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In evaluating an algorithm, worst-case analysis can be overly pessimistic. Aver-
age-case analysis can be overly optimistic. An intermediate approach shows that an
algorithm does well on a broad class of input distributions. E. Koutsoupias and C.

ŽH. Papadimitriou 1994, in ‘‘Proc. of the 35th IEEE Annual Symp. on Foundation
.of Computer Science,’’ pp. 394�400, IEEE Press, New York recently analyzed the

Ž .least-recently-used LRU paging strategy in this manner, analyzing its perfor-
mance on an input sequence generated by a so-called diffuse adversary�one that
must choose each request probabilistically so that no page is chosen with probabil-
ity more than some fixed � � 0. They showed that LRU achieves the optimal

Ž .competitive ratio for deterministic on-line algorithms , but they did not determine
the actual ratio. In this paper we estimate the optimal ratios within roughly a factor
of two for both deterministic strategies and randomized strategies. Around the

Ž . Ž .threshold � � 1�k where k is the cache size , the optimal ratios are both � ln k .
Ž .Below the threshold the ratios tend rapidly to O 1 . Above the threshold the ratio

Ž .is unchanged for randomized strategies but tends rapidly to � k for deterministic
Ž .ones. We also show that the competitive ratios for First-in-first-out FIFO and

Ž .Flush-when-full FWF are both k when � � 1�k. In contrast, the ratio for LRU is
less than 2 ln k � 4 when � � 1�k. It is folklore that LRU outperforms FIFO in
practice, but to date the only other variant of competitive analysis in which LRU
has been shown to outperform FIFO is the access graph model. For completeness,
we give an alternate proof of the optimality of LRU. � 2000 Academic Press

1. INTRODUCTION AND BACKGROUND

The paging problem was originally studied in the context of two-level
virtual memory systems composed of a large, slow-access memory aug-

Žmented with a cache a small, fast-access memory, holding likely-to-be
.accessed pages in order to minimize access time .

1 E-mail: ney@cs.dartmouth.edu. Research partially funded by NSF CAREER Award
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This paper concerns the following standard abstraction of this simple
and common problem. The input is an integer k and a finite sequence
s � s s . . . s of requests. The parameter k is called the cache size. The1 2 n
output is a schedule�a sequence S S , . . . , S of sets, where each set is of1 2 n
size at most k and each S contains s . Each request s is said to occur att t t
time t. The items in S are said to be in the cache after time t up to andt
including time t � 1. An item is said to be e�icted at time t if the item is in
S but not in S . The cost of the schedule is the number of evictions. At�1 t
schedule for an input is optimal if it achieves the minimum possible cost.

Paging algorithms considered in this paper include the following. Least-
Ž .recently-used LRU evicts the item whose most recent request is the least

Ž .recent among all items in the cache. First-in-first-out FIFO evicts the
Ž .item that has been in the cache the longest. Flush-when-full FWF evicts

Žall items in the cache when the cache is full and does not contain the
. Ž � 	.requested item . The randomized marking algorithm RMARK 6 operates

as follows. After an item is requested, it is marked. When an item must be
evicted, a nonmarked item is chosen uniformly at random, with the caveat
that if all items in the cache are marked, then all marks are first erased. By
a deterministic marking algorithm, we mean any deterministic algorithm
that maintains marks as RMARK does and evicts only unmarked items.
LRU and FWF are examples, FIFO is not. By a lazy deterministic marking

Ž .algorithm DMARK , we mean a deterministic marking algorithm that
evicts an item only when necessary, and then only one item. This addi-
tional requirement excludes FWF.

An algorithm for the problem is on-line if, for any request sequence and
any request in that sequence, the items in the cache after the request are
independent of later requests. In many contexts, on-line algorithms are
necessary, but online algorithms are necessarily suboptimal on some
request sequences. Hence, a natural question is how on-line algorithms
can be effectively analyzed and compared.

This paper is concerned with a generalization of the standard competi-
� 	ti�e analysis 15 of on-line algorithms. The standard model measures the

Žquality of an algorithm A by its competiti�e ratio: the minimum to be
.precise, infimum c such that, for some constant b, for all request

sequences s,

A s 
 c � OPT s � b.Ž . Ž .

Ž .Here A s denotes the cost of the schedule produced by A on input s;
Ž .OPT s denotes the cost of an optimal schedule. If A is a randomized

Ž .algorithm, then A s denotes the expected cost of A on input s. Note that
k is an implicit, and fixed, parameter in these definitions. Standard
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competitive analysis is a worst-case type of analysis, in contrast to much of
the earlier work on paging, which is concerned with average-case analysis.2

In the standard competitive-analysis framework the following results are
known. Any deterministic marking algorithm, including LRU and FWF,
has a competitive ratio of k; the ratio k is also achieved by FIFO and is

� 	the best possible for any deterministic on-line strategy 3, 15 . The random-
� 	ized marking algorithm RMARK has a competitive ratio of 2H � 1 1, 6 ,k

k � 	 � 	where H � Ý 1�i � 1 � ln k. PARTITION 13 and EQUITABLE 1 ,˙k 1
more complicated randomized algorithms, each have competitive ratio H .k

� 	No randomized strategy can have a better ratio than H 6 .k
Largely due to the unrealistic magnitude of the optimal competitive

� 	ratios 17 , many variations on the standard model have been considered
Ž � 	.e.g. 4, 5, 7, 9, 10, 12, 17, 19 . For a survey on competitive analysis of

�paging, we refer the reader to the recent book by Borodin and El-Yaniv 3,
	Chaps. 3�5 .

This paper concerns the following generalization of the standard model,
� 	recently proposed by Koutsoupias and Papadimitriou 11 . For any class �

of distributions on the input sequences and any deterministic or random-
Ž .ized algorithm A, define RR �, A , the competiti�e ratio of A against the

Ž .�-diffuse ad�ersary, to be the minimum again, to be precise, infimum c
such that for each distribution D in �, there is a constant b such that

E A r 
 c � E OPT r � b.Ž . Ž .D D

Here r is a random sequence chosen according to D. Define the optimal
Ž .ratio for deterministic on-line algorithms against the �-diffuse ad�ersary to

be

RR � � inf RR � , A ,Ž . Ž .˙
A

where A ranges over all deterministic on-line algorithms. Analogously,
Ždefine the optimal ratio for randomized on-line algorithms against the

.�-diffuse ad�ersary to be

RR � � inf RR � , A ,Ž . Ž .˙
A

where A ranges over all randomized on-line algorithms.

2 � 	At least one work 8 preceding competitive analysis blends average-case and worst-case
analysis. It considers input sequences where each request is chosen from a fixed but unknown
distribution on the pages and compares known paging strategies to the optimal on-line
strategy for that distribution.
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The particular class of distributions considered by Koutsoupias and
Papadimitriou is denoted � and is defined as follows. Any distribution D�

specifies, for each item x and sequence of requests s, the probability
Ž .Pr x � s that the next request of the random sequence r is x given thatD

the sequence so far is s. Then � contains those distributions D such that,�

Ž .for any request sequence s and item x, Pr x � s 
 � . The parameter � isD
a measure of the inherent uncertainty of each request. Koutsoupias and
Papadimitriou show that LRU achieves the optimal ratio in this model
Ž Ž . Ž ..i.e., RR � , LRU � RR � , but they leave open the question of what the� �

ratio is.
Here we estimate the optimal ratios within roughly a factor of two, for

both deterministic and randomized algorithms, and we show that FIFO
and FWF are not optimal, at least for � � 1�k. Here is our main theorem.

Ž . k�1 � �1 4�1THEOREM 1. Define � � , k � 1 � Ý max � � i, 1 . For any � ,˙ i�1
� �1 	 Ž .let � � � 1� � . The competiti�e ratios of deterministic RR and randomized

Ž .RR on-line algorithms against the � -diffuse ad�ersary are bounded as�

follows:

Ž . Ž .deterministic � RR � randomized � RR �� �

range lower bound upper bound lower bound upper bound

Ž . Ž . Ž . Ž . Ž .� 
 1� k � 1 � � , k � 1 2� � , k � � �, k � 1 2� � , k
Ž . Ž . Ž .� � 1� k � 1 � � , k 2� � , k H Hk k

The upper bound 2� for deterministic algorithms holds for any lazy marking
Ž . Ž .algorithm e. g., LRU , but not for FIFO or FWF: in fact, RR � , FIFO ��

Ž .RR � , FWF � k for � � 1�k. The upper bound H for randomized algo-� k
rithms holds for PARTITION and EQUITABLE. The weaker upper bound
2H � 1 holds for RMARK.k

Ž .In all cases except one, the competitive ratios of lazy deterministic and
randomized marking algorithms are at least � � 1 and at most 2�. The

Ž .exception is that for � above the threshold 1� k � 1 , the randomized
Ž .ratio is H independent of � . To understand the behavior of the functionk

�, consider the case � � 1�n for some integer n. Then

�H when n � k ,n�k� 1�n , k � 1 � H �Ž . n�1 ½ k � n when n 
 k .
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k Ž .Recall that H � Ý 1�i � ln k � 1 . The threshold of � around � � 1�k˙k 1
is very sharp:

1�

 1 � ln when � � 1 � 	 �k ,Ž .

	� ln k when � � 1�k ,� � , k isŽ .
	

� k when � � 1 � 	 �k .Ž .� 1 � 	

2. TECHNICAL OVERVIEW

� 	We refine an existing worst-case competitive analysis for paging 3, 6, 15
to take into account the probabilistic restrictions on the adversary. We call
this particular analysis the factor-two-analysis because for our purposes
Ž � 	. Žand when used to analyze the randomized marking algorithm 6 it at

.best can approximate OPT only within a factor of two.

2.1. Re�iew of Factor-Two-Analysis in Standard Model

Let A be any paging algorithm and let s � s s . . . s be any sequence1 2 n
� 4of requests. The phases of s partition the times 1, 2, . . . , n into intervals

Ž .as follows. Define t 1 � 1. For l � � inductively define

� �� 4t l � 1 � 1 � max j 
 n : s , s , s , . . . , s 
 k .Ž . � 4˙ tŽ l . tŽ l .�1 tŽ l .�2 j

Ž .For each l � � such that t l 
 n, the lth phase of s is defined to be the
� Ž . Ž . Ž . 4time interval t l , t l � 1, . . . , t l � 1 � 1 . Thus, during each phase

except the last, k distinct items are requested.
In the context of a particular time t, the current request refers to the

request s . This phase or, synonymously, the current phase means the phaset
containing the time t. An item is requested pre�iously in this phase if it is
requested during this phase before time t. In the additional context of a
particular schedule S � S S . . . S for s, the cache refers to the set S of1 2 n t�1
items in the cache before request t. Then at each time t, each item is
classified with respect to its status before request s as follows:t

new�not requested previously in this phase or in the last phase.
old�requested during the last phase, but not previously in this phase.
redundant�requested previously in this phase.
worrisome�requested in the last phase or previously in this phase,

but not in the on-line algorithm’s cache.
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Each request is classified as well, according to the status of the requested
item. For instance, a request s is new if the requested item was new aftert

Ž .request s . Each phase except possibly the last has k nonredundantt�1
requests, each one of which is either new or old. Define

Ž .new s �the total number of new requests in sequence s.
Ž . Ž .new in ph l � in the context of some sequence the total number� �

of new requests in the lth phase of the sequence. Here l is any positive
Ž .integer. If l � 0 or there is no lth phase, define new in ph l to be 0.� �

The relevance of the new requests is as follows.

� 	 Ž . Ž . Ž .LEMMA 1 6, 16 . new s �2 
 OPT s 
 new s .

Ž .Proof. Consider the l � 1 st and lth phases of s for any l. The
Ž .number of distinct items requested in the two phases is k � new in ph l .� �

Thus, the number of evictions incurred by OPT during the two phases is at
Ž .least new in ph l and� �

OPT s � max new in ph l , new in ph lŽ . Ž . Ž .Ý Ý� � � �½ 5
l odd l even

� new in ph l �2 � new s �2.Ž . Ž .Ý � �
l

Ž .On the other hand, the following schedule costs at most new s . At the
beginning of each phase, evict those items that are not requested during
the phase and bring in the items that are not in the cache but are
requested during the phase. After each phase ends, the items requested
during that phase are in the cache, so the number of evictions in the next
phase is just the number of new requests in that phase. Thus, the cost of

Ž .this schedule is new s . Since the schedule produced by OPT is at least as
Ž . Ž .good, OPT s 
 new s .

By the amortized cost incurred by OPT during a phase, we mean half the
number of new requests in that phase. By the lemma above, the total cost
incurred by OPT is at least the total of these amortized costs and at most
twice the total. To show bounds on the competitive ratio of A, we use the
standard method of bounding the cost incurred by A during a phase
divided by the amortized cost incurred by OPT during the phase. For
instance, if this ratio is at most c for each phase of a sequence s, then it

Ž . Ž .follows immediately that A s 
 c � OPT s .
One intuition for understanding RMARK and other marking algorithms

such as LRU and even FWF is that they are emulating the schedule
Ž . Ž .described in the proof above that OPT s 
 new s . That is, during each

Ž .phase, the goal intuitively speaking is to get the items that will be
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requested during the phase into the cache. From this point of view, once
an item is requested during a phase, it should be kept in the cache. This is
the principle that defines a deterministic marking algorithm.

If this principle is followed, then only nonredundant requests can cause
evictions. Since the phase ends after k nonredundant requests, any deter-
ministic marking algorithm incurs a cost of at most k during the phase.
This means that in the standard model, the competitive ratio is at most k
Ž .OPT also incurs at least one eviction per phase . Conversely, the adver-
sary can force a ratio of k against a deterministic on-line algorithm by
making one new request each phase and then making k � 1 requests, each
to whichever old item is not currently in the cache.

2.2. Factor-Two-Analysis for the Diffuse Ad�ersary

During each phase there are k nonredundant requests. New requests
increase the cost to OPT. The only other requests that cost DMARK are
worrisome requests. Each worrisome request is nonredundant. So, intu-
itively, a good adversary assigns probability to worrisome items most, then
to marked items, then to unmarked items in the cache, and, as a last

Žresort, to new items. This is not quite accurate, because requesting a new
item can benefit the adversary in that it increases the number of worri-
some items, but this turns out to be a minor effect, accounting for the

.occasional ‘‘�1’’ in the lower bound.
We next calculate the upper bound glossing over an issue of probabilis-

tic conditioning. In the subsequent section we give a formally correct
treatment. The intuition for the lower bound is essentially described
above.

Consider the lth phase for any l. There are k nonredundant requests in
Ž .the phase except possibly for the last phase, which may have fewer .

Consider the state of any marking algorithm DMARK just before the
Ž .i � 1 st nonredundant request, for 1 
 i 
 k � 1.

The i redundant items are marked and in the cache. Of the k items
Ž . Žrequested last phase, at most new in ph l are worrisome out of the� �

. Ž .cache . Thus, the adversary can assign at most � new in ph l probability� �
to worrisome items. Since there are only i redundant items, the adversary
has to assign at least 1 � � i probability to nonredundant items. Therefore,
the probability that the request will be worrisome, given that the request
turns out to be nonredundant, is at most

� new in ph l new in ph lŽ . Ž .� � � �� �11 � � i � � i

Ž .or 1 if this quantity is negative or more than 1 . Summing over i, adding
Ž .new in ph l for the evictions due to new requests, and dividing by� �
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Ž . Ž .new in ph l �2 the amortized cost incurred by OPT for the phase� �
gives the desired upper bound 2� on the competitive ratio.

The issue we have glossed over in our intuitive explanation is that
Ž .new in ph l is a random variable, because the adversary generates the� �

Ž .sequence s randomly. Further, conditioning on new in ph l taking on a� �
given value may ‘‘break’’ the probabilistic restriction on the adversary.

3. UPPER BOUND FOR MARKING ALGORITHMS

Next we prove the upper bounds on deterministic strategies in Theorem
1:

LEMMA 2. For any lazy deterministic marking algorithm DMARK and
D � � ,�

E DMARK r 
 2� � , k � E OPT r � O 1Ž . Ž . Ž . Ž .D D

Proof. Without loss of generality, assume that D generates only se-
Žquences whose last phase has k nonredundant requests. Otherwise we

can easily modify the distribution so that the condition is satisfied, while
� Ž .	 .increasing E OPT r by at most the constant k. In the context of the

random sequence r, define the following random variables and events.

Ž .R �the i � 1 st nonredundant request in the lth phase of r, ifl, i
there is an lth phase.

Ž .prefix R �the prefix of r up to but not including request R of r.
Ž .new bef R �the number of new requests before request R in the�

phase of r containing R.
Ž .new in ph l �the total number of new requests made in the lth� �

phase of r, if there is an lth phase, otherwise 0.
Ž .worrisome R �the event that request R of r is worrisome.

In what follows, we abuse notation slightly as follows. By the event
Ž .prefix R � s, we mean that there is an lth phase in r and the prefixl, i

of r preceding request R is sequence s. Similarly, by the event worri-l, i
Ž .some R , we mean that there is an lth phase in r and the request R inl, i l, i

that phase is worrisome.
We start by proving the following claim:

Ž .Claim 1. Fix any l and i 1 
 i 
 k � 1 . Let s be any sequence such
Ž .that the event prefix R � s can happen. That is, s has l phases, andl, i
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the last phase of s has i nonredundant requests. Then

Pr worrisome R � prefix R � sŽ . Ž .l , i l , i

new bef RŽ .� l , i
 E prefix R � s .Ž .l , i�1� 4max 1, � � i

Ž .Conditioning on prefix R � s lets us use the restrictions on thel, i
adversary.

Here is the proof of Claim 1. In the event that s is a prefix of r, consider
� � Žthe random variable r where t � s � 1. There must be such a requestt

because i � k and each phase of r, including the last, by the assumption at
.the beginning of the proof, has k nonredundant requests.

Ž .The event prefix R � s happens if and only if s is a prefix of r andl, i
Ž . Ž .r is nonredundant. If prefix R � s, then the event worrisome Rt l, i l, i

happens if and only if r is worrisome. Thus,t

Pr worrisome R � prefix R � sŽ . Ž .Ž .l , i l , i

� Pr worrisome r � s is a prefix of r and r is nonredundantŽ .Ž .t t

Pr worrisome r � s is a prefix of rŽ .Ž .t� .
Pr r is nonredundant � s is a prefix of rŽ .t

Assume that s is a prefix of r. After processing s, DMARK has all but
Ž .new bef r of the items requested in the previous phase in the cache.� t

Ž .Thus, the adversary can assign at most � new bef r probability to� t
Ž .worrisome items. Thus, the numerator above is at most � new bef r .� t

Since there have been i nonredundant requests in this phase before r ,t
there are only i redundant items, so the denominator above is at least

� Ž .1 � � i. To finish the proof of Claim 1, note that E new bef R �� l, i
Ž . 	 Ž .prefix R � s � new bef r .l, i � t

� Ž . 4Now fix i and l. In the set of events prefix R � s � s is a sequence ,l, i
exactly one event happens. Thus, the bound in Claim 1 holds uncondition-
ally:

new bef RŽ .� l , i
Pr worrisome R 
 E .Ž .l , i �1� 4max 1, � � i

Ž . Ž .Since new bef R 
 new in ph l , it follows that for all l and i,� l, i � �

new in ph lŽ .� �
Pr worrisome R 
 E .Ž .l , i �1� 4max 1, � � i
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Ž .Since DMARK r is the number of new or worrisome requests in r,

new in ph lŽ .� �
E DMARK r 
 E new in ph l �Ž . Ž .Ý Ý� � �1� 4max 1, � � il l , i

�1�1� 4� 1 � max 1, � � i � E new in ph lŽ .Ý Ý � �ž /
i l

� � � , k E new rŽ . Ž .

 � � , k E OPT r �2 by Lemma 1 .Ž . Ž . Ž .

4. LOWER BOUND FOR DETERMINISTIC ALGORITHMS

Next we prove the lower bounds on deterministic strategies in Theorem
1:

LEMMA 3. For any � � 0, any k, and any deterministic on-line algorithm
A, there is a distribution D � � such that�

E A r � � � , k � 1 � 1�m � E OPT r ,Ž . Ž . Ž .Ž .D D

� � �1 � 4 � Ž .	where m � max 1, � � k and E OPT r is arbitrarily large.D

Proof. We describe D by describing an adversary that requests items
probabilistically subject to the limitations of � . Fix � � 0 and k � 0.�

ŽAssume � � 1�2k otherwise the desired lower bound is trivially satisfied,
Ž . .because � 1�2k, k � 1 � 1�m is less than 1 .

The adversary requests the items in an on-line fashion, phase by phase.
In the first part of each phase, the adversary makes m new requests by
assigning probability only to items not previously requested.

For each remaining request, the adversary assigns a probability to each
Žitem as follows. First priority is given to worrisome items those previously

.requested in this phase or in the last one but not in the cache of A .
ŽSecond priority is given to redundant items those requested previously in

.this phase and in the cache . Third priority is given to the remaining old
Ž .items the items not yet requested this phase, but in the cache .

Items are selected in order of priority and assigned as much probability
as possible, subject to the constraint that no item is assigned probability
more then � and the total probability assigned is 1. By the choice of m, we

Ž .have k � m � � 1, so all three kinds of items suffice for all probability to
be assigned.



NEAL E. YOUNG228

The adversary follows this strategy until k distinct items have been
requested, at which point the adversary begins a new phase. The adversary

Ž .continues for N phases, where N is arbitrarily large so that OPT r is also
arbitrarily large.

This defines the distribution D � � . Let r be a random request chosen�

� Ž .	 Ž Ž . .from D. Next we prove that E A r � Nm � � , k � 1 � 1�m . This
Ž . Ž .proves the claimed bound, since OPT r 
 Nm by Lemma 1 . Consider

any l s.t. 1 
 l 
 N. For i � m, . . . , k � 1, define

Ž .worrisome R �the event that the ith nonredundant request ofl, i
the lth phase is worrisome.

Ž . � Ž .	The expectation of A r is Nm � Ý Pr worrisome R . For any l andl, i l, i
Ž .i s.t. m 
 i 
 k � 1, consider the time just before the i � 1 st nonredun-

dant request of the lth phase. There have been i nonredundant requests
so far in the phase, so there are i redundant items. There have been m
new requests so far, so there are k � m items that were requested last
phase or already this phase. Since the on-line algorithm has at least m of
these items not in the cache, there are at least m worrisome items. Thus,
the adversary assigns at least � m probability to worrisome items and at

Žleast � i probability to redundant items. Unless � m � � i � 1, in which
� Ž .	 .case Pr worrisome R � 1�the adversary forces a worrisome request.l, i

Thus, the probability that the request is worrisome, conditioned on it being
nonredundant, is

Pr worrisome RŽ .l , i

� m m m
� � � .�1 �1� 4max 1 � � i , � m � 4 � 4max � � i , m max � � i , 1

The rightmost equality holds because the choice of m implies that either
m � 1 or ��1 � i � m. Adding the m new requests and summing over
i � m, . . . , k � 1, the expected cost to A for each of the N phases is at
least

k�1 k�1m m
m � � 1 � .Ý Ý�1 �1� 4 � 4max � � i , 1 max � � i , 1i�m i�1

Ž Ž . .The rightmost expression is m � � , k � 1 � 1�m .

The adversary can probably be made a little stronger to get a slightly
Ž .better lower bound when � 
 1� k � 1 . In this case the issue of how the

optimal adversary should fix m appears to be relatively subtle. This is why
the lower bound loses the additive 1 with respect to the upper bound in
this case. One small improvement to the above adversary would be, when
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the adversary is requesting new items, to use the opportunity to also
allocate probability to worrisome items.

5. FIFO AND FWF ARE NOT OPTIMAL

In this section we show that FIFO and FWF are not optimal.

LEMMA 4. For � � 1�k, there exists a distribution D � � such that�

E FIFO r � E FWF r � kE OPT r .Ž . Ž . Ž .D D D

Proof. We first consider FIFO. The adversary requests the items in an
on-line fashion, phase by phase. Let S denote the set of items in FIFO’s
cache at the start of a phase. Let x � S be the item that was most recently
brought into the cache. Let y be some item not in the cache. In the
remainder of the phase, the adversary simply assigns probability 1�k to

� 4 � 4each page in S � y � x . The phase continues until x is evicted from
the cache.

By the choice of x, each item in S is evicted at some point during the
phase. Thus, FIFO incurs k evictions for the phase. On the other hand,
the number of new requests in the phase is 1, so by Lemma 1 OPT incurs a
cost of at most one per phase. This shows the lower bound of k for FIFO’s
ratio; equality follows because FIFO is known to be k-competitive in the
standard model. The same adversary with an even simpler analysis shows
the claim for FWF.

6. BOUNDS ON RANDOMIZED STRATEGIES

In this section we finish the proof of Theorem 1 by proving the upper
and lower bounds for randomized strategies claimed there. By using what
we already know, very little work is required to get the bounds.

We first consider lower bounds. Fix � � 0 and k � 0. We start with the
Ž .case � 
 1� k � 1 . For simplicity we make the technical assumption that

��1 is an integer. This assumption is not too restrictive and allows us to
reuse the deterministic lower bound as follows.

LEMMA 5. If ��1 is an integer greater than k, then the distribution D
described in the proof of Lemma 3 is independent of the algorithm A.

Proof. Consider that distribution. Within each phase, the random se-
quence r has requests to m new items, followed by requests restricted to a

� �1 4set of k � m items, where m � max 1, � � k , until k distinct items
have been requested. The condition on � and the choice of m imply that
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�1 Ž .m � � � k, so that � � 1� k � m . In this case, each phase simply
consists of requests to m new items, followed by a sequence of requests to
the k � m items, where each request is chosen uniformly at random from
those k � m items, until a total of k distinct items have been requested,
after which the next phase begins.

This distribution generalizes a distribution defined in a previous lower
bound on the competitive ratio of randomized on-line strategies against

� 	 � 	 Žthe standard adversary 3, Theorem 8.7 , 14, Theorem 13.2 . That lower
.bound is equivalent to our case m � 1. There and here, Yao’s principle

implies that for a random input r from any input distribution D, any
randomized on-line algorithm A satisfiesR

E A r � inf E A r ,Ž . Ž .R
A

where A ranges over all deterministic on-line algorithms.
ŽBriefly, this is because A may be viewed as probabilistically pickingR

some deterministic algorithm A and then running A on the input r. Thus,
� Ž .	 � 	 � Ž .	 � Ž .	E A r � Ý Pr A chooses A � E A r � inf E A r . Here DD R A R D A D

can be any distribution, but we take it to be the one defined in Lemma 3.
�The input r is randomly chosen from D. We refer the reader to 14,

	 � 	Theorem 13.2 or 3, Theorem 8.7 for a full explanation of Yao’s principle
.in this context.

By Lemma 5, in the special case when ��1 is an integer greater than k,
the distribution defined in the previous section is independent of the
on-line algorithm A. Thus, by Yao’s principle, the lower bounds proved
there extend to randomized algorithms. This proves:

Ž . �1LEMMA 6. Suppose � 
 1� k � 1 and � is an integer. Then the lower
bound established in Lemma 3 also applies to randomized on-line algorithms.

Decreasing � only weakens the adversary. Thus, when � is not an
� �1 �integer, letting � � � 1� � � � , the lower bounds hold with � � replacing

� .
Ž .Also, when � � 1� k � 1 one can verify that the above lemma implies

that the ratios are at least H � Ýk 1�i. This proves:˙k 1

Ž . Ž .LEMMA 7. Suppose � � 1� k � 1 . Then RR � � H .� k

So the above two lemmas prove the lower bounds for randomized
strategies claimed in Theorem 1. What about the upper bounds? Because
the diffuse adversary is no stronger than the standard adversary, we get
immediately from previous results that:

Ž . Ž . Ž .LEMMA 8. For � 
 1� k � 1 , RR � , RMARK 
 2� � , k .�

Ž . Ž . ŽFor � � 1� k � 1 , RR � , RMARK 
 2H � 1, while RR � , PARTI-� k �

. Ž .TION 
 H , and RR � , EQUITABLE 
 H .k � k



ON-LINE PAGING AGAINST BIASED RANDOM INPUTS 231

The first upper bound follows from the fact that Lemma 2 also applies
Žto RMARK since the upper bound applies to any deterministic marking

algorithm, i.e., any conditioning of RMARK on a particular outcome of its
.random choices . The remaining upper bounds follow from known upper

bounds on the competitive ratios of the various algorithms against the
Ž . � 	stronger standard adversary 1, 3, 6, 13 . Lemma 8 proves the upper
bounds on randomized strategies in Theorem 1. This completes the proof
of that theorem.

7. ALTERNATE PROOF THAT LRU IS OPTIMAL

For the record, we include here a distillation of Koutsoupias and
Papadimitriou’s proof that LRU is optimal against the diffuse adversary
� . This version of the proof is shorter and self-contained, but does not�

give the intermediate results about work functions in the original proof.
Given a request sequence s of items from a universe U and an

Ž .arbitrary initial ordering 
 of the items, define the rank of an item x � U
in s to be the rank of x in the following order: items that are requested in
s are first, in order of last request; items that are not requested in s are
next, ordered by 
 .

In analyzing an on-line paging algorithm, if s is the sequence of requests
seen so far, then the most recently requested item currently has rank 1, the
next most recently requested item currently has rank 2, etc. Without loss
of generality, when specifying a request or the contents of the cache, we
can specify each item by its current rank; this uniquely identifies the item.
Except in the proof of Lemma 9 where we use both representations, items
in this section are assumed to be specified by their current rank.

LEMMA 9. Let r and r � be two equal-length request sequences. Let r and
r�, respecti�ely, be the same sequences but with each request specified by rank
Ž .w.r.t. the same initial ordering and uni�erse . If r dominates r� in the sense

� Ž . Ž .that r � r for all t, then OPT r � OPT r� .t t

Proof. It suffices to prove the case when there is a single d such that
r� � r � 1 but r � r� for all t � d. The general case then follows byd d t t
induction. Assume such a d.

How do r and r � differ? Consider the two sequences simultaneously for
� �t � 1, 2, . . . , r in an on-line fashion. At each t focus on the ranks the

items in the two subsequences s � r r . . . r and s� � r� r� r � . . . r�.1 2 t 1 2 t
At each time t � d, for each item, the rank in s equals the rank in s�.

Let x and x� be the items requested, respectively, in r and r � at time d. By
assumption, just before time d, the respective ranks of x and x� are r andd
r � 1. What about just after time d? In sequence s, the rank of x changesd
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to 1, while the rank of x� changes to r . In sequence s�, the rank of x staysd
r , while the rank of x� changes to 1. For each item other than x or x�, thed
rank of the item is equal in both sequences.

This means that the sequence of items requested by r is the same as the
sequence of items requested by r �, except that from time d to the end, the

Ž .roles of x and x� are reversed: if r requests x resp. x� , then r � requests
Ž .x� resp. x .
Let i and i�, respectively, be the times of the most recent requests to x

Žand x� before time d. If either item is being requested for the first time,
. �then let i or i� equal 1, as appropriate. By assumption r � r � 1, sod d

i 
 i�.
Consider any schedule S for r. For any j with i� � j 
 d, consider

obtaining S� from S by reversing the roles of x and x� from time j onward
Ž .i.e., swapping the two in S , S , . . . . By the established relation betweenj j�1
r and r �, S� will be a valid schedule for r �. To finish, we need only choose j
so that S� costs no more than S. In particular, at time j, S� should evict no

� 4 �� 4 �more of the two pages x, x� than S does. If for some j, x�, x � S �j
� 4 �� 4 � � 40, 2 or x�, x � S � 0, 2 , then this j clearly suffices. Otherwisej�1

� 4 � 4 � 4 � 4there is a j such that x�, x � S � x� and x�, x � S � x . Usingj�1 j
this j, S� is cheaper than S.

� 	THEOREM 2 11 . Let D be any distribution D � � . Let A be any�

deterministic on-line algorithm. Then there is a distribution D� � � such that�

E LRU r 
 E A r � and E OPT r � E OPT r � ,Ž . Ž . Ž . Ž .D D � D D �

where r and r � are randomly chosen according to D and D�, respecti�ely.
Ž . Ž .Thus, RR � � RR � , LRU .� �

Proof. In what follows, we assume all items are specified not by name
Žbut by rank with respect to some sequence implicit in context, the

.universe U of the items requested by D, and an arbitrary initial ordering .
The following random experiment defines the distribution D� by de-

scribing how to choose a random sequence r� according to that distribu-
tion. Choose a random sequence r according to D. Reveal r in an on-line
fashion, one request at a time, producing each corresponding request of r�
as follows.

Ž .Let L denote the cache of LRU specified by rank with respect to s
Žafter processing s � r . . . r . Similarly, let A denote the cache specified1 t�1

. � �by rank with respect to s� of A after processing s� � r . . . r . Let f be1 t�1
Ž � � � �. Žany 1�1 mapping from A � L into L � A note A 
 L and define in the

.context of s and s�

�XX � x � A � L p f x � p x , where� 4Ž . Ž .Ž .˙
p x � Pr x � s .Ž . Ž .˙ D
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Finally, determine r as follows. First set r� � r , but if r � XX , change r� tot t t t t
Ž . Ž Ž .. Ž .f r with probability p f r �p r .t t t

This completes the random experiment that gives r� and so defines D�.
Each outcome of this experiment determines a pair of random variables
Ž .r, r� .

Ž .We use Pr X � s, s� to denote the probability of event X conditionedD �

on s and s� being prefixes of r and r�. The following claim characterizes the
distribution of r� conditioned on this event.t

Claim 2. Fix any two sequences s and s� with length t � 1. Condition
the random experiment above on s and s� being prefixes of the random

Ž .variables r and r�, respectively. In the context of s and s�, define p� x �̇
Ž � .Pr r � x � s, s� .D � t

Ž . Ž Ž ..Then for each x, p� x � p 
 x , where 
 is the permutation defined
Ž . Ž . Ž Ž .. Ž .by 
 x � f x and 
 f x � x for x � XX , and otherwise 
 x � x.

The claim follows by direct calculation based on the last line of the
experiment.

Claim 3. Let r, r�, s, and s� be as in Claim 2. Then

� 	 � � 	Pr LRU faults on r � s, s� 
 Pr A faults on r � s, s� .D � t D � t

Why? It suffices to show that for every item x in A, there is a unique
Ž . Ž .item y in L such that p� x 
 p y . But by Claim 2 and the choice of XX ,

Ž .this is the case: take y � x unless x � A � L, in which case take y � f x
� L � A.

� Ž .	 � Ž .	Claim 4. The first part of the theorem is true: E LRU r 
 E A r� .D D �

This follows directly from Claim 3. To see it formally, letting s and s�
range over all equal-length pairs of sequences, we have

E LRU r � Pr s, s� Pr LRU faults on r � s, s�Ž . Ž .ÝD D � D � �s ��1
s, s�

�
 Pr s, s� Pr A faults on r � s, s�Ž .Ý D � D � �s� ��1
s, s�

� E A r� .Ž .D �

Ž .Above Pr s, s� denotes the probability that s is a prefix of r and s� is aD �

prefix of r� in the random experiment.

� Ž .	Claim 5. The second part of the theorem is true: E OPT r �D
� Ž .	E OPT r� .D �

Since the random experiment described above produces the same distri-
bution on r as D does, it suffices to prove the inequality assuming that the
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Ž .pair r, r� is generated by that experiment. Since LRU keeps the most
Ž . Ž .recently requested items in its cache, and f : A � L � L � A , we have

Ž . Ž .x 
 f x . Thus, in any outcome, r dominates r� in the sense of Lemma 9
Ž . Ž .and so OPT r � OPT r� . This proves the claim.

Claim 6. The distribution D� defined by the random experiment is in
� .�

This also follows directly from Claim 2. To prove it in detail, we need to
Ž .show that for any s� and x, Pr x � s� 
 � . ButD �

Pr x � s� � Pr s Pr r� � x � s, s� 
 Pr s � � � .Ž . Ž . Ž . Ž .Ý ÝD � D D � t D
s s

Ž .Above Pr s denotes the probability that s is a prefix of r, and s rangesD
� �over all sequences of length s� � t � 1. The second-to-last inequality

Ž � . Ž .follows because by Claim 2 each Pr r � x � s, s� equals Pr y � s forD � t D
Ž .some y, and by the assumption that D � � , Pr y � s 
 � . This proves� D

Ž .the claim and the theorem! .
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