug manifests itself.
The cycle is repeated until the root cause of the bug is found.

Cyclic debugging poses multiple challenges:
1. Depending on the location of the bug, it can take a

very long time to fast-forward and reach it.

2. Many aspects of the program state, such as heap/s-
tack location, outcome of system calls, thread sched-
ule, change between debug sessions.

3. Some bugs are hard to reproduce, in general and also
under a debugger.

To address these challenges we introduce a Deterministic
replay based Debugging framework, or DrDebug for short.
It is a collection of tools based on the program capture and
replay framework called PinPlay [23]. PinPlay uses the Pin
dynamic instrumentation system [18]. PinPlay consists of
two pintools: (i) a logger that captures the initial architec-
ture state and non-deterministic events during a program
execution in a set of files collectively called a pinball; and
(ii) a replayer that runs on a pinball repeating the captured
program execution therein.

Our proposed PinPlay-based cyclic debugging process is
outlined in Figure 2. It involves two phases: (i) capturing
the buggy region in a pinball using the PinPlay logger; and
(ii) replaying the pinball and use Pin’s advanced debugging
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Figure 2: Cyclic Debugging with DrDebug

extension PinADX [17] to do cyclic debugging. Our process
addresses various debugging challenges as follows:

1. The programmer uses the logger to fast-forward to the
buggy region and then starts logging until the bug ap-
pears. Thus the generated pinball captures only an
execution region that includes both the root-cause and
the symptom of the bug. During replay-based debug-
ging, each session starts right at the entry of the buggy
region avoiding the need for fast-forwarding.

2. The programmer observes the exact same program state
(heap/stack location, outcome of system calls, thread
schedule, etc.) during multiple debug sessions based
on the replay of the same pinball.

3. If the logger manages to capture a buggy pinball, it
is guaranteed that the bug will be reproduced on each
iteration of cyclic debugging. For hard-to-reproduce
bugs, the logger can be combined with bug-exposing
tools such as Maple [30] to expose and record the bug.

PinPlay also enables deterministic analysis of multi-threaded
programs via pintools built for analysis during replay. PinADX
can make the analysis available to the user as a set of ex-
tended debugger commands. Using these two capabilities,
we have designed a practical (efficient and highly precise)
dynamic slicer for multi-threaded programs. The dynamic
slice of a computed value identifies all executed statements
that directly or indirectly influence the computation of the
value via dynamic data and control dependences [14]. In this
paper we greatly advance the practicality of dynamic slic-
ing by (i) slicing execution regions to control the high cost
of slicing, (ii) making a slice available across multiple de-
bug sessions, (iii) allowing forward navigation of a slice in a
live debugging session, (iv) improving its precision, and (v)
handling multi-threaded programs. The result is a replay
debugging tool, consisting of gdb with a KDbg graphical
user interface, that allows users to interactively query the
statements affecting a variable value at a specific statement.
Slices found once are usable across multiple debug sessions
because of PinPlay’s repeatability guarantee.

The key contributions of this work are as follows:

1. A working debugger (gdb) with a graphical user in-
terface (KDbg) that allows debugging based on replay
of pinballs for multi-threaded programs. All regular
debugging commands (except state modification) con-
tinue to work. In addition, new commands for region
recording and dynamic slicing are made available.

2. Handling of dynamic program slicing for multi-threaded
programs. The slicing works for a recorded region from

a program execution. We have implemented new op-
timizations to make interactive slicing practical and
developed analysis to make the computed slices highly
precise.

3. Leveraging PinPlay’s capabilities, we have developed a
logging tool for capturing an execution slice which al-
lows us to replay the execution of statements included
in a dynamic slice efficiently by skipping the execution
of code regions that do not belong to the slice. Pro-
grammers can load a previously generated slice and
step forward from the execution of one statement in
the slice to the next while examining values of program
variables at each point. Such support is not provided
in any prior dynamic slicing tool as they merely permit
examination of slice after program execution.

4. We modified the Maple tool-chain [4] for recording the
buggy executions it exposes. The resulting pinball can
be readily used by DrDebug.

Both PinPlay and dynamic slicing can incur a large run-
time overhead. Luckily, for cyclic debugging their use can be
restricted only to the buggy region. The overhead actually
seen by the users will depend on the lengths of their buggy
region. In a study of 13 buggy open source programs [21]
the buggy region length (called Window size in the paper)
was typically less than 10 million instructions, and at most
18 million instructions. In our experiment with eight 4-
threaded PARSEC [10] program runs, on average, regions
with 100 million instructions in the main thread (541 mil-
lion instructions in all threads) could be logged in 29 seconds
and replayed in 27 seconds. We also found the overhead for
region-based slicing to be quite reasonable – a few seconds
to a few minutes for regions of average length 6 million in-
structions.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of DrDebug features. Section
3 presents our replay-based dynamic slicing algorithm for
multi-threaded programs. Section 4 discusses execution slic-
ing and Section 5 presents techniques for improving the pre-
cision of dynamic slicing. Section 6 gives an overview of
the implementation and Section 7 presents our evaluation.
Related work and conclusions are given in Sections 8 and 9.

2. OVERVIEW OF DRDEBUG
Debugging begins once a pinball that captures a failing

run is available. This initial pinball is either generated au-
tomatically, using a testing tool, or with the assistance of
the programmer. In the former case we use the Maple bug
exposing tool then capture the corresponding pinball. In
the latter case, we provide GDB commands/GUI buttons so
the programmer can fast-forward to the buggy region and
then manually capture the pinball. DrDebug is designed to
achieve two objectives: replay efficiency - so that it can be
used in practice; and location efficiency - so that the user’s
effort in locating the bug can be reduced.

Replay efficiency. In designing DrDebug, one of our key
objectives is to speedup debugging by improving the speed
of replay. This is particularly important for long program
executions. We tackle this problem by narrowing the scope
of execution that is captured by the pinball using the notions
of Execution Region and Execution Slice in DrDebug.
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(c) Replaying Execution Slice

Figure 3: Narrowing Scope of Execution for Replay.
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(a) Replay Execution Region; Compute Dynamic
Slices.
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(b) Generate Slice Pinball from Region
Pinball.
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(c) Replay Execution Slice and Debug by Examining
State.

Figure 4: Dynamic Slicing in DrDebug

• Execution Region - instead of collecting the pinball for
an entire execution, users can focus on a (buggy) region
of execution by specifying its start and end points. The
region pinball is then drives replay-based debugging.

• Execution Slice - when studying the program behavior
along a dynamic slice, instead of replaying the entire
execution region, we exclude the execution of parts
of the region that are not related to the slice. This
is enabled by replaying using the region pinball and
performing relogging to collect the slice pinball.

Figure 3 shows how the scope of execution that is replayed
is narrowed down by the above two techniques. This greatly
increases the speed of replay and makes replay based debug-
ging practical for real world applications.

Location efficiency. To assist in locating the root cause of
failure, we provide the user with a dynamic slicing capabil-
ity. The components of the dynamic slices and their usage
are (see Figure 4):

• When the execution of a program is replayed using
the region pinball, our slicing pintool collects dynamic
information that enables the computation of dynamic
slices. Requests for dynamic slices are made by the
programmer and the computed slices can be browsed

or traversed going backwards along the dynamic de-
pendences using our KDbg-based graphical user inter-
face (see Figure 4(a)).

• A dynamic slice of interest found in the preceding step
can be saved by the user. This slice essentially iden-
tifies a series of points in the program’s execution at
which the user wishes to examine the program state
in greater detail. To prepare for this examination, we
generate the slice pinball that only replays the execu-
tion of statements belonging to the slice. The relogger
is responsible for generating the slice pinball from the
computed slice by replaying using the region pinball
(see Figure 4(b)).

• Finally, the user can replay the execution slice using
the slice pinball. During this execution, breakpoints
are automatically introduced allowing the user to step
from the execution of one statement in the slice to the
next. At each of these points, the user can examine the
program state to understand program behavior (see
Figure 4(c)).

In contrast to prior work on dynamic slicing, we make
the following contributions. First, we develop a dynamic
slicing algorithm that not only handles multi-threaded pro-
grams, but is integrated with the replay system. Second,
we provide a graphical interface which allows the user to
browse a dynamic slice by traversing it backwards and ex-
amine the program state along the dynamic slice by single
stepping-forward as the program executes. Finally, we have
developed extensions for capturing dynamic data and con-
trol dependences that make the dynamic slice more precise.
Next, we present each of these contributions in greater de-
tail.

3. COMPUTING DYNAMIC SLICES
The dynamic slice of a computed value is defined to in-

clude the executed statements that played a role in the com-
putation of the value. It is computed by taking the transitive
closure over data and control dependences starting from the
computed value and going backwards over the dynamic de-
pendence graph. As the execution of a multi-threaded pro-
gram is being replayed, the user can request the computation
of a dynamic slice for a computed value at any statement via
our debugging interface. The slice is computed as follows:

(i) Collect Per Thread Local Execution Traces. During
replay, for each thread, we collect its local execution trace
that includes the memory addresses and registers defined
(written) and used (read) by each instruction. This infor-
mation is needed to identify dynamic dependences.
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(a) Example Code.
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(b) Per Thread Traces and
Shared Memory Access Or-
der.
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(c) Global
Trace

�
�
�����

��
�
�	
��� ��

�
�����

��
�
������
���

�
�
�����

�
�

���

��

�

�

�

��

�
�
���

��
�
�����

�

�

�

�

������������� !

�  ����"��

(d) Slice for k at 131.

Figure 5: Dynamic Slicing a multi-threaded program.

(ii) Construct the Combined Global Trace. Prior to slice
computation, we combine all per-thread traces into a sin-
gle fully ordered trace such that each instruction in the
trace honors its dynamic data dependences including all
read-after-write, write-after-write, and write-after-read de-
pendences. The construction of this global trace requires
the knowledge of shared memory access ordering to guar-
antee that inter-thread data dependences are also honored
by the global trace. This information is already available in
a pinball, as it is needed for replay. The combined global
trace is thus based on the topological order of the graph, in
which each execution instance is represented as a node, and
an edge from node n to m means that n happens before m
either in program order or in shared memory access order.

(iii) Compute Dynamic Slice by Backwards Traversing
the Global Trace. A backward traversal of the global trace
is carried out to recover the dynamic dependences that form
the dynamic slice. We adopted the Limited Preprocessing
(LP) algorithm proposed by Zhang et al. [33] to speed up the
traversal of the trace. This algorithm divides the trace into
blocks and by maintaining summary of downward exposed
values, it allows skipping of irrelevant blocks.

Next we illustrate our algorithm on the program in Fig-
ure 5. The code snippet is shown in Figure 5(a), where two
threads, T1 and T2, operate on three shared variables (x,
y, z). The code region (from line 11 to line 13) is wrongly
assumed to be executed atomically in T2 by the program-
mer. However, because of the data race between statements
at line 6 and line 12, x is modified unexpectedly in T1 by

statement at line 6, causing the assertion to fail at line 13 in
T2 (see Figure 5(b)). To help figure out why the assertion
failed, the programmer can compute the backwards dynamic
slice for k at line 13 in thread T2.

Figure 5(b) shows the individual trace for each thread. We
collect the def-use information, i.e., the variables (memory
locations and registers) defined and used, for each instruc-
tion. For example, 121 defines k by using k (defined at 101)
and x (defined at 61). In addition to the per thread local
traces and the shared memory access ordering used to com-
pute the slice are also shown in Figure 5(b). The shared
memory access orders are shown by the inter-thread dashed
edges – for example, edge from 61 to 121 means the write
of x at 61 in T1 happens before the read of x at 121 in T2.
The intra-thread program orders are shown by solid edges –
for example, edge 111 → 121 means that 111 happens before
121 in T2 by program order. The combined global trace for
all threads shown in Figure 5(c) is a topological order of all
the traces in Figure 5(b).

Using the global trace, we can then compute a backwards
dynamic slice for the multi-threaded program execution via
a backwards traversal of the global trace to recover depen-
dences which should be included in slice. When we construct
the global trace in step 2, we always try to cluster traces for
each thread to the extent possible to improve the locality of
LP algorithm (e.g., after considering 11, we continue to con-
sider 21 and stop at 31 because of the incoming edge from
71 to 31). The slice for k at 131 is shown in Figure 5(d).
As we can see, the dynamic slice captures exactly the root
cause of the concurrency bug: x is unexpectedly modified at
61 in T1 when T2 is executing an atomic region (assumed
by the programmer).

Once a dynamic slice has been computed, the user can ex-
amine and navigate the slice using our graphical user inter-
face. In addition, when an interesting slice has been found,
the user may wish to engage in deeper examination of how
the program state is effected by the execution of statements
included in the slice as program execution proceeds. For this
purpose, the user can save the slice and take advantage of
replaying the execution slice as described in the next section.

4. REPLAYING EXECUTION SLICES
In prior works, the dynamic slice is essentially used for

postmortem analysis after program execution. It identifies
statement executions that influence the computation of a
suspicious value via control and data dependences. To fur-
ther understand the program behavior; however, the pro-
grammer may wish to examine the concrete values of vari-
ables at statement instances in the slice to see how these
statements impact program state. Therefore we support the
idea of replaying an execution slice which provides two key
features.

• First, the user can examine the values computed along
the slice in a live debugging session. In fact we allow
the user to step the execution of the program from
one statement in the slice to the next statement in the
slice.

• Second, for efficiency, only the part of computation
that forms the slice is replayed. To implement this
feature we leverage PinPlay’s relogging and code ex-
clusion features.
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(a) Code Exclusion
Regions.
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(b) Injecting Values During Re-
play.

Figure 6: An example of execution slice.

PinPlay’s relogger can run off a pinball and then generate
a new pinball by excluding some code regions. Given a slice,
DrDebug can exclude all the code regions which are not
in the slice and generate a smaller slice pinball. PinPlay’s
relogger maintains a per-thread exclusion flag to support
local exclusion regions for each thread. Given an exclusion
code region [startPc : sinstance : tid, endPc : einstance :
tid) for thread tid, relogger sets the exclusion flag and turns
on the side-effects detection when sinstanceth execution of
startPc is encountered, and then resets the flag when the
einstanceth execution of endPc is reached in thread tid.

To enable generation of the slice pinball, we output a
special slice file which, in addition to the normal slice file,
also identifies the exclusion code regions. As shown in Fig-
ure 6(a), we identify all the exclusion code regions (shown as
dashed boxes) for each thread, and output such information
to the special slice file. The relogger leverages this file to
generate the slice pinball. Relogger detects the side-effects
of excluded code regions using the same algorithm PinPlay
adopted for system call side-effects detection [20]. When
DrDebug runs off the slice pinball, all the excluded code re-
gions will be completely skipped and their side-effects are
restored by injecting modified memory cells and registers as
shown in Figure 6(b).

5. IMPROVING DYNAMIC DEPENDENCE
PRECISION

The utility of a dynamic slice depends upon the precision
with which dynamic dependences are computed. We ob-
serve that prior dynamic dependence detection algorithms
(e.g., [28, 27, 33, 32]) which leverage binary instrumentation
frameworks (e.g., Pin [18], Valgrind [22]) have two sources of
imprecision. First, in the presence of indirect jumps, these
algorithms fail to detect certain dynamic control depen-
dences causing statements to be missed from the dynamic
slice. Second, due to the presence of save and restore oper-
ation pairs at function entry and exit points, spurious data
dependences are detected causing the dynamic slices to be
unnecessarily large. Next we address these sources of im-
precision. To the best of our knowledge, we are the first to
observe and propose solutions to mitigate these problems.

5.1 Dynamic Control Dependence Precision
For accurately capturing dynamic control dependence in

the presence of recursive functions and irregular control flow,
we use the online algorithm by Xin and Zhang [27]. How-
ever, using this algorithm in the context of a dynamic bi-
nary instrumentation framework poses a major challenge.
It assumes the availability of precomputed static immedi-
ate post-dominator information for each basic block. Due
the presence of indirect jumps, accurate static construction

of the control flow graph is not possible. As a result, the
post-dominator information precomputed statically is im-
precise and the dynamic control dependences computed are
imprecise as well. In prior works [32, 27, 28] this problem is
addressed by restricting the applicability of the slicing tool
to binaries generated using a specific compiler which limits
the applicability of the tool.

Let us illustrate the problem caused by an indirect jump
using the example in Figure 7. The code snippet is shown in
the first column, and the second column shows its assembly
code. The switch-case statement is translated to the indirect
jump: jmp∗%eax. Without the dynamic jump target infor-
mation, in general, the static analyzer cannot figure out the
possible jump targets for a indirect jump. Thus, the stat-
ically constructed CFG will be missing control flow edges
from statement 4 to statements 6 and 9. This inaccurate
CFG leads to an imprecise dynamic slice shown in the third
column with missing control dependence 61 → 41.

To achieve wide applicability and precision we take the
following approach in DrDebug. We implement a static an-
alyzer based on Pin’s static code discovery library – this
allows DrDebug to work with any x86 or Intel64 binary.
Further, we develop an algorithm to improve the accuracy
of control dependence in the presence of indirect jumps. Ini-
tially we construct an approximate static CFG and as the
program executes, we collect the dynamic jump targets for
the indirect jumps and refine the CFG by adding the missing
edges. The refined CFG is used to compute the immediate
post-dominator for each basic block which is then used to
dynamically detect control dependences. This leads to the
accurate slice shown in the fourth column in Figure 7.

5.2 Dynamic Data Dependence Precision
Besides memory to memory dependences, we need to main-

tain the dependences between registers and memory to per-
form dynamic slicing at the binary level. Dynamic slices
may include many spurious dependence edges when regis-
ters are saved/restored upon at function entry/exit. More
specifically, at each function entry, registers used inside this
function are saved on the stack, and later restored from the
stack in reverse order when the function returns to its caller.

Consider the example in Figure 13. The first and second
columns show a C code snippet and its corresponding as-
sembly code respectively. Register eax is used in function
Q, and its value is saved/restored onto/from stack at line
10/12. Considering an execution where c’s value is ′t′ at
line 3, let us compute a slice for w at the first execution of
statement at line 7. As variable e is used to compute w in 71

and its value is stored in eax, we continue to backwards tra-
verse the trace to find the definition of register eax. As value
of eax is saved/restored onto/from stack at the entry/exit
of Q; we will establish data dependence edges 71 → 121,
121 → 101, and 101 → 41 due to eax. If only data depen-
dences are considered, we get longer data dependence chains
than needed. Since a dynamic slice is a transitive closure of
both control and data dependences, we may wrongly include
many spurious data and control dependences because of such
data dependence chains. In the Figure 13 example, because
all statements (e.g., 101 and 121) in function Q are directly
or indirectly control dependent on predicate 51 which guards
the execution of function Q, a slice for w at 71 will wrongly
include 31 and 51 (as shown in the third column) as well as
all other statements on which 31 and 51 are dependent.



C Code Assembly Code [Imprecise] Slice for w at line 61 Refined Slice
1 P(FILE∗ fin, int d){
2 int w;
3 char c=fgetc(fin );
4 switch(c){
5 case ’a’ :
/∗ slice criterion ∗/
6 w = d + 2;
7 break;
8 case ’b’ :
9 w = d − 2;
10 ... }
11}

3 call fgetc
mov %al,−0x9(%ebp)

4 ...
mov 0x8048708(,%eax,4),%eax
jmp ∗%eax

6 mov 0xc(%ebp),%eax
add $0x2,%eax
mov %eax,−0x10(%ebp)

7 jmp 80485c8
8 ...
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Figure 7: Control dependences in the presence of indirect jumps.

Code Assembly Code [Imprecise] Slice for w at line 71 Refined Slice

1 P(FILE∗ fin, int d){
2 int w, e;
3 char c=fgetc(fin );
4 e= d + d;
5 if (c==’t’)
6 Q();
/∗ slice criterion ∗/
7 w=e;
8 }
9 Q()
10 {
11 ...
12 }

3 call fgetc
mov %al,−0x9(%ebp)

4 mov 0xc(%ebp),%eax
add %eax,%eax

5 cmpb $0x74,−0x9(%ebp)
jne 804852d

6 call Q
804852d:

7 mov %eax,−0x10(%ebp)

9 Q()
10 push %eax
...

12 pop %eax
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Figure 8: Spurious dependence example.

We call a pair of instructions that are only used to save/re-
store registers a save/restore pair and data/control depen-
dences which are introduced by such pairs as spurious de-
pendences. To improve the precision of the dynamic slice,
we propose to precisely identify save/restore pairs and prune
the spurious data/control dependence resulting from them.

Dynamically identifying save/restore pairs. One pos-
sible way is to have the compiler generate special markers
for the save/restore pairs so they can be easily identified
at runtime. This approach would limit the applicability of
DrDebug since DrDebug is designed to work with any un-
modified x86 or Intel64 binary. Therefore we use a dynamic
algorithm for detecting as many save/restore pairs as possi-
ble without the help of the compiler. Our algorithm handles
the following complexities caused by the compiler. First, the
compilers can use either push (pop) or mov instruction to
save (restore) the value of a register. Moreover, push/pop
instructions are not exclusively used to save/restore regis-
ters. Second, it is not easy to know how many push (pop) or
mov instructions are exactly used to save (restore) registers
at the entry (exit) of a function. Our algorithm works as
follows:
• Statically identify potential save and restore instruc-

tions. The first MaxSave push/mov reg2mem instruc-
tions at the start of a function and the last MaxSave
pop/mov mem2reg instructions at the end of a function
are identified as potential save and restore instructions
respectively. MaxSave is a tunable parameter.

• Dynamically verify that the pairs are used to save and
restore registers. For each potential save instruction,
we record register/memory pair and the saved value
from the register. For each potential restore instruc-
tion, we record register/memory pairs and the restored
value from the stack. An identified save/restore pair
must satisfy two conditions: (1) save copies the value
of a register r to stack location s at the entry of a

function; and (2) restore copies the same value from
s back to r at the exit of the same function. In the
example of Figure 13, 101 and 121 are recognized as a
save/restore pair for eax.

Pruning spurious data dependences. With recognized
save/restore pairs, we prune spurious data dependence by
bypassing data dependences caused by such save/restore
pairs. Take the slice in the third column in Figure 13 as
an example. Because 71 → 121, 121 → 101, 101 → 41, and
101 and 121 are recognized as a save/restore pair for eax,
we bypass the data dependence chain and add a direct edge
71 → 41. In this way, the refined slice for w at 71 will not
include 31, 51, and all other statements on which 31 and 51

are dependent, as shown in the fourth column.

6. IMPLEMENTATION
The implementation of DrDebug consists of Pin-based [18]

and GDB-based [2] components. The Pin-based component
consists of the PinPlay library and the Dynamic Slicing mod-
ule. An extended Pin kit, called the PinPlay kit (available
for download [5]), is used to build a pintool that does dy-
namic slicing, can connect to the debugger, and can also do
logging/replay. The programmer interfaces with the GDB
component via a command line interface [2] or a KDbg [3]
based graphical interface. The GDB component commu-
nicates with the Pin-based component via PinADX [17], a
debugging extension of Pin. PinPlay’s logger is leveraged
to generate a (region) pinball and then PinPlay’s replayer
can deterministically replay the execution for multi-threaded
program by running off such pinball. During the replay,
driven by a slice command from GDB-based [2] component,
dynamic slicing module computes a slice and then PinPlay’s
relogger is leveraged to generate a slice pinball. Finally the
user can single step/examine statements in slice only when
PinPlay’s replayer runs off the slice pinball.



������

���	���
�

Figure 9: DrDebug GUI showing a dynamic slice.
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Figure 10: Dynamic Slicer Implementation.

Dynamic Slicer. The implementation of the dynamic slic-
ing module is shown in Figure 10. We implement a static
analysis module based on Pin’s static code discovery library
to conduct analysis to generate the control flow graph and
compute the immediate post dominator information. Given
immediate post dominators information, the Control Depen-
dence Detection submodule [27] detects the dynamic con-
trol dependences. The Global Trace Construction submod-
ule tracks individual thread traces and then constructs the
global trace based on the shared memory access orders which
were captured by the PinPlay’s logger to enable determinis-
tic replay. When the user issues a slice command, the Slicer
& Code Exclusion Regions Builder submodule computes the
slice by backwards traversing the global trace and then out-
puts the slice in two forms: a normal slice file used for slice
navigation and browsing in KDbg; and another slice format-
ted as a sequence of code exclusion regions for use by the
relogger to generate the slice pinball.

GUI. The extended KDbg provides an intuitive interface
for selecting interesting regions for logging, and computing,
inspecting and stepping through slices during replay. Fig-

ure 9 shows a screen-shot (best viewed online, in color) of
our interface – all the statements in the slice are highlighted
in yellow. The programmer can access the concrete inter-
thread dependences and navigate backwards along depen-
dence edges by the clicking on the Activate button of the
dependent statement.

Integration with Maple. Maple [30] is a coverage-driven
testing tool-set for multi-threaded programs. One of the us-
age models it supports helps when a programmer acciden-
tally hits a bug for some input but is unable to reproduce
the bug. Maple has two phases (i) a profiling phase where
a set of inter-thread dependencies, some observed and some
predicted, are recorded, and (ii) an active scheduling phase
that runs the program on a single processor and controls
thread execution (by changing scheduling priorities) to en-
force the dependencies recorded by the profiler. The active
scheduler does multiple runs until the bug is exposed.

Since Maple is based on Pin, it is an ideal candidate for
integration with DrDebug. We changed the active scheduler
pintool in Maple to optionally do PinPlay-based logging of
the buggy execution it exposes. We had to make sure, us-
ing Pin’s instrumentation ordering feature, that the thread-
control done by the active scheduler does not interfere with
PinPlay logger’s analysis.

We have successfully recorded multiple buggy executions
for the example programs in the Maple distribution. The
pinballs generated could be readily replayed and debugged
under GDB. We have pushed the changes we made to Maple’s
active scheduler back to the Maple sources [4].



Table 1: Data race bugs used in our experiments.

Program Program Description Type Bug Bug Description
Name Source
pbzip2 Parallel file compressor (ver. 0.9.4) Real [31] A data race on variable fifo → mut between main

thread and the compressor threads.
Aget Parallel downloader (ver. 0.57) Real [29] A data race on variable bwritten between downloader

threads and the signal handler thread.
mozilla Web browser (ver. 1.9.1) Real [12] A data race on variable rt → scriptF ilenameTable.

One thread destroys a hash table, and another thread
crashes in js SweepScriptF ilenames when accessing
this hash table.

Table 2: Time and Space overhead for data race bugs with buggy execution region

Program #executed #instructions in slice pinball Logging Overhead Replay Slicing
Name instructions (%instructions in slice pinball) Time(sec) Space(MB) Time(sec) Time(sec)
pbzip2 11186 1065 (9.5%) 5.7 0.7 1.5 0.01
Aget 108695 51278(47.2%) 8.4 0.6 3.9 0.02
mozilla 999997 100 (0.01%) 9.9 1.1 3.6 1.2

Table 3: Time and Space overhead for data race bugs with whole program execution region

Program #executed #instructions in slice pinball Logging Overhead Replay Slicing
Name instructions (%instructions in slice pinball) Time(sec) Space(MB) Time(sec) Time(sec)
pbzip2 30260300 11152 (0.04%) 12.5 1.3 8.2 1.6
Aget 761592 79794 (10.5%) 10.5 1.0 10.1 52.6
mozilla 8180858 813496 (9.9%) 21.0 2.1 19.6 3200.4

7. EXPERIMENTAL EVALUATION
Case studies. We studied 3 real concurrency bugs from
three widely used multithreaded programs, as detailed in
Table 1. The case studies serve two purposes: (a) quan-
tify the execution region sizes (i.e., the number of executed
instructions) that need to be logged and replayed later in
order to capture and fix each bug; (b) DrDebug has rea-
sonable time and space overhead for real concurrency bugs
with both whole program execution (i.e., execution region
from program beginning to failure point) and buggy execu-
tion region (e.g., execution region from root cause to failure
point).

Table 2 shows the time and space overhead with buggy
execution region for each bug. For each bug, we captured
the execution from the root cause to the failure point, and
then computed a slice for the failure point during determin-
istic replay. The number of executed instructions is shown
in the second column, while the number of instructions cap-
tured in slice pinball, as well as the percentage of number
of instructions in slice pinball over total executed instruc-
tion, are presented in the third column. The time and space
overhead for logging is shown in the fourth and fifth column
respectively. The sixth column shows the time to replay the
captured buggy region pinball, and the time for slicing is
shown in the seventh column. As we can see, all concur-
rency bugs we studied can be reproduced with region size of
1 million instructions. Besides, the time overhead for log-
ging, replay, and slicing is reasonable.

The time and space overhead with whole execution for
each bug is shown in Table 3. For each bug, we captured the
execution from the beginning of program to the failure point,
simulating that novice programmers tend to capture large
execution regions. As we can see, all concurrency bugs can
be reproduced from the program beginning, with maximal
region size of 31 million instructions. The logging, replay,

and slicing time overhead is acceptable, considering the large
amount of time programmers spend on debugging.

Logging and Replay. We first present results from log/re-
play time evaluations using 64-bit pre-built binaries with
suffix ’pre’ for version 2.1 of the PARSEC [10] benchmarks
run on the native input. The goal of our evaluations was
to find the logging/replay time for regions of varying sizes.
We first evaluated the 4-threaded runs to find a region in
the program where all four threads are created. We then
chose an appropriate skip count for the main thread in each
program which put us in the region where all threads are
active. The regions chosen were not actually buggy but if
they were, we can get an idea of the time to log them with
PinPlay logger. For logging time evaluation, we specified
regions using a skip and length for the main thread. The
evaluations were done on a pool of machines with 16 Intel
Xeon (“Sandy Bridge E”) processors (hyper-threading OFF)
and 128GB of physical memory running SUSE Linux Enter-
prise Server 10.

Figure 11 presents the real/wall-clock time for logging re-
gions of varying length values in the main thread. We only
show the results for 5“apps”and 3“kernels”from the PASEC
benchmark suite. For each benchmark we show the logging
(with bzip2 pinball compression) time in seconds for regions
of length 10 million to 1 billion dynamic instructions in the
main thread. The total instructions in the region from all
threads were 3-4 times more than the length in the main
thread. The times shown do not include the time to fast-
forward (using skip) to the region but just the time reported
by the PinPlay logger between the start and the end of each
region. Since the logger does only minimal instrumentation
before the region, the fast-forwarding can proceed at Pin-
only speed. Figure 12 shows the time to replay the pinballs
generated.
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Figure 11: Logging times (wall clock) with regions of vary-
ing sizes for some PARSEC benchmarks (’native’ input).
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Figure 12: Replay times (wall clock) with pinballs for re-
gions of varying sizes for some PARSEC benchmarks (’na-
tive’ input).

Both logging and replay times take from a few seconds
(length 10 million) to a couple of minutes (length 1 billion).
The actual times users will see will of course depend on
the length of the buggy region for their specific bug. In a
study of 13 open source buggy programs reported in [21]
the buggy region length (called Window size in the paper)
was less than 10 million instructions for most programs with
maximum being 18 million. We show similar analysis for
some real buggy programs earlier in this section.

As described in [23], logging is more expensive than replay.
However, logging will typically be done only once for cap-
turing the buggy region. Replay will be done multiple times
for cyclic debugging but since that is interlaced with user
interaction and periods of user inactivity/thinking breaks,
the replay overhead will be hardly noticeable (at least in
our experience).

Finally, note that the pinballs (in tens to hundreds of MB
in size) are small enough to be portable, so a buggy pinball
can be transferred from one developer to another or from a
customer site to a vendor site. The pinball size is not directly
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Figure 14: Execution slicing - Average replay times (wall
clock) for 10 slices for regions of length 1 million dynamic
instructions: PARSEC (’native’ input).

a function of region length but depends on memory access
pattern and amount of thread interaction [23]. Hence pin-
balls for regions with length more than 1 billion instructions
need not be substantially larger. In fact, sizes of pinballs for
the entire execution of the five programs are in the range
4MB–145MB, much smaller than most region pinball sizes.

Slicing overhead and precision. There are two compo-
nents to the slicing overhead: the time to collect dynamic
information needed for efficient and precise dynamic slicing
and the time to actually perform slicing. For the 8 PAR-
SEC programs we tested, the average dynamic information
tracing time for region pinballs with 1 million instructions
(main thread) was 51 seconds. Once collected, the dynamic
information can be used for multiple slicing sessions as Pin-
Play guarantees repeatability. For evaluating slicing time
we computed slices for the last 10 read instructions (spread
across five threads) for each region pinball. For the regions
with 1 million instructions (main thread), the average size
of the slice found was 218 thousand instructions and the
average slicing time was 585 seconds.

We also measured the reduction in dynamic slice sizes
achieved by pruning spurious dependences by identifying
save/restore pairs. As the sizes of 10 dynamic slices for
the 8 PARSEC programs are only slightly influenced with
the spurious dependences prune, we omit the results here.



Instead, we evaluated the effect of spurious dependences
prune with five programs (ammp, apsi, galgel, mgrid, and
wupwise) from SPECOMP 2001 benchmarks [9]. Figure 13
shows that, on average, dynamic slice sizes are reduced by
9.49% (6.31%) for 1 million (10 million) instructions region
pinballs (MaxSave is set to 10).

Execution slicing. When an execution slice is replayed us-
ing the slice pinball, the execution of code regions not in-
cluded in the slice is skipped making the replay faster. In
Figure 14 we present the average replay time for 10 exe-
cution slice pinballs and the replay time for original, un-
sliced, pinball for regions of length 1 million instructions
(main thread). Also included are average count of dynamic
instructions in the slice pinballs as a percentage of total in-
structions in the full region pinball. As we can see, on aver-
age only 41% of dynamic instructions from a region pinball
are included in an average slice. This makes the replay 36%
faster on average. It also shows that the programmer will
need to step through the execution of only 41% of executed
instructions to localize the bug. Thus debugging via slice
pinball and execution slices enhances debugging.

8. RELATED WORK
Debugging. Newer versions of GDB have two related fea-

tures: native record/replay and reverse debugging [1]. The
record/replay feature appears to work by recording every
instruction along with the changes it makes to registers and
memory. This could require a huge amount of storage and
cause a large slowdown. UndoDB-gdb [7] does a much more
efficient implementation of the record/replay and reverse de-
bugging features. UndoDB “uses a ’snapshot-and-replay’
technique, which stores periodic copy-on-write snapshots of
the application and non-deterministic inputs”(quoted from [7]).
TotalView debugger [6] has support for reverse debugging
with ReplayEngine. It apparently works by forking multi-
ple processes at different points in the recorded region and
attaching to the right process on a ‘step back’ command.

The checkpoints in all these debuggers are specific to a
debug session and do not help with cyclic debugging. The
real purpose of the reverse debugging commands is to find
the points in the execution that affect a buggy outcome. Dy-
namic slicing is a more systematic way to find the same infor-
mation that allows more focussed backward navigation. We
believe reverse debugging can be supported in the DrDebug
tool-chain by recording multiple pinballs and then replaying
forward using the right pinball. Doing this using PinPlay’s
user-level check-pointing feature can be much more efficient
than using operating system features.

VMWare supported replay debugging in their ”Worksta-
tion” product between 2008 and 2011 [8]. Recording could
be done either using a separate VMWare Workstation user-
interface or with Microsoft’s Visual Studio debugger. The
debugging could be done in Visual Studio. The record-
ing overhead was extremely low because only truly non-
reproducible events were captured by observing the oper-
ating system from a virtual machine monitor. The pro-
gram had to be run on a single processor though. That
could make capturing certain multi-threaded bugs very hard.
Also, the replay-based debugging worked only with the vir-
tual machine configuration where it was created. The Pin-
Play framework we use does not require any special environ-
ment such as the virtual machine. Recording can be done

in a program’s native environment and the recording can be
replayed/debugged on any other machine.

Whyline [13] allows programmers to ask “why?” and “why
not?” questions about program outputs and provides possi-
ble explanations based on program analysis, including static
and dynamic slicing. Compared with DrDebug, Whyline
has several drawbacks. First, Whyline only supports post-
mortem analysis, while DrDebug supports both backwards
reasoning along dependence edges as well as forwards single-
stepping the slice in a live debugging session. Second, since
it does not integrating a record/replay system, Whyline does
not support deterministic cyclic debugging. Third, program-
mers can only pick questions regarding program outputs
only, while with DrDebug, programmers can compute slice
for any interested variables/registers.

Execution Reduction. Several existing works on exe-
cution reduction [34, 25, 16, 11] either reduce the tracing
overhead during replay [34, 25] or replay overhead [16, 11].
In [34] and [25] authors support tracing and slicing of long-
running multi-threaded programs. They leverage meta slic-
ing to keep events that are in the transitive closure of data
and control dependences with respect to the event speci-
fied as slicing criterion. However, the slicing criterion can
only be events (e.g., I/O) captured during the logging phase.
On the other hand, DrDebug can reduce the replay pinball
for any variable. Lee et al. [16] proposed a technique to
record extra information during logging and then leveraged
it to reduce the replay log in unit granularity based on pro-
grammers’ annotation of unit. DrDebug’s execution region
enables programmers to only log and fast forward to the rea-
sonable small buggy region during replay. Thus, DrDebug
can reduce the region pinball to a slice pinball at finer gran-
ularity without requiring unit annotations by the program-
mer. LEAN [11] presents an approach to remove redundant
threads with delta debugging and redundant instructions
with dynamic slicing while maintaining the reproducibility
of concurrency bugs. However, the overhead of delta debug-
ging can be very high as it requires repeated execution of
replay runs. More importantly, none of these works support
stepping through a slice in a live debugging session.

Program Slicing. Static slicing has been extended for
concurrency programs [15, 19]. Tallam et al. extended dy-
namic slicing to detect data races [24]. Weeratunge et al. [26]
presented dual slicing by leveraging both passing and fail-
ing runs. However, neither approach is designed to be in-
tegrated with a record/replay system, where we can reuse
the shared memory access orders. Meanwhile, our dynamic
slicing algorithm is highly precise via CFG refinement us-
ing dynamic jump targets and bypassing of spurious data
dependence caused by save/restore pairs.

9. CONCLUSIONS
Cyclic debugging of multi-threaded programs is challeng-

ing mainly due to run-to-run variation in program state. We
have developed a set of program record/replay based tools to
address the challenge. We also provide tools for creating dy-
namic slices, check-pointing just the statements in a given
dynamic slice, and navigating through the slice recording.
The tools work in conjunction with a real debugger (GDB)
with a graphical user interface front-end (KDbg). By focus-
ing on a buggy region instead of the entire execution, the
time for recording/replaying/dynamic slicing can be quite
reasonable making the tools practical.
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