AN IMPROVED APPROXIMATION ALGORITHM FOR K-MEDIAN

NEAL E. YOUNG*

Abstract. We give a polynomial-time approximation algorithm for the (not necessarily metric)
k-Median problem. The algorithm is an «-size-approzimation algorithm for o < 14 21n(n/k). That
is, it guarantees a solution having size at most a X k, and cost at most the cost of any size-k solution.
This is the first polynomial-time approximation algorithm to match the well-known bounds of Ha
and 1 + In(n/opt) for unweighted Set Cover (a special case) within a constant factor. It matches
these bounds within a factor of 2. The algorithm runs in time O(k m log(n/k) log m), where n is the
number of customers and m is the instance size.

1. Introduction. An instance of the k-Median problem is given by an edge-
weighted bipartite graph G = (U, W, E), where U is the set of centers, W is the set
of customers, and each center/customer pair (i,5) € E C U x W has an associated
cost c¢;; > 0, which we interpret as the cost of assigning customer ¢ to center j.
The goal is to choose a set C' C U of k centers of minimum cost, defined to be
c(C) = ZjeW min;ec ¢;;j, with the interpretation that each customer is assigned to
its closest center in C. Let n = |W| and m = |E|.

An «a-size-approximate solution is a set C C W of size at most ak and cost at
most the minimum cost of any size-k solution. An algorithm that guarantees such a
solution is an a-size-approximation algorithm.

The restriction of k-Median to zero-cost instances is equivalent to the well-studied
unweighted Set Cover problem—the Set Cover instance admits a cover of size k if
and only if the corresponding k-Median instance has a size-k solution of cost zero.
Assuming P#£NP, this implies that no polynomial-time approximation algorithm for
k-Median guarantees solutions of size (1 — €)Inn (for any constant ¢ > 0) with cost
approximating the optimum within any finite factor [3]. This motivates the study of
polynomial-time bicriteria-approximation algorithms.

The first such algorithm, by Lin and Vitter, produces solutions of size at most
(14+1/e)(1 4+ Inn)k and cost at most 1 + € times the minimum cost of any size-k
solution [5]. Here € > 0 is an input parameter that controls the tradeoff between
size and cost. The second algorithm, by Young, improves this tradeoff by producing
solutions of size at most (1+1In(n+n/e€))k and cost at most 1+ € times the minimum
cost of any size-k solution [9]. The third, by Chrobak et al., incurs no tradeoff: it
guarantees solutions of size O(logn) and cost at most the minimum cost of any size-k
solution [1]. That is, it is an O(logn)-size-approximation algorithm as defined above.

For the special case of unweighted Set Cover, stronger bounds are known in terms
of k and the maximum set size A. Johnson [4] and Lovasz [6] show that the greedy
algorithm has approximation ratio at most Ha = ZhA:1 1/h, where A < n is the
maximum set size. (Chvatal [2] extends this to weighted Set Cover.) A folklore result
(see Section 3) is that the ratio is at most 1 + In(n/OPT), where OPT is the optimal
cover size. Note that n/OPT < A and v+ InA < Ha where v = 0.577.. is Euler’s
constant, so this bound can be smaller than Ha but never exceeds it by more than
1 — . (Slavik shows a bound of In(n/Inn) + O(1), which is asymptotically stronger
when OPT = o(logn) [7].)

Our main result (Corollary 4.2) is a polynomial-time «a-size-approximation algo-
rithm for k-Medians, where o < 14+2In(n/k) < 2Ha. (For k-Median A = max {|{j €

* University of California, Riverside

minimize ¢-y = 3. ¢ij Yij maximize —kp+ 3, 9;

VieU,jeW) xlzy”zo VieU,jeW) 7Tij20
(Vg e W) Zzy” =1 (VieU jeW) my > (5j — Cij
Yiri=k (VieU) p=3;m;

Fi1c. 1.1. The standard k-Median linear-program relaxation and its dual.

W : (i,j) € E}| : i € U} is the maximum number of customers that any center can
serve. Note n/k < A for any feasible instance.) This matches the Set Cover bounds
Ha and 1 + In(n/opPT) within a factor of two. No previous result matched either
bound within any constant factor.

The only previous polynomial-time size-approximation algorithm [1] requires solv-
ing the standard linear-program (LP) relaxation for k-Median (Figure 1.1). Our al-
gorithm avoids that. It runs in time O(kmlog(n/k)logm).

2. Preliminaries. Let R, = {z € R: 2 >0} and R, = R, U {c0}.

Fix a k-Median instance G = (U, W, E). For (i,j) € E, let ¢;; € R, denote
the cost of assigning customer j to center i. To ease notation, take ¢;; = oo for
(i,7) e (Ux W)\ E.

Fix T = [kIn(n?/(2k(2k + 1))] and oy, = T/k + 2, and let * € R, denote the
optimum cost of the standard LP relaxation (Figure 1.1). The algorithms here find
solutions of cost at most A* and size at most T + 2k = o, k. These are oy,,-size-
approximate solutions, because any size-k solution has cost at least A*.

Assume without loss of generality that 2 < k < n/3. (If K = 1, the optimal size-1
solution C' = {argmin;ey > ey ¢ij} can be computed in linear time. If k > n/3,
the size-n solution C' = {argmin;ecy ¢;; : § € W} has minimum possible cost and size
n < apkk.)

Assume without loss of generality that every customer j € W has a center i €
U such that ¢;; = 0. (Otherwise, for each customer j, subtract minycy ¢y from
each ¢;;. This reduces the cost of each solution by the same non-negative amount,
> jew min;cy ¢;5, o any given solution achieves optimal cost for the original instance
if and only if it does so for the modified instance.)

LEMMA 2.1. ap, < 2In(n/k)+2—2102+1/(2k)+1/(4k%) < 14+21n(n/k) < 2Ha

The proof of the lemma is in Appendix A.
The capped cost, defined next, plays a central role in the algorithms. Section 5
gives some intuition for its definition. Recall & < n/3.

DEFINITION 2.2 (capped cost). Given A € R, and a set C C W of centers,
define the capped cost of C' to be ¢(A, C) = >,y (A, C), where

&(\,C) = min (1/(2k +1), (1 - 2k/n) %igcij/x)

is the capped cost of customer j (with respect to C). In this context we interpret 0/0
and co/co as zero.

We'll use the following utility lemma to work with capped costs. It shows that
the addition of a single center i’ to a given set C of customers can always decrease
the capped cost by a certain amount. The lemma implicitly gives a lower bound on
A*.

R, — the non-negative reals Ry — Ry U {0}

¢ — costs for k-Median instance i,7 — center ¢ € U, customer j € W
A" — optimum LP cost n,m—n=|W|, m=|E|
A — capped-cost parameter C — set of centers
&(\, C) — capped cost of C ¢j(A, C) — capped cost of customer j (w.r.t. C)
T — number of centers from first phase: T = [k1In(n?/(2k(2k 4 1))]
Qakn — size-approximation ratio: agn =T/k+2
TABLE 2.1
Notation

LEMMA 2.3. For any A € R, and C C W,

521516()\, Cu{i'}) < (1 —1/k)é(\,C) + (1/k)(1 — 2k/n)X\" /.

We prove the lemma in the appendix. For intuition consider the case that the LP
admits an optimal integer solution, that is, a set C* C W of k centers with cost
c(C*) = X*. Adding all k centers from C* to C would reduce the capped cost to at
most é(A, C*). So, observing that é(\, C) (for fixed A) is a submodular function, there
exists a center i € U to add that reduces the capped cost by at least (1/k)(¢(\, C) —
¢(A, C*)). With ¢(A,C*) < (1 —2k/n)c(C*)/A = (1 — 2k/n)A* /X and some algebra,
this implies the lemma. The full proof considers the optimal LP solution (z*,y*)
instead of C*.

3. Slow algorithm. This section describes a slow algorithm. Section 4 will
build on it to prove the main result. The approach is similar in spirit to the folk-
lore result that, for unweighted Set Cover, the greedy algorithm gives (1 + ln(n/k))-
approximation, where k = OPT is the minimum set-cover size. This can be shown as
follows: each set chosen by the greedy algorithm covers at least a 1/k fraction of the
remaining elements, so after any iteration ¢ at most n(1 — 1/k)* < ne~*/* elements
remain uncovered. In particular, after t = [kIn(n/k)] iterations less than ne~*/* =k
elements remain. Each subsequent iteration covers at least 1 element, so there are at
most k — 1 additional iterations, for a total of at most (In(n/k) + 1)k.

Similarly, the k-Median algorithms here have two phases. The first phase chooses
up to T' = [kIn(n?/(2k(2k + 1)))] centers greedily, minimizing the capped cost with
each choice. We show (using Lemma 2.3) that this generates a set C' whose capped
cost is strictly less than 1. The second phase then “polishes” the partial solution,
adding up to 2k additional centers, each chosen greedily to reduce the capped cost of
a particular customer to zero. This suffices to obtain a full solution (of size at most
T + 2k) whose true cost is at most the optimum LP cost A*.

The goal of the first phase is to compute a set C of at most T" centers with capped
cost ¢(A*, C) strictly less than 1:

THEOREM 3.1 (first phase). A set C C W of size at most T with é(A*,C) < 1
can be computed in polynomial time.

Proof. The algorithm solves the LP to obtain A*, then chooses centers greedily,
in each step decreasing the capped cost ¢(A*,C) as much as possible, just until the
capped cost is less than 1:

1. solve the LP to obtain the optimum cost A*
2. let C <0
3. while ¢(*,C) > 1:

4. let i = argmin;epy ¢(A*, C U {i})
5. let C <+ CU{i'}
6. return C
Let C; denote the set C at the end of each iteration ¢. Let Co =). Let p=1—1/k.
From Lemma 2.3 (with A = *), and using ¢(\, 0) = n/(2k + 1), it follows inductively
that the algorithm maintains the invariant

(3.1) NG < ptn/(2k 1)+ (1— ph)(L — 2k/n).

Thus, the loop cannot iterate more than T = [kIn(n?/(2k(2k + 1)))] times,
because if it reaches iteration T, then, after that iteration, using p? < exp(—=T/k) <
2k(k + 1)/n?, the invariant implies

k(2k + 1) n 2%
n2 X2k+1+1_?_1'

P 2
C()\ ,CT) < 0

The first phase (by Theorem 3.1) computes a set C' C W of size at most T such
that the capped cost ¢(*,C) is strictly less than 1. Given this C, the second phase
computes the desired a,,-size-approximate solution:

THEOREM 3.2 (second phase). Given any set C C U of at most T' centers, and
A € Ry such that ¢\, C) < 1, a set C" C U of size at most T + 2k and cost at most A
can be computed in time O(m + nlogn).

COROLLARY 3.3. K-Median admits a polynomial-time au,-size-approzimation alll
gorithm.

Before we prove the theorem, note for intuition that C' can have at most 2k
customers with ¢;(A,C) = 1/(2k + 1), simply because each unassigned customer
contributes 1/(2k + 1) to &(\, C), which is less than 1. By adding one center i with
¢;; = 0 for each unassigned customer (thereby adding at most 2k centers total) we
could assure that all customers are assigned. Similarly, by adding such centers for
the 2k customers with maximum capped cost, we could reduce the capped cost by a
factor of 1 — 2k/n, to less than 1 — 2k/n, which (by inspection of the capped cost) is
just enough to ensure that the true cost is at most A. Naively, accomplishing both of
above goals would take 4k additional centers. The theorem shows that to accomplish
both goals it suffices to add just 2k centers.

Proof of Theorem 3.2. Given C, compute C’ as follows:
while ¢(C) > A:

let j = arg max;cw ¢&; (X, C)

let C + C'U{i'} where i = argmin;cy ¢;; — note: now cy; = &;(X,C) = 0.
return C'

Ll Y

This can be done in O(m + nlogn) time by presorting the set W of customers
by decreasing ¢(A, C'). To finish, we show that the loop iterates at most 2k times.
Assume it iterates at least 2k times (otherwise we are done).

OBSERVATION 3.1. For any vector b € R such that 37, b; <1, let b’ be b with its
2k largest values replaced by zero. Then

?é%?/(b; <1/(2k+1), and Z by < 1—2k/n.
JEW
4

greedy/(c) — input: cost vector c
1. let C =0 and \g=0and t + 0

2. while ¢(\;, C) > 1:

3 let t +—t+1

4. let 7+ (1 —1/k)e(A\t—1,C) + (1/k)(1 — 2k/n)

5. let Ay = min {A > X1 : minjepy ¢(A, C U {i}) < 7}
6. choose ¢’ such that é(\,CU{i'}) <7
7. let C«+ CU{i}
8. return (A, C)

FiG. 4.1. Faster replacement for first phase.

(Indeed, the maximum value in ¥’ is the minimum of the 2k+1 largest values in b, which
is at most the average of those values, which is at most >_,_; b/(2k+1) < 1/(2k+1).
So max; b’ is bounded as claimed. Zeroing 2k random values in b would decrease its
sum by a factor of 1 — 2k/n in expectation. Zeroing the 2k largest values decreases
its sum by at least that. So 3, b’ is bounded as claimed.)

OBSERVATION 3.2. Let Cyy, be C after 2k iterations of the loop. Then

glé%(éj(/\,c%) <1/(2k+1), and ¢\, Co) < 1—2k/n.

(To see this, let Cy refer to C as given, before the loop executes, and define b in R”?
by bj = é;(A, Cp). Let b be obtained from b by replacing its 2k largest values by zero.
By the definition of Cay, we have &;(\, Cax) < b}. The observation follows follows
from Observation 3.1, along with Y .b; = &)\, Cp) < 1, and maxjew ¢;(A, Car) <
max;jew b}, and ¢(A, Car) < 32, 0}.)

Finally, by the definition of the capped cost, the bound on max; ¢;(\, Ca) in
Observation 3.2 implies that é(\, Car) = (1 — 2k/n)c(Cs). This and the bound on
¢(A, Cai) in Observation 3.2 imply ¢(Cax) < A, so that the loop terminates after
iteration 2k. This proves Theorem 3.2. O

4. Fast algorithm. The running time of the algorithm in Corollary 3.3 is dom-
inated by the time to compute the optimal LP solution. But the algorithm uses only
a single parameter of that solution, namely its cost A*. This section builds on that to
give our main result—a faster algorithm. It replaces the first phase by an algorithm
that, instead of solving the LP, somehow computes a pair (A, C) such that A < A*
and ¢(\,C) < 1:

THEOREM 4.1. Given just the instance ¢, in O(kmlog(n/k)logm) time one can
compute a A < X* and a set C C U of size at most T such that é(\,C) < 1.

With Theorem 3.2, this will give the following result:
COROLLARY 4.2. K-Median admits an au,-size-approzimation algorithm that runsi
in O(kmlog(n/k)logm) time.

Proof of Theorem J.1. The algorithm to compute (\, C) is greedy’(c) in Figure 4.1.]]
Correctness. Consider executing greedy’(c). Let Cy denote C' at the end of itera-
tion ¢ (and Cy =). We'll show that the algorithm maintains the invariant

(4.1) At < X and é(A\, Cy) < p'n/(2k + 1) + (1 — p")(1 — 2k/n)
5

Note the similarity to (3.1) in the proof of Theorem 3.1.
Invariant (4.1) is true initially because Ao = 0 and ¢(Ag,0) = n/(2k + 1).
Suppose the invariant holds just before a given iteration ¢. That is,

A1 <A and (N1, Cr) < p'in/(2k 4+ 1)+ (1 —pH(1 — 2k/n).

First we argue that A\; < A*. In the case that A\; = A;_1, this follows from
At—1 < A*. Otherwise, consider any A in the half-open interval [A;_1,\:). The
algorithm’s choice of A¢ (using that é(\, C) is non-increasing with A) ensures

min ¢(A, Cr—1 U{d}) > (1 = 1/k)é(Ae-1, Co1) + (1/k)(1 = 2k/n)
> (1—1/k)&(\, Cy1) + (1/k)(1 — 2k/n),

which, with Lemma 2.3, implies that A*/A > 1. So A < A* for all A in the non-empty
interval [A¢—1, At). The desired bound A* > A; follows.

To finish showing that (4.1) is maintained we bound é(A¢, Ct). Recall that p =
1 —1/k. The choices of i’ and 7, and the invariant at time t — 1, give

e\, CrU{i'}) <pe(A—1,Ci 1) + (1 —p)(1 — 2k /n)
<p[p"'n/2k+ 1) + (1= p"" 1) (1 = 2k/n)] + (1 = p)(1 - 2k/n)
=p'n/(2k+1)+ (1 —p")(1 - 2k/n).
Hence invariant (4.1) is maintained. Now suppose for contradiction that there are

more than T iterations. After iteration 7', the invariant implies that Az < *, and by
the choice of p=1—1/k < e * and T > klIn(n?/(2k(2k + 1)) we have

i B % 2W(2k+1) 2%
Ap,Cp) <e T/ q 2% 1-= =
O, Cr) e ot < — 5 X gy tl- =1

so the loop terminates after iteration 7', contradicting that there are more than T
iterations. Hence the pair (A, C;) returned by the algorithm is as claimed in Theo-
rem 4.1.

Run time. The loop makes at most T = O(klog(n/k)) iterations. To show the
claimed time bound, we show that each loop iteration can be implemented using
O(log m) iterations of binary search, each of which takes O(m) time.

For each center/customer pair (i,j) € W x U define §;; = (2k + 1)(1 — 2k/n)c;;.
Define (81,82, ...,0n) to be the set {B;; : ¢ € U,j € W} U{Bo, Boc} of breakpoints, in
increasing order. Note that §; =0, Sy = o0, and N < m + 2.

In a given loop iteration ¢ < T, compute \; as follows.

Given any A, we can query the condition “\; < A” in O(m) time, using that A\; < A
if and only if min;ey é(\, CU{i}) < 7. Using this, first check whether A\; < A\;_q. If it
holds we have found A; (as A\t = As—1), so assume A; > \;—1. Use O(log m) iterations
of binary search (checking \; < By for some ¢ € [N — 1] in each of these iterations) to
find ¢ € [N — 1] such that that 8y < Ay < Bey1.

The capped cost ¢(A\, CU{i}) implicitly defines a “partial” assignment that assigns
each customer j to its closest center g; = argmingccug) ¢g; in C U {i} if Cg; (1 —
2k/n)/XA < 1/(2k+1), and otherwise leaves j unassigned. The open interval (3¢, Sr4+1)
contains no breakpoints, so this assignment is the same for all A in this interval. Hence,
letting (i) be the number of customers not assigned by the assignment, and letting
(1) denote the total cost of just the assigned customers, for any A in [8¢, Se+1] the

6

sample(c, z*, y*) — (z*,y*) is optimal solution to the LP
1. assign aj; <= none for je W — anitialize partial assignment a
. do the following steps T' times:

choose center i € U randomly from distribution =*/k

for each customer j € W: with probability y;; /a7y, reassign aj < i
return a

S

Fic. 5.1. Rounding to a partial assignment by sampling.

capped cost é¢(A, C U {i}) equals ¢/(7)(1 — 2k/n) /X + u(i)/(2k + 1). Hence,

A: = min {)\ > Mo s mingey 6N, CU{i}) < T}
=min {A > A_1 : mingep ¢ (0)(1 — 2k/n) /A + u(i)/(2k + 1) < 7}
=min {A > _1 : minjep ¢ (3)(1 — 2k/n) /(7 — u(i)/(2k + 1)) < A}
= max (\—1, mingep ¢ (i) (1 — 2k/n) /(1 — u(i)/(2k +1))).

After computing (i) and ¢/(7) for all ¢ € U in O(m) time (total), the algorithm
computes A; (as the right-hand side above) in O(m) time. (In the case min;cy u(i) =
n, this gives Ay = 00.) Given), it then computes the center i’ to add in O(m) time.
This proves Theorem 4.1. 0

5. The capped cost is a pessimistic estimator. This section gives some
intuition for the somewhat mysterious capped cost é¢(A, C). Briefly, it is a pessimistic
estimator from the analysis of a natural random experiment.

DEFINITION 5.1. A partial assignment is a vector a € (U U {none})W, with the
interpretation that a; is the center assigned to customer j € W, or a; = none if j has
no assigned center. Let the cost of a be c(a) = Zj:aﬁénone Cay,j- Letu(a) =|{j e W:
a; = none}| denote the number of unassigned customers.

Consider the partial rounding scheme in Figure 5.1. It takes as input the instance
¢ and the optimal solution (z*,y*) to the LP. It rounds the fractional solution to a
partial assignment by sampling 7' = [kIn(n?/(2k(2k+1)))] times (with replacement)
from the distribution z* /k, and, with each sampled center i, assigning (or reassigning)
each customer j € W to i with probability y;/z; < 1. In this way the rounding scheme
maintains a partial assignment a. Note that a can assign a customer to a center that
is not its closest open center. It returns the partial assignment resulting from 7" such
iterations.

Let random variable A be the partial assignment returned by sample(z*, y*).

LEMMA 5.2. E[c(A)] < A* and E[u(A4)] < 2k(2k + 1) /n.

Proof sketch.. As shown in [9], for any center ¢ € U and customer j € W the
probability that any single iteration assigns customer j to some center is 1/k. Also,
given that j is assigned to some center (in any iteration), the expected cost of the
assignment is) YiiCij» SO

Ele(A)] = > ;; Prla; # none] x Prla; =i|a; # none| c;;
< Eij Pria; = i|a; # none| ¢;;
= Zz’j y;j Cij = c oyt = A"
7

Meanwhile, the probability that a given customer j € W is never assigned is
(1—1/k)T < exp~T/k < 2k(2k +1)/n?. The desired bound E[u(A)] < 2k(2k +1)/n
follows by linearity of expectation.]

LEMMA 5.3. With positive probability, A has cost c¢(A) < AX*/(1 — 2k/n) and
u(A) < 2k.

Proof sketch.. Assume 0 < A* < co. (The other cases are easy to verify.)
Pr[c(A) > X" /(1 — 2k/n) or u(A) > 2k + 1]
< Pr[e(A) > X /(1 —2k/n)] + Pr[u(A) >2k+1] (naive union bound)

1—-2k/n 1
. < Ere—
(5.1) < E[e(A)] e + E[U(A)]2k 1 (Markov bound)
<1-2k/n + 2k/n =1 (Lemma 5.2). d

The proof of the lemma bounds the probability of the two “bad” events by the
expectation of a pessimistic estimator, then shows that the expectation of that pes-
simistic estimator is less than 1. Instead of using Lemma 5.3 directly, we work directly
with the pessimistic estimator, which is the capped cost é(\, A) for A = *.

In fact, the greedy algorithm in the first phase of the slow algorithm can be
obtained by applying the method of conditional probabilities to the random-sampling
rounding scheme (following the approach initiated in [8]) to find an outcome with
e(A*A) < 1.

6. Conclusion. To conclude we remark on the LP dual solutions implicitly gen-
erated by the algorithm, sketch how the algorithms compare to those in previous
works, and give some open problems.

Implicit LP dual solutions. As expected, the algorithms presented here implicitly
define solutions to the dual of the standard k-Median LP relaxation (Figure 1.1). The
proven approximation ratios hold with respect to the dual solution cost.

Briefly, rewriting the bound in Lemma 2.3, it is

A > 12}{% (e, ©) = kmax[e(), €) = &\, C U {i})])-

This lower bound is equivalent to weak duality for the feasible dual solution
(6,7, 1) defined by

_ A ~ I A :
(5] = mcj()\, C) = min (W7 min;ec Cij),

max(0,0; — ¢;;), and p = max > Tij-

7Tij

Each iteration of the first phase, the current pair (A, C) defines a feasible dual
solution whose cost is a lower bound on A*. The cost of the final primal solution is at
most the maximum cost of any of these dual solutions, which is in turn at most A*.
This can be shown by mechanically recasting the relevant invariants in terms of the
dual solutions.

Comparison to previous works. The bicriteria-approximation algorithm for k-
Median in [9, §6] takes as input an instance ¢, an € > 0, and any upper bound A
on the optimal fractional cost A*. It returns a solution of cost at most (1 + €)X\ of
size at most 1 + kln(n + n/e). (Note that the size is Q(kInn) regardless of €.) That
algorithm is derived by derandomizing a natural random-sampling rounding scheme.

8

The first O(logn)-size approximation algorithm, in [1, Theorem 5|, requires as
input the instance and the optimal cost A*. It calls the algorithm from [9] with
e = 1/n and A = A* to obtain a set C of centers, then returns C'U {3}, where 7 is
chosen to minimize the cost of CU{i}. Assuming without loss of generality that every
customer has a center with assignment cost zero, this reduces the cost by at least a
factor of 1 — 1/n, reducing the cost below *.

The first phase of our first algorithm can be obtained by derandomizing the
rounding scheme from [9], but with respect to a different analysis, so ours makes fewer
iterations and minimizes a different function. Then, instead of adding just one center
to bring the cost down, our polishing step (which is the key to obtaining the stronger
approximation ratio) adds 2k centers. Finally, all the previous size-approximation
algorithms require solving the LP. Our faster algorithm avoids this as described in
Section 4.

Open problems. Is there a polynomial-time algorithm with size-approximation
ratio aln(n/k) + o(log(n/k)) for some constant o < 27

In the more general weighted k-Median problem, each center i is given a weight
w; > 0, and the set of centers must have total weight at most k, rather than size at
most k. Does weighted k-Median have a polynomial-time O(log(n/k))-size approxi-
mation algorithm? The result in [9] extends to this problem.

For the closely related Facilities Location problem, the best polynomial-time ap-
proximation algorithm returns a solution of cost at most c¢-y*+Ha f-2*, where (z*, y*)
is an optimum solution to the standard LP relaxation for Facilities Location. That
is, it achieves ratio Ha with respect to the opening costs, and ratio 1 with respect
to the assignment costs. This algorithm is relatively slow because it must solve the
LP to obtain (z*,y*). Is there a faster greedy algorithm with the same performance
guarantee?

REFERENCES

[1] M. CHROBAK, C. KENYON, J. NoGa, AND N. E. YOUNG, Incremental medians via online bidding,
Algorithmica, 50 (2008), pp. 455-478, https://doi.org/10.1007/300453-007-9005-x.

[2] V. CHVATAL, A greedy heuristic for the set-covering problem, Mathematics of Operations Re-
search, 4 (1979), pp. 233-235, https://doi.org/10.1287/moor.4.3.233.

[3] U. FEIGE, A threshold of Inn for approzimating Set Cover, Journal of the ACM, 45 (1998),
pp. 634-652, https://doi.org/10.1145/285055.285059.

[4] D. S. JOHNSON, Approzimation algorithms for combinatorial problems, Journal of Computer and
System Sciences, 9 (1974), pp. 256-278, https://doi.org/10.1016,/S0022-0000(74)80044-9.

[5] J.-H. LN AND J. S. VITTER, e-approxzimations with minimum packing constraint violation (ex-
tended abstract), in Proceedings of the twenty-fourth annual ACM Symposium on Theory
of Computing, STOC ’92, New York, NY, USA, July 1992, Association for Computing
Machinery, pp. 771-782, https://doi.org/10.1145/129712.129787.

[6] L. LovAsz, On the ratio of optimal integral and fractional covers, Discrete Mathematics, 13
(1975), pp. 383-390, https://doi.org/10.1016,/0012-365X(75)90058-8.

[7] P. SLavik, A tight analysis of the greedy algorithm for Set Cover, Journal of Algorithms, 25
(1997), pp. 237-254, https://doi.org/10.1006/jagm.1997.0887.

[8] N. E. YouNG, Randomized rounding without solving the linear program, in Proceedings of the
sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1995, Philadelphia,
PA, USA, 1995, Society for Industrial and Applied Mathematics, pp. 170-178, https://dl.
acm.org/doi/10.5555/313651.313689.

[9] N. E. Youna, K-medians, Facility Location, and the Chernoff-Wald bound, in Proceedings of the
eleventh annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, Philadelphia,
PA, USA, 2000, Society for Industrial and Applied Mathematics, pp. 86-95, https://dl.acm.
org/doi/10.5555/338219.338239.

Appendix A. Missing proofs.

https://doi.org/10.1007/s00453-007-9005-x
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1145/285055.285059
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1145/129712.129787
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1006/jagm.1997.0887
https://dl.acm.org/doi/10.5555/313651.313689
https://dl.acm.org/doi/10.5555/313651.313689
https://dl.acm.org/doi/10.5555/338219.338239
https://dl.acm.org/doi/10.5555/338219.338239

Proof of Lemma 2.1.

e = T/k+2 <In(n?/(2k(2k + 1)) + 1/k +2 (by defn of T)
=2In(n/k)+2—-2In2+1/k+In(1-1/(2k +1))
<2In(n/k)+2—-2In2+1/k—1/2k+1) (In(1+2) < z)
=2In(n/k) +2—2In2+ 1/(2k) + 1/(2k(2k + 1)) o

Proof of Lemma 2.3. Consider the following random experiment, from [9]. Let
(z*,y*) be an optimal solution (of cost A*) to the k-Median LP relaxation (Figure 1.1).
Choose a center i’ € U randomly from the distribution x*/k, then, for each customer
j € W independently, reassign j to i’ (in place of whatever current assignment it has)
with probability yj; /z;.

As observed in [9], for any customer j € W, the probability that j is reassigned
is 1/k, and the expected cost of j’s new assignment, given that it is reassigned, is

n * .
D iei YijCij, SO

min &(\, C' U {i}) < E[e(A, CU{i'})] = Y E[¢(\,C U {i})]

eU jew
<Y (U= 1/R)E(N, C) + (1/k) 5 35 (1 = 2k /n)eij /A
JjeEW
= (1= 1/k)&N, C) + (1/k)(1 — 2k/n)A* /A, O

10

	Introduction
	Preliminaries
	Slow algorithm
	Fast algorithm
	The capped cost is a pessimistic estimator
	Conclusion
	References
	Appendix A. Missing proofs

