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Abstract 

This note describes a combinatorial optimization prob- 
lem arising in the Sloan Digital Sky Survey and an ef- 
fective heuristic for the problem that has been imple- 
mented and will be used in the Survey. The heuristic is 
based on network flow theory. 

1 The Sloan Digital Sky Survey 
The Sloan Digital Sky Survey [is] a joint 
project of the Astrophysical Research Con- 
sortium... The go+ of the project, which is 
scheduled to begin m 1997 and take five years, 
is to make a much better map of the universe 
than is currently available. The volume of 
the universe to be surveyed will be 100 times 
larger than the volume of previous surveys. 
The number of galaxies with known distances 
is ex ected to increase by a factor of 100 to 
1 OOf 000 galaxies and the number of quasars 
t; i&ease to 100,000. 
The Sloan Foundation... has contributed $8 
million to the $18 million capital costs of the 
project... 
In order to do the survey, ARC is designing 
and building a special purpose 2.5 meter (loo- 
inch) telescope at its Apache Point Observa- 
tory... 
[The Sky Survey will proceed in two phases. 
In the first phase, a two-dimensional ma 
of the sky will be made. For the secon % 
phase, the] million brightest stars and the one 
hundred thousand brightest quasars will be 
selected for spectroscopic analysis from the 
two-dimensional map.. . [29] 

To gather the spectroscopic data in the second 
phase, the telescope will be pointed repeatedly at 
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the sky to take a series of “snapshots”. Each snap- 
shot will capture data for up to 660 galaxies (and 
quasars) in the circular portion of the sky visible 
through the telescope. For each captured galaxy, 
light from that galaxy will enter the telescope and 
travel through an optical fiber to a spectral ana- 
lyzer. The optical fibers (one for each galaxy) will 
be held in place by a “plug plate” drilled to hold 
the up to 660 fibers, each aligned to accept the light 
of its respective galaxy [7]. 

1.1 A Capacitated Covering Problem. A 
main factor determining the cost of the survey will 
be the number of snapshots to be taken. This 
paper concerns the following problem: given the 
desired galaxies, determine a minimum-size set of 
snapshots that captures them. Formally: 

Given a collection of points on the unit 
sphere, a radius T, and a capacity c, find 
a small set of discs of radius T (located on 
the sphere) such that each given point can 
be assigned to a disc containing it, with 
no disc being assigned more than c points. 

The sphere corresponds to the view-sphere centered 
at the telescope. The “galaxies” are the images of 
the actual galaxies projected on the view-sphere. 
Each disc represents one snapshot to be taken 
through the telescope; the galaxies assigned to that 
disc correspond to those for which data will be 
collected in that snapshot. The capacity c is the 
maximum number of galaxies for which spectral 
data can be gathered in a single snapshot (due to 
limitations in packing the optical fibers). 

The problem is NP-hard [23]. However, the 
instances we need to solve exhibit some structure. 
In this paper we describe an effective heuristic 
algorithm for the problem that will be used in the 
Survey and we report some computational results. 
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The basic algorithm starts with a near-uniform 
covering [ 151 and iteratively improves by solving a 
Lagrangian-relaxation of the problem that reduces 
to a minimum-cost flow problem, which it solves 
using Andrew Goldberg’s scaling min-cost flow 
solver [ 131. 

2 Related Work 

The NP-completeness of the variant when the 
points lie in the plane was proven by Megiddo 
and Supowit [23]. The proof adapts easily to 
our problem. The NP-completeness of the planar 
problem when the discs are required to be centered 
on the given points was proven by Marchetti- 
Spaccamela [21]. When the covering regions are 
rings, instead of discs, Maass [20] showed the 
problem NP-complete even if the points all lie on 
a single line. 

Papadimitriou [27] (improving results by Fisher 
and Hochbaum [9]), considered the related p- 
medians problem in the plane, which is that of 
covering the given points with p discs (of arbitrary 
radii, but centered at p of the given points) so as 
to minimize the sum of the disc radii. He showed 
the problem NP-complete and presented average- 
case analyses of two heuristics, assuming the points 
are randomly distributed in the unit square. One 
of the heuristics is a uniform (“honeycomb”) cov- 
ering of the points by discs, which he shows gives 
a near-optimal solution with high probability for 
P =nn’forsomefixedO<c< 1. 

The problem can be modelled as a capacitated 
set-covering problem. The well-known greedy algo- 
rithm of Johnson {17] and Lov&sz [IS], as modified 
for the capacitated case by Bar-Ilan, Kortsarz, and 
Peleg [3], would yield a In n-approximate solution, 
where n is the number of galaxies. This algorithm 
is not good enough in practice. In this particular 
set-cover problem the set system has bounded VC- 
dimension; in this case an improved approximation 
algorithm is known for the uncapacitated case [5], 
but’this algorithm is also unlikely to achieve a suf- 
ficiently good approximation [4]. 

Numerous generalizations of our problem have 
been considered under various names, including 
“(un)capacitated facility (or plant) location,” “p- 
centers”, and “minimax facility location”. These 

problems have been studied under various metrics 
and in general graphs. In general, polynomial-time 
exact algorithms are known only when the number 
of covering regions (in our case, discs) is small (e.g., 
[2, L]) or when the underlying metric space (or 
network) is tree-like (e.g., [22, 12, 24, 14, 16, 81). 
Generally, these algorithms are for uncapacitated 
problems. 

There are many works on these problems in 
Operations Research. Relevant books include 
[19, 26, 11, lo]. G enerally, this research has con- 
centrated on adapting integer-programming tech- 
niques to fairly general formulations of the prob- 
lem. For example, recent works on the Capacited 
Facility Location Problem (a generalization of our 
problem to arbitrary networks) include [6, 311. 
However, these techniques are not efficient enough 
for problems with hundreds of thousands of points. 
Quoting from the conclusion of “Approximate So- 
lutions to Large Scale Capacitated Facility Loca- 
tion Problems” (1990) [30]: 

The problem of locating facilities has in- 
spired a rich body of literature which 
spans well over two decades. Numerous 
algorithms have been devised and succes- 
fully applied to problems with as many 
as 200 customers and 100 facilities. The 
computational experience on larger prob- 
lems, however, has been virtually non- 
existent... In the work leading to this pa- 
per, the objective was to develop a heuris- 
tic algorithm that can be used to generate 
effective solutions for large scale facility 
locations problems. The computational 
results obtained so far seem to indicate 
that this requirement can be met for prob- 
lems with as many as 1000 customers and 
100 facilities. 

3 The Heuristic 

The instances arising in the Sky Survey exhibit par- 
ticular structure. (See the sample instance in Fig- 
ure 1.) Within any given region, the points are dis- 
tributed densely throughout the region, somewhat 
uniformly but with clustering tendencies and vari- 
ation in density. The density of the points means 
that virtually the entire region must be covered by 
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Figure 1: Sample Instance Figure 2: First Relaxed Assignment 

discs. The variation in density means that more 
discs must be concentrated within densely popu- 
lated regions. As a reference point, consider the 
sparsest possible covering of the area by discs (re- 
sembling a “honeycomb”). This covering provides 
roughly the right to&E capacity and does well in 
sparse areas, but in dense areas does not provide 
sufficient capacity. Any good solution will have 
to maintain a honeycomb-like structure in sparse 
areas while bunching discs more densely in dense 
areas. 

The algorithm starts with a honeycomb-like 
covering of the region by discs with a density of 
discs slightly more than minimum, giving some 
“play”. Although the covering has as much total 
capacity as there are points, it is not likely to assign 
all points to discs because of the areas that are 
denser with points. The algorithm perturbs the 
covering to improve the coverage - moving discs 
towards dense areas while maintaining a regular 
structure in sparse areas. 

For a given set of discs (with known locations), 
the problem of finding the maximum number of 
galaxies that can be assigned reduces to generalized 
maximum bipartite matching [28], which in turn 
reduces to the maximum flow problem. A clever 
reduction produces a flow problem of size propor- 
tional to the number of discs. Thus, for a given set 
of discs, one can efficiently find an assignment of 
galaxies to discs maximizing the number of galaxies 

assigned subject to the capacity constraints. 
If the best possible assignment leaves many 

points unassigned (and many discs below capacity), 
how can discs be moved to improve the coverage? 
Consider the following relaxation of the problem: 

Given a set of discs, a set of galaxies, and 
a capacity c, find a minimum-penalty as- 
signment of the galaxies to discs such that 
no disc is assigned more than c galaxies. 

Here a galaxy can be assigned to a disc not 
containing it: the penalty for assigning a galaxy 
to a disc is negligible if the galaxy is in the disc; 
otherwise it grows with the distance between them. 
The penalty of the assignment is the sum of the 
individual penalties. 

The relaxed problem can be efficiently solved 
for arbitrary penalties by reducing it to the assign- 
ment problem or to minimum-cost maximum flow. 
A solution to the relaxed problem will assign all 
galaxies to discs, but a given disc may be assigned 
galaxies outside of it. 

To improve a given set of discs, the algorithm 
solves the relaxed problem and then, for each disc, 
moves the disc individually to minimize the net 
penalty incurred by assigning its galaxies to it. 

The intuition (see Figure 2) is that if excess 
demand exists in one area and excess capacity 
exists in another, then a disc between the two areas 
will tend to be assigned galaxies that are outside of 
the disc and lie towards the area of excess demand. 
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Figure 3: Initial, Intermediate, and Final Cover- 
ings 

When the disc is moved, it will be moved towards 
the area of excess demand. 

Having moved the discs, the algorithm discards 
the assignment and starts over with the discs in 
the new locations. Note that each step reduces the 
penalty associated with the underlying assignment, 
so that the solution is gauranteed to converge. 
At this point, the algorithm finds a legal (not 
relaxed) assignment of galaxies to discs maximizing 
the number of assigned galaxies. By doing a 
binary search on the density of the starting cover, 
the algorithm finds the smallest set of discs that 
converges to a cover that allows sufficiently many 
galaxies to be assigned. 

3.1 Example. The sample instance in Figure I 
contains 12642 points - a random %lO of the 
points in a subregion of the sky previously scanned. 
The size of this subregion is about %lO of that of 

the region that will be mapped by the Survey. The 
initial cover of 218 discs of (appropriately scaled) 
capacity 60 (total capacity 13080) was sufficient 
to capture %Sl of the points. After 16 iterations, 
the perturbed cover captures %97.8 of the points. 
Figure 3 shows the initial near-uniform cover, a 
composite of the successive covers, and the final 
cover. 

3.2 Implementation Issues. We expected the 
bottleneck in the algorithm to be the solution of the 
minimum-cost flow problem at each iteration. To 
minimize this time, the algorithms reduces the size 
of the min-cost flow problem as follows. First, it 
only considers assigning each galaxy to a few of its 
closest discs. Second, it rounds the costs to reduce 
the number of distinct costs and then, instead 
of having demand vertices for individual galaxies, 
it builds demand vertices for equivalance classes 
of galaxies, where two galaxies are equivalent if 
they have the same assignable discs with the same 
rounded penalties. 

Once it solves the relaxed problem in a given it- 
eration, it moves each disc using a simple gradient- 
descent method. 

For the initial near-uniform covers, we used 
Hardin, Sloane, and Smith’s sphere covers [15]. We 
implemented the algorithm in C++ using LEDA 
[25] and Andrew Goldberg’s scaling min-cost flow 
solver [13]. 

4 Computational Results 
We tested the running time and the quality of the 
solutions found by the algorithm on some sample 
instances. In this Section we describe the results. 

The Survey will map roughly %25 of the sky 
- the region having right ascension zero through 
360 degrees and declination 30 degrees through 
90 degrees. Roughly one million galaxies will be 
mapped. Because the two phases of the Survey 
will be pipelined (the second will be started before 
the first is done), the second phase will be.done in 
pieces. 

We tested the algorithm on data from a region 
of the sky that had been scanned for a different 
purpose. The region has right ascension -45 
degrees to 74 degrees and declination -62 degrees 
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Figure 4: Number of discs needed to achieve a %98 
coverage using algorithm or using a near-uniform 
covering, normalized by capacity lower bound. 

to -24 degrees, giving it an area of roughly %7.8 of 
the entire sky. It contains about 300,000 galaxies. 

We ran the algorithm on various subregions of 
this region. The whole region was one such sub- 
region, this region was divided in half “vertically” 
and “horizontally” to obtain four more subregions, 
each of those subregions was similarly split. For 
each of these 21 subregion we randomly sampled 
%5,%10, %20, %35, and %60 of the galaxies in 
the subregion to obtain 105 “thinned” subregions. 
For each thinned subregion, we used the algorithm 
(doing a binary search to find the sparsest good 
starting cover) to find a cover that (with disc ca- 
pacity scaled corresponding to the thinning of the 
subregion) would allow %98 of the galaxies to be 
assigned. For comparison, we also computed the 
sparsest near-uniform cover that would allow %98 
of the galaxies to be assigned. 

For reasons discussed below, we didn’t run the 
algorithm to completion on the two subregions with 
the most galaxies (the whole region sampled at %35 
and %60). 

4.1 Quality of solutions. Figure 4 shows the 
quality of solutions returned by the algorithm on 
the subregions. The figure plots the number of 
discs the algorithm needed to assign %98 of the 
galaxies in each region, divided by the number of 
discs needed just to provide capacity to hold %98 of 

Figure 5: Running time and its main components 

the galaxies. The plot shows the same information 
for covering by near-uniform covers. The algorithm 
(very roughly) requires %lO to %15 extra capacity, 
whereas using uniform covers requires over %30 
extra capacity. Note that the algorithm also suffers 
less from using small regions (where boundary 
effects are more of an issue). 

4.2 Running time. We use the number of 
galaxies in the subregion as the basic measure of 
the input size. A plot of the time per galaxy to 
solve each subregion (including the binary search) 
as a function of the number of galaxies in the region 
appears in Figure 5. The three main components 
of the running time are the time building the 
graphs (including finding the equivalence classes 
of galaxies), the time solving the flow problems, 
and the time moving the discs. These three 
components, each as a percentage of the total time, 
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Figure 6: Flow: Number of edges per galaxy 
vs. density. Each vertical bar represents a group of 
points with close x-coordinates. The center of the 
bar is the average; the endpoints are one standard 
deviation away. 

are plotted in Figure 5. 
These plots show that the running time is about 

0.3 seconds per galaxy (250,000 galaxies per day), 
except for certain large problems. For these prob- 
lems, the time to build the graph dominates the 
running time. This is most likely an artifact of our 
implementation, which used hashing to compute 
the equivalence classes. For these large problems, 
we suspect that the hash table was too large to 
fit in the fast memory of our computer, so that 
any access was likely to result in a slow memory 
access. This would account for the much larger 
running time. This is why we halted the algorithm 
on the two largest test problems, which would have 
otherwise taken several days to complete. We are 
confident that an alternative data structure with 
better locality of reference can avoid this qualita- 
tive change in behavior for large graphs. 

Time to solve flow problems. The heuris- 
tics for keeping the flow problem sizes down appear 
to be effective. A plot of the number of edges per 
galaxy in each flow problem appears in Figure 6. 
As expected, the size of the flow problem is sublin- 
ear in the number of galaxies. 

A plot of the time per edge to solve each flow 
problem appears in Figure 7. The time appears to 
grow only near-linearly with the number of edges. 

Figure 7: Flow: time per edge vs. number of edges. 

5 Comments on Theory and Practice 
Bere are some brief comments on the role of theory 
in this project. The Euclidean capacitated cov- 
ering problem arising here is very natural; when 
we first approached the literature we were disap- 
pointed to find little that was directly useful. The 
Operations Research literature had numerous ca- 
pacitated covering algorithms based on integer lin- 
ear programming, but these were not fast enough 
to handle large enough problems. The Computer 
Science literature had a number of efficient approx- 
imation algorithms for covering that had provable 
worst-case performance guarantees, yet these algo- 
rithms would not produce good enough solutions 
in practice. 

Due to the structure of our problem instances, 
we were confident that good solutions could be 
found. We set out to invent a fast algorithm that 
would produce near-optimal solutions. The key 
turned out to be realizing that we could reduce 
our problem to a series of minimum-cost network 
flow problems. 

In implementing the algorithm, we found that 
the Ford-Fulkerson augmenting paths algorithm 
was far too slow for our purposes. Goldberg 
supplied us with an implementation of his algo- 
rithm written for the first DIMACS Implementa- 
tion Challenge [13]. This algorithm turned out 
to be fast enough for our purpose. We should 
note that fundamental to this algorithm are sev- 
eral ideas that have been developed in theoretical 



302 

network flow research. 
Also useful were Hardin, Sloane, and Smith’s 

sphere coverings [15]. These enabled us to start 
with much better uniform coverings than we might 
otherwise have had to use. Finally, in prototyping 
and testing ideas, it was useful to have a pre- 
existing library of relevant high-level data types 
and algorithms. For this we used LEDA [25]. 

Although theory suggested that network flow 
would be the bottleneck for large problems, this 
was not the case with modern network flow algo- 
rithms. Rather, in our current implementation, for 
problems large enough so that the network flow 
problem can’t fit in fast memory, constructing the 
network flow instances turns out to be the bot- 
tleneck. This is due to the use of hashing, which 
we are confident we can avoid using standard data 
structures. 
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