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ON THE NUMBER OF ITERATIONS FOR DANTZIG–WOLFE
OPTIMIZATION AND PACKING-COVERING APPROXIMATION
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Abstract. We give a lower bound on the iteration complexity of a natural class of Lagrangian-
relaxation algorithms for approximately solving packing/covering linear programs. We show that,
given an input with m random 0/1-constraints on n variables, with high probability, any such
algorithm requires Ω(ρ log(m)/ϵ2) iterations to compute a (1 + ϵ)-approximate solution, where ρ is
the width of the input. The bound is tight for a range of the parameters (m,n, ρ, ϵ). The algorithms
in the class include Dantzig–Wolfe decomposition, Benders’ decomposition, Lagrangian relaxation
as developed by Held and Karp for lower-bounding TSP, and many others (e.g., those by Plotkin,
Shmoys, and Tardos and Grigoriadis and Khachiyan). To prove the bound, we use a discrepancy
argument to show an analogous lower bound on the support size of (1 + ϵ)-approximate mixed
strategies for random two-player zero-sum 0/1-matrix games.
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1. Background. We consider a class of algorithms that we call Dantzig–Wolfe-
type algorithms. The class encompasses algorithms from three lines of research. One
line began in 1958 with a method proposed by Ford and Fulkerson [9] for multi-
commodity flow. Dantzig and Wolfe [7] generalized it as follows. They suggested
decomposing an arbitrary linear program into two sets of constraints as

min{cTx : Ax ≥ b, x ∈ P},

where P is a polyhedron, and using an algorithm that solves the program iteratively.
In each iteration, the algorithm performs a single linear optimization over the polyhe-
dron P—that is, in each iteration, the algorithm chooses a cost vector q and computes

argmin{qTx : x ∈ P}.

This approach, now called Dantzig–Wolfe decomposition, is especially useful when
P is a Cartesian product P1 × · · · × PK and linear optimization over P decomposes
into independent optimizations over each Pi.

Lagrangian relaxation. In 1971, Held and Karp [17, 18] proposed a now well-
known lower bound for the traveling salesman tour, which they formulated (for some
(A, b, c)) as the mathematical program

max
u

[
uTb+min

x∈P
(c− uTA)x

]
.
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Here P is the polyhedron whose vertices are 1-trees (spanning trees plus one edge; a
relaxation of traveling salesman tours). To compute an approximate solution, they
suggested starting with an arbitrary assignment to u and then iterating as follows:
find a minimum-cost 1-tree T ∈ P with respect to the edge costs q = c−uTA; increase
uv for each node v of degree 3 or more in T , and then repeat.

As in Dantzig–Wolfe decomposition, their algorithm interacts with the polyhedron
P only by repeatedly choosing a cost vector q and solving for T = argmin{qTx : x ∈
P}. The method has been applied to a variety of other problems and has come to
be known as Lagrangian relaxation. It turns out to be the subgradient method, which
dates back to the early 1960s.

Fractional packing and covering. In 1979, Shapiro [33] referred to “the correct
combination of artistic expertise and luck” needed to make progress in subgradi-
ent optimization—although Dantzig–Wolfe decomposition and Lagrangian relaxation
could sometimes be proved to converge in the limit, in practice, finding a way to
compute and use queries that gave a reasonable convergence rate was an art.

In contrast, the third line of research provided guaranteed convergence rates. In
1990, Shahrokhi and Matula [32] gave an approximation algorithm for a special case
of multicommodity flow, which was improved by Klein et al. [21], Leighton et al.
[24], and others. Plotkin, Shmoys, and Tardos [31] generalized it to approximate
fractional packing (defined below); Grigoriadis and Khachiyan obtained similar results
independently [13]. Many subsequent algorithms (too many to list here) build on
these results, extending them to fractional covering and to mixed packing/covering
and improving the convergence bounds in various ways. Generally, these algorithms
are also of Dantzig–Wolfe type: in each iteration, they do a single linear optimization
over the polyhedron P .

This research direction is still active. Bienstock gives an implementation-oriented,
operations-research perspective [3]. Arora, Hazan, and Kale give a computer-science
perspective, highlighting connections to other fields such as learning theory [2]. An
overview by Todd places them in the context of general linear programming [34].

In many applications, the total time for the algorithm is the number of iterations
times the time per iteration. In most applications, the time per iteration (to solve
the subproblem) is large (e.g., linear or more). Hence, a main research goal is to find
algorithms that take as few iterations as possible. This paper concerns the following
question: How many iterations (i.e., linear optimizations over the underlying polyhe-
dron P ) do Dantzig–Wolfe-type algorithms require in order to compute approximate
solutions to packing and covering problems? We give lower bounds (worst-case and
average-case) that match known worst-case upper bounds for a range of the relevant
parameters.

Definition of Dantzig–Wolfe-type algorithms for packing/covering. We start with
a formal definition of packing and covering.

Definition 1 (fractional packing and covering [31]). An instance of fractional
packing (or fractional covering) is a triple (A, b, P ), where A is in Rm×n, b is in Rm

+ ,
and P is a polyhedron in Rn such that Ax ≥ 0 for all x ∈ P . A feasible solution
is any member of the set {x ∈ Rn : Ax ≤ b, x ∈ P}. (For covering, the constraint
Ax ≤ b is replaced by Ax ≥ b.)

If such an x exists, the instance (A, b, P ) is called feasible. A (1+ ϵ)-approximate
solution is an x ∈ P such that Ax ≤ (1+ϵ)b (for covering, such that Ax ≥ b/(1+ϵ)).

Informally, a Dantzig–Wolfe-type algorithm, given a packing instance (A, b, P ),
computes a (1+ ϵ)-approximate solution, interacting with P only via linear optimiza-
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tions of the following form:

(1) Given some q ∈ Rn
+, find an x ∈ P minimizing qTx.

In our formal model, instead of P , the algorithm is given an optimization oracle for
P , defined as follows.

Definition 2 (Dantzig–Wolfe-type algorithm for packing). For any polyhedron
P ⊆ Rn

+, an optimization oracle XP for P is a function XP : Rn
+ → P such that, for

every input q ∈ Rn
+, the output x∗ = XP (q) satisfies x∗ ∈ P and qTx∗ = min{qTx :

x ∈ P}.
An algorithm is of Dantzig–Wolfe type if, for each triple (A, b,XP ) where (A, b, P )

is a packing instance and XP is an optimization oracle for P , the algorithm (given in-
put (A, b,XP )) either decides correctly that the input (A, b, P ) is infeasible or outputs
a (1 + ϵ)-approximate solution. The algorithm accesses P only by linear optimization
via XP : in each iteration, the algorithm computes one oracle input q ∈ Rn

+ and then
receives the oracle output XP (q).

For covering, the definition is the same, with “max” replacing “min”.
The oracle XP above models how most Dantzig–Wolfe-type algorithms in the

literature work and how they are analyzed: their analyses show that they finish within
the desired time bound given any optimization oracle XP for the polyhedron P . This
paper studies the limits of such algorithms, or, more precisely, such analyses. For
our lower bounds, all parts of the input (A, b,XP ), including XP , are chosen by an
adversary to the algorithm. Although the oracle XP is not completely determined by
the polyhedron P , the distinction between XP and P is a minor technical issue.1

In the Held–Karp computation (for bounding the optimal traveling salesman tour)
each oracle call XP (q) reduces to a minimum-spanning-tree computation with edge
weights given by q. For multicommodity-flow problems, each oracle call typically
reduces (depending on the underlying polyhedron) to either a shortest-path compu-
tation with edge weights given by q, a minimum-cost single-commodity-flow compu-
tation with edge costs given by q, or several such computations (one per commodity).

2. Main result: Lower bound on iteration complexity. Recall our main
question: How many iterations (i.e., oracle calls) does a Dantzig–Wolfe-type algorithm
require in order to compute a (1 + ϵ)-approximate solution to a packing and covering
problem? Each call reveals some information about P . The algorithm must force
the oracle to eventually reveal enough information to determine an x ∈ P such that
Ax ≤ (1 + ϵ)b. In the worst case (for an adversarial oracle), how many calls does
an optimal algorithm require? For fractional packing, the algorithm of [31] gives an
upper bound of

O(ρϵ−2 logm),

where ρ, the width of the input, is ρ(A, b, P ) = maxx∈P maxiAix/bi (where Ai denotes
the ith row of A). Our main result (Theorem 11) is a lower bound that matches this
upper bound for a range of parameters. Here is a simplified form of that lower bound.

Corollary 1 (iteration bound, simple form). For every δ ∈ (0, 1/2), there exist
positive kδ, cδ > 0 such that the following holds. For every two integers m,n ≥ kδ and

1The value of XP (q) is determined by the polyhedron P for all oracle inputs q ∈ Rn
+ except those

that happen to be orthogonal to an edge of P , for which min{qTx : x ∈ P} has multiple minima,
where XP (q) can break the tie arbitrarily.



ITERATIONS FOR DANTZIG–WOLFE APPROXIMATION 1157

every ρ ≥ 2, there exists an input (A, b,XP ) (packing or covering, as desired) having
m constraints, n variables, and width O(ρ) with the following property:

For every ϵ ∈ (0, 1/10), every deterministic Dantzig–Wolfe-type algorithm and
every Las Vegas–style2 randomized Dantzig–Wolfe-type algorithm requires at least

cδ ·min(ρ ϵ−2 logm, m1/2−δ, n)

iterations to compute a (1 + ϵ)-approximate solution, given input (A, b,XP ).
That is, for every δ ∈ (0, 1/2), the worst-case iteration complexity of every

Dantzig–Wolfe-type algorithm is at least Ωδ

(
min(ρ ϵ−2 logm, m1/2−δ, n)

)
. Here we

use the notation Ωδ to signify that the constant factor hidden by the Ω notation is
allowed to depend on δ (but no other parameters).

Section 4 sketches the proof idea. Section 6 gives a more detailed version (The-
orem 11) with a full proof. Theorem 11 shows that in fact the bound holds with
probability 1 − O(1/m2) for random inputs drawn from a natural class: the poly-
hedron P is the regular n-simplex, P = {x ∈ Rn

+ :
∑

i xi = 1}, and the constraint
matrix A is a random 0/1 matrix with independent and identically distributed (i.i.d.)
entries. The resulting problem instance (A, b, P ) is equivalent to finding an optimal
mixed strategy for the column player of the two-player zero-sum game with payoff
matrix A. (As a packing problem, the instance models the column player being the
min player; as a covering problem, it models the column player being the max player.)
The basic idea of the proof is to prove a corresponding lower bound on the minimum
support size of any (1 + ϵ)-approximate solution x̂ and then to argue that (for the
inputs in question) each iteration increases the support size of x̂ by at most 1.

Extending to products of polyhedra. Following one of the original models for
Dantzig–Wolfe decomposition, many algorithms in the literature specialize when the
polyhedron P is a Cartesian product P = P1× · · ·×PK of K polyhedra and optimiza-
tion over P decomposes into independent optimizations over the individual polyhedra
Pi. It is straightforward to extend our lower bound to this model by making A block-
diagonal, thus forcing each subproblem to be solved independently. Extended in this
way, the lower bound shows that the number of iterations (each optimizing over some

individual polyhedron Pi) must be Ω(
∑

imin(ϵ−2ρi logmi,m
1/2−δ
i , ni)), where poly-

hedron Pi has ni variables and width ρi, and A has mi constraints on Pi’s variables.
This lower bound matches known upper bounds (e.g., O(

∑
i ϵ

−2ρi logmi)) for a range
of the parameters.

2.1. Comparison with previous and related works. Recall the known up-
per bound of O(ρ ϵ−2 logm) iterations in the worst case (see, e.g., [31]). It follows
that the lower bound here is tight for a certain range of the parameters, roughly in the
regime ρϵ−2 ≪ min(

√
m,n). This suggests two directions for proving stronger upper

bounds. The first direction is to look for better upper bounds outside of the regime
ρϵ−2 ≪ min(

√
m,n). A few such bounds are known (e.g., O(min(ρ,m) ϵ−2 logm)

iterations [11, 36] and O(m(ϵ−2 + logm)) iterations [14]), but these leave a large
gap with respect to any known lower bound. The second direction is to consider
non-Dantzig–Wolfe-type algorithms, as discussed later.

Dantzig–Wolfe-type algorithms that allow approximate oracles. Many Dantzig–
Wolfe-type algorithms in the literature are known to work even if run with an ap-
proximate optimization oracle. Define a (1 + ϵ)-approximate oracle to be a function
X ′

P : Rn
+ → P such that, for all q ∈ Rn,

2An algorithm having zero probability of error.
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the output x′ = X ′
P (q) satisfies x′ ∈ P and qTx′ ≤ (1 + ϵ)min{qTx : x ∈ P}.

A typical analysis proves a worst-case performance guarantee such as the following: for
every input (A, b,X ′

P ) such that X ′
P is a (1+ ϵ/10)-approximate oracle, the algorithm

computes a correct output using O(ρ log(m)/ϵ2) oracle calls. A common motivation
is that approximate oracles can require less time per iteration, leading to faster total
run times.

Such an algorithm is, formally, of Dantzig–Wolfe-type per Definition 2. (The
reason is trivial: every exact optimization oracle XP per Definition 2 is also a valid
approximate oracle as defined above, so such an algorithm necessarily works with
every exact oracle as well.) Hence, the lower bounds in Corollary 1 and Theorem 11
apply to every such algorithm.

As we discuss next, our lower bounds imply that to obtain a better upper bound
requires not only (i) an algorithm that uses an optimization oracle that does something
other than pure linear optimization over P but also (ii) an analysis that makes use of
that additional requirement.

Non-Dantzig–Wolfe-type algorithms. To obtain better general upper bounds for
the parameter regime where the lower bound is tight, one has to consider non-Dantzig–
Wolfe-type algorithms. Indeed, since the appearance of the conference version of
this paper [22], researchers [6, 4, 19, 30] have built on the methods of Nesterov [29]
(see also Nemirovski [28]) to obtain polynomial-time approximation schemes whose
running times have better dependence on ϵ. These algorithms bypass the lower bound
by optimizing nonlinear convex functions instead of linear functions (or by linear
optimization over P but with side constraints).

Bienstock and Iyengar [4] give an algorithm that for a given ϵ > 0 and packing
input

{x ∈ Rn : Ax ≤ b, x ∈ P}

finds a (1+ ϵ)-approximate solution by using calls to a convex quadratic program over
a set of the form

{x ∈ P : ∀j. 0 ≤ xj ≤ λ},

where the value of λ can be adjusted by the algorithm in each iteration. Such an algo-
rithm violates the assumption of our lower bound in two ways: the objective function
is nonlinear, and the optimization takes place not over P but over the intersection
of P with a hypercube of specified side-lengths. Bienstock and Iyengar also give an
algorithm for covering; it similarly violates the assumptions of our lower bound. For
their algorithms, the number of iterations is bounded by O(ϵ−1

√
Kn logm), where K

is the maximum number of nonzero elements in any row of A. Each iteration calls
the quadratic-programming oracle.

How difficult is convex quadratic programming? Using the ellipsoid algorithm (see
[27, 15]), quadratic programming over an n-dimensional convex set can be reduced to
a polynomial number of calls to a linear-optimization oracle for that set. However, the
polynomial is quite large. Bienstock and Iyengar also show that it suffices to approxi-
mate the convex quadratic objective function by a piecewise linear objective function.
In either case, the required oracle is generally more expensive computationally than
linear optimization over the original convex set.

Bienstock and Iyengar illustrate their method with an application to variants of
multicommodity flow. Nesterov [30] also gives an approximation algorithm for a vari-
ant of multicommodity flow. In both cases, the number of iterations is proportional
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to ϵ−1 instead of ϵ−2. However, the dependence of the overall running time on the
size of the problem is worse, by a factor of at least the number of commodities.

Chudak and Eleutério build on the techniques of Nesterov to give an approxima-
tion scheme for a linear-programming relaxation of facility location [6]. The running

time of their algorithm is Õ((nm)3/2/ϵ), where nm is the number of facilities times the
number of clients. In contrast, a Dantzig–Wolfe-type algorithm can be implemented
to run in time Õ(N/ϵ2), where N ≤ nm is the input size—the number of (facility,
client) pairs with finite distance [37].

Iyengar, Phillips, and Stein [19] use the method of Nesterov to obtain approxi-
mation schemes for certain semidefinite programs. For problems previously addressed
using the method of Plotkin, Shmoys, and Tardos [31], their running times, while
proportional to ϵ−1, have worse dependence on problem size.

For the important special case when the polyhedron P is the positive orthant (e.g.,
problems of the form max{cTx : Ax ≤ b, x ≥ 0}), a recent breakthrough by Allen-Zhu
and Orecchia runs in Õ(N/ϵ) time for packing, or Õ(N/ϵ1.5) time for covering, where
N is the number of nonzeros in the constraint matrix [1]. The algorithms are not
Dantzig–Wolfe-type algorithms.

Does the regime in which the bound is tight contain interesting prob-
lems? Recall that the bound is tight in (roughly) the regime ρϵ−2 ≪ min(

√
m,n).

For some interesting classes of problems, the width ρ is either constant (for example,
zero-sum games with payoffs in [0, 1] and value bounded away from 0 and 1) or a
function of m and/or n that grows slowly (a celebrated recent example is for maxi-
mum flow in undirected graphs [5], in which, for n-node graphs, the width is Õ(n1/3)).
“Small width” problems such as these (with, say, constant ϵ) lie in the regime.

Related lower bounds. Khachiyan [20] proves an Ω(ϵ−1) lower bound on the num-
ber of iterations to achieve an error of ϵ. Grigoriadis and Khachiyan [13, Section 2.8]
observe that for the packing problem “find x ∈ ∆m such that Ix ≤ 1/m” (where
∆m is the m-simplex, I is the identity matrix, and 1 is the all-ones vector in Rm)
any 0.5-approximate solution x has to have support of size at least m/2, and that
this gives an m/2 lower bound on the number of oracle calls for any Dantzig–Wolfe-
type algorithm to return a 0.5-approximate solution. (Consider also that the covering
problem “find x ∈ ∆m such that Ix ≥ 1/m” requires at least m iterations to return
any approximate solution.) These inputs have large width, Θ(m), complementing our
lower bound.

Grigoriadis and Khachiyan [13, Section 3.3] generalize their observation above
to give a lower bound on the number of calls required by any algorithm in a class
they call restricted price-directed-decomposition (PDD). Their model, different from
the one studied here, focuses on product-of-polyhedra packing inputs of the form
x ∈ P = P1 × P2 × · · ·× PK and Ax ≤ b. In each iteration, the algorithm computes
a single vector y and the oracle returns an x ∈ P̂ minimizing (yTA)x, where P̂ =
{x ∈ P : ∀j. xj ≤ µj}, for some vector µ (subject, crucially, to restrictions on µ).
They show that any such algorithm must use at least min(m, k)/polylogm iterations
to compute a 0.5-approximate solution.

Freund and Schapire [10], in independent work in the context of learning theory,
prove a lower bound on the net “regret” of any adaptive strategy that plays repeated
zero-sum games against an adversary. Their proof is based on repeated random games.
They study a wider class of problems (giving the adversary more power), so their lower
bound does not apply to Dantzig–Wolfe-type algorithms as defined here.
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Sublinear-time randomized algorithms for explicit packing and covering. In the
special case of two-player zero-sum games with payoff matrix A where each payoff
Aij is in [0, 1], randomized algorithms can compute solutions with additive error ϵ in
sublinear time [12] (see also [23]). Deterministic algorithms cannot [12].

3. Small-support mixed strategies for zero-sum games. To prove the
lower bound on iteration complexity, we prove an analogous lower bound (Theo-
rem 8) on the minimum support size3 of any (1 + ϵ)-approximate mixed strategy x
for two-player zero-sum games.4 Here is a simplified form of the support-size lower
bound.

Corollary 2 (support bound, simple form). For every δ ∈ (0, 1/2), there exist
kδ > 0, cδ > 0 such that, for every two integers m,n ≥ kδ and every p ∈ (0, 1/2),
there exists a two-player zero-sum matrix game A with m rows, n columns, and value
Ω(p) having the following property:

For every ϵ ∈ (0, 1/10), every (1 + ϵ)-approximate mixed strategy for the column
player of A (as either the max player or the min player) has support size at least

cδ ·min(p−1 ϵ−2 logm, m1/2−δ, n).

Section 4 sketches the proof idea. Section 5 fully proves a more detailed version
(Theorem 8), showing that in fact the bound holds with probability 1 − O(1/m2)
when the payoff matrix A is a random 0/1 matrix with i.i.d. entries.

Matching upper bound. The lower bound in Theorem 8 matches (up to constant
factors) a previous small-support upper bound by Lipton and Young [26]: For ev-
ery two-player zero-sum game with payoffs in [0, 1] and value p, each player has a
(1 + ϵ)-approximate mixed strategy with support of size at most O(p−1ϵ−2 logm),
where m is the number of pure strategies available to the opponent. The proof is
simple.5 Derandomizing the proof via the method of conditional probabilities gives
a Dantzig–Wolfe-type algorithm to compute the (1 + ϵ)-approximate strategy using
O(p−1 ϵ−2 logm) oracle calls [35].

In the context of Nash equilibria, similar small-support upper bounds have sub-
sequently been shown and used for algorithmic upper bounds (see, e.g., [25, 8, 16]).

4. Proof ideas. This section sketches how a support-size bound (Corollary 2)
implies an iteration-complexity bound (Corollary 1) and how we prove a support-size
bound such as Corollary 2. See sections 5 and 6 for the more detailed theorems that
imply these corollaries, with detailed proofs based on the ideas sketched here.

How a support-size bound implies an iteration bound. We sketch the idea for
packing. The idea also works for covering. Fix the parameters m, n, ρ as in Corollary
1. Let probability p = 1/ρ. Let A be the m× n payoff matrix for any zero-sum game
with the properties described in Corollary 2.

3The support of x is the set {j : xj ̸= 0}.
4A mixed strategy for the column player of A is an x ∈ ∆n, where ∆n = {x ∈ Rn

+ :
∑

j xj = 1}
is the regular n-simplex. The expected payoff (or value) of x (for max as the column player) is
mini Aix. The value of the game A (with max as the column player) is maxx∈∆n mini Aix, i.e., the
maximum expected payoff of any mixed strategy. With min as the column player, the value of the
game is minx∈∆n maxi Aix. A (1 + ϵ)-approximate mixed strategy x is one whose expected payoff
is within a factor of 1 + ϵ of the value of the game.

5Consider a mixed strategy that plays a pure strategy chosen uniformly from a multiset S of s
pure strategies, where S is formed by sampling s times i.i.d. from the optimal mixed strategy. Use
a standard Chernoff bound and the union bound to show that this mixed strategy has the desired
properties with positive probability.
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Let Vmin(A) denote the value of the game with min (the min player) as the
column player. Let packing(A) denote the packing problem (A, b,∆n), where each
bi = Vmin(A) and ∆n = {x ∈ Rn

+ :
∑

j xj = 1} is the simplex. This is equivalent to
the zero-sum game with payoffmatrix A and min as the column player. Via this equiv-
alence, any (1+ ϵ)-approximate solution x̂ for packing(A) is also a (1+ ϵ)-approximate
mixed strategy for min as the column player of the game. Assuming Corollary 2,
any such solution x̂ must have support of size Ωδ(min(ρ ϵ−2 logm, m1/2−δ, n)), where
ρ = 1/p.

Whenever the Dantzig–Wolfe-type algorithm queries the oracle for ∆n, the oracle
can respond to the query q with a vertex of∆n. Each such vertex has just one nonzero
coordinate. For the algorithm to be correct, the final solution x̂ must be a convex
combination of these vertices, so the number of queries must be at least the size of
the support of x̂. To finish, note that the width of packing(A) is O(ρ) because the
width is 1/Vmin(A) = 1/Ω(p).

Proving the support-size bounds (e.g., Corollary 2). We sketch a proof of Corollary
2 when the column player is min. (The other case is similar.) Fix the parameters m,
n, p as in Corollary 2. Let ℓ = p−1ϵ−2 logm be the desired lower bound.

Take A to be a random 0/1 matrix with i.i.d. entries, where each entry Aij is 1
with probability p. W.h.p., the value of A is at least (1 − ϵ)p. (This is easily proven
by considering max’s uniform mixed strategy.) Now consider any subgame B of A
induced by just ℓ columns. The subgame B is highly skewed—there are many more
rows for max than columns for min—so, by a discrepancy argument, w.h.p., the value
of B is high: at least (1 + 3ϵ)p. (Here is a sketch of the discrepancy argument. B
is a random 0/1 matrix where each entry is 1 with probability p. Since the number
of rows m is much higher than the number of columns ℓ, w.h.p. B has a substantial
number of rows that have a relatively large number—at least (1+5ϵ)pℓ—of ones, and,
w.h.p., if max (the row player) plays uniformly on just these rows, max guarantees a
payoff of at least (1 + 3ϵ)p for the subgame B.)

Then subgame B has value at least (1+ 3ϵ)p, while A has value at most (1+ ϵ)p.
Since (1 + ϵ)2p < (1+3ϵ)p, no (1+ϵ)-approximate mixed strategy x̂ can be supported
by just the columns of B. By a union bound over the

(n
ℓ

)
submatrices B with ℓ

columns, w.h.p., there is no such B that can support any (1 + ϵ)-approximate mixed
strategy x̂, in which case there is no (1 + ϵ)-approximate strategy x̂ with support of
size ℓ.

This yields the corollary for any single ϵ ∈ (0, 1). To complete the argument, we
extend the bound to all ϵ ∈ (0, 1) simultaneously (for the given A) by applying the
single-ϵ case for ϵ in a geometrically increasing sequence {ϵ0, 2ϵ0, 4ϵ0, . . . , 1/10} and
then appealing to monotonicity for the remaining ϵ.

5. Theorem 8 (support bound). In the rest of this section, we state and
prove Theorem 8. Theorem 8 implies Corollary 2. We first give a few self-contained
utility lemmas. The first is a standard Chernoff bound, which we give without proof.

Lemma 3 (Chernoff bound). Let X be the average of t independent, 0/1 random
variables, each with expectation p ∈ (0, 1]. For every ϵ ∈ (0, 1],

(i) Pr[X ≤ (1 − ϵ)p] ≤ exp
(
−ϵ2pt/3);

(ii) Pr[X ≥ (1 + ϵ)p] ≤ exp
(
−ϵ2pt/3).

The next utility lemma states that the Chernoff bound above is tight up to con-
stant factors in the exponent, as long as the bound is below 1/e. That the Chernoff
bound is tight (in most cases) is standard folklore.
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Lemma 4 (tightness of Chernoff bound). Let X be the average of s independent,
0/1 random variables (r.v.). For every ϵ ∈ (0, 1/2] and p ∈ (0, 1/2], if ϵ2ps ≥ 3, the
following hold:

(i) If each r.v. is 1 with probability at most p, then Pr[X ≤ (1−ϵ)p] ≥ exp
(
−9ϵ2ps).

(ii) If each r.v. is 1 with probability at least p, then Pr[X ≥ (1+ϵ)p] ≥ exp
(
−9ϵ2ps).

A detailed proof is in the appendix.
The third utility lemma leverages the Chernoff bound to give straightforward

bounds on the likely value of random matrix games. Note that independence of the
entries of the matrix is assumed only within each individual row.

Lemma 5 (naive bounds on Vmax() and Vmin()). Let M be a random 0/1 r × c
payoff matrix such that within each row of M the entries are independent. Let ϵ, p ∈
(0, 1].

(i) If each entry of M is 1 with probability at least p, then

Pr
M
[Vmin(M

T) ≤ (1 − ϵ)p] = Pr
M
[Vmax(M) ≤ (1− ϵ)p] ≤ r exp(−c ϵ2p/3).

(ii) If each entry of M is 1 with probability at most p, then

Pr
M
[Vmax(M

T) ≥ (1 + ϵ)p] = Pr
M
[Vmin(M) ≥ (1 + ϵ)p] ≤ r exp(−c ϵ2p/3).

Proof. (i) The equality in (i) holds because, by von Neumann’s min-max theorem
(strong LP duality), Vmin(M T) = Vmax(M). We prove the inequality. Max can play
a uniform mixed strategy on the c columns. By the Chernoff bound, the probability
that any given row then gives min expected payoff less than (1 − ϵ)p is at most
exp(−ϵ2pc/3). By the union bound, the probability that any of the r rows gives min
expected payoff less than (1− ϵ)p is at most r exp(−ϵ2pc/3).

(ii) The proof is similar (min can play a uniform mixed strategy on the c
columns).

The next lemma uses the discrepancy argument outlined in the proof sketch in
section 4 to quantify the disadvantage to the column player for playing a random
game with many fewer columns than rows. The reader may wish to review Figure 2
for the notation.

Lemma 6 (skewed game 1). Let B be a random 0/1 m× s payoff matrix whose
entries are i.i.d., each being 1 with probability p ∈ (0, 1/2]. Let ϵ ∈ (0, 1/10]. Assume
that ϵ2ps ≥ 1. Then, for t = m exp(−250ϵ2ps), and β = s exp(−ϵ2tp/15),

(i) PrB[Vmax(B) ≥ (1− 3ϵ)p] ≤ 2β;

(ii) PrB [Vmin(B) ≤ (1 + 3ϵ)p] ≤ 2β.
(When we apply the bound, s will be chosen so that t is large and β is small.)
Proof. (i) Let D be the submatrix formed by the ⌈t/2⌉ rows of B that have the

fewest ones, as shown in Figure 1. Say that a row of B is deviant if the average
of its entries is at most p′ = (1 − 5ϵ)p. We claim that the probability that D has a
nondeviant row is at most β.

To prove the claim, let r.v. d be the number of deviant rows in B. By Lemma
4 (tightness of the Chernoff bound, with ϵ′ = 5ϵ, using here the assumption that
ϵ2ps ≥ 1 and that ϵ ≤ 1/10), the probability that a given row of B is deviant is
at least exp(−9(5ϵ)2ps) ≥ t/m (by the choice of t). Thus, by the choice of t, the
expected number of deviant rows is at least t. Since the rows of B are independent,
by the Chernoff bound (with ϵ = 1/2), the probability that d ≤ t/2 is at most
exp(−(1/2)2t/3) = exp(−t/12), which (using ϵ ≤ 1/10, p ≤ 1/2, and s ≥ 1) is less
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m

s

t/2

B

D

MAX or MIN
plays columns

other
player
 plays
 rows

Fig. 1. Given skewed matrix B, submatrix D contains the t/2 rows with the most (or least)
1’s. By playing uniformly on the rows of D, max (or min) forces value at most (1−3ϵ)p (or at least
(1 + 3ϵ)p) w.h.p..

than β = s exp(−ϵ2tp/15). This proves the claim because if d > t/2, then all rows in
D are deviant.

Conditioned on all ⌈t/2⌉ rows in D being deviant, within each row of D, by
symmetry, the probability that any given entry equals 1 is at most p′ = (1 − 5ϵ)p.
Also, within any column of D the entries are independent. Thus, part (ii) of Lemma
5 (the naive bounds) applied to the value of the transpose, Vmin(DT), implies that
PrB[Vmin(DT) ≥ (1 + ϵ)p′ | all rows of D are deviant ] is at most s exp(−(t/2)ϵ2p′/3),
which (using ϵ ≤ 1/10 and the choice of p′) is at most β = s exp(−ϵ2tp/15).

The latter bound and previous claim imply that, unconditionally, PrB[Vmin(DT) ≥
(1 + ϵ)p′] is at most β + (1− β)β, which is less than 2β.

By von Neumann’s min-max theorem, Vmax(D) = Vmin(DT). Since D consists
of a subset of B’s rows and min is the row player, Vmax(B) ≤ Vmax(D). Tran-
sitively, Vmax(B) ≤ Vmin(DT). With the preceding paragraph, this implies that
PrB[Vmax(B) ≥ (1+ϵ)p′] is at most 2β. To finish, note that (1+ϵ)p′ = (1+ϵ)(1−5ϵ)p≤
(1− 3ϵ)p, as ϵ ≤ 1/5.

(ii) Say that a row of B is deviant if the average of its entries is at least p′ =
(1+5ϵ)p. Let D be the ⌈t/2⌉ rows of B with the most ones. Now proceed exactly as in
part (i). To finish, note that (1− ϵ)p′ = (1− ϵ)(1+5ϵ)p ≥ (1+ 3ϵ)p, as ϵ ≤ 1/5.

We use Lemma 6 only to prove the next lemma, which just specializes it to a
convenient choice of s (the number of columns). Namely, we take s = ⌊4ℓ⌋, where
ℓ = δ p−1ϵ−2 ln(m)/ 1000 is the lower bound we will seek later.

Lemma 7 (skewed game 2). Let B be a random m× s 0/1 payoff matrix whose
entries are i.i.d., each entry being 1 with the same probability p ∈ (0, 1/2]. Let ϵ ∈
(0, 1/10] and δ ∈ (0, 1/2). Let s = ⌊δ ln(m)/ 250ϵ2p⌋. Assume that s ≤ m1/2−δ, that
n ≤ m1/δ, and that m is sufficiently large (exceeding some constant that depends only
on δ). Then

(i) PrB[Vmax(B) ≥ (1− 3ϵ)p] ≤ 1/n2s;

(ii) PrB [Vmin(B) ≤ (1 + 3ϵ)p] ≤ 1/n2s.

Proof. We check the technical assumptions necessary to apply Lemma 6 and
check that the upper bound from that lemma implies the upper bound claimed in
this lemma. By inspection of s, the condition ϵ2ps ≥ 1 of Lemma 6 is satisfied for
m = exp(Ω(1/δ)). To finish, we show, for this s and t = m exp(−250ϵ2ps) from
Lemma 6, that the upper bound 2s exp(−ϵ2tp/15) from that lemma is at most 1/n2s

(for large enough m).

If s = 0, the corollary is trivial, so assume without loss of generality that s ≥ 1.
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given parameters

m = number of constraints (rows)
n = number of variables (columns)
δ = constant in (0,1/2)
ρ = approximate width, ρ ≥ 2
p = 1/ρ = Pr[Aij = 1], p ∈ (0, 1/2)

determined from given

A = m× n, 0/1 matrix w/ i.i.d. entries
packing(A) = “find x ∈ ∆n minimizing maxi Ax”
covering(A) = “find x ∈ ∆n maximizing mini Ax”

Vmin(A) = value of game A if min plays cols
Vmax(A) = value of game A if max plays cols

Fig. 2. Notation for Theorems 8 and 11.

Then

δ ln(m)/ 500ϵ2p ≤ s ≤ δ ln(m)/ 250ϵ2p By the choice of s and s ≥ 1.(2)

t ≥ m1−δ By substituting the right-hand
side (RHS) of (2) for s in the
definition of t and simplifying.

(3)

m1−2δ ≥ s2 Squaring both sides of
assumption s ≤ m1/2−δ .

(4)

m1−δ ≥ 50× 500m1−2δ/δ2 For sufficiently large m
(depending only on δ).

(5)

m1−δ ≥ 50× 500 s2/δ2 Substituting RHS of (4) for
m1−2δ in (5).

(6)

t ≥ 50× 500 s2/δ2 By transitivity on (3) and (6).(7)

t ≥ 50s ln(m)/δϵ2p By substituting the left-hand side
(LHS) of (2) for one s in (7) and
simplifying.

(8)

t ≥ 15[2s ln(m)/δ + ln 2s]/ϵ2p By (8) and calculation for large
enough m.

(9)

t ≥ 15[2s lnn+ ln 2s]/ϵ2p

= 15 ln(2sn2s)/ϵ2p

By (9) and assumption n ≤ m1/δ ,
that is, lnn ≤ ln(m)/δ.

(10)

ϵ2tp/15 ≥ ln(2sn2s) Rearranging (10).(11)

2s exp(−ϵ2tp/15) ≤ 1/n2s By (11), taking exponentials and
rearranging.

This concludes the utility lemmas. Next we state and prove Theorem 8.

Theorem 8 (support-size bound). For every constant δ ∈ (0, 1/2), there exists
constant kδ > 0 such that the following holds. Fix arbitrary integers m,n > kδ and
arbitrary p ∈ (0, 1/2). Let ϵ0 be such that p−1 ϵ−2

0 ln(m) = min(m1/2−δ, n/9). Assume
n ≤ m1/δ and ϵ0 ≤ 1/10. Let A be a random m × n 0/1 matrix with i.i.d. entries,
where each entry Aij is 1 with probability p. Then, with probability 1−O(1/m2),

1. both Vmax(A) and Vmin(A) lie in the interval [(1− ϵ0)p, (1 + ϵ0)p], and
2. for all ϵ ∈ [ϵ0, 1/10], every (1 + ϵ)-approximate mixed strategy for the column

player (as Min or as Max) has support of size at least δ p−1 ϵ−2 ln(m) / 1000.
Proof. All probabilities in the proof are with respect to the random choice of A.
Part 1, bounds on Vmin(A) and Vmax(A): By the naive bound (Lemma 5), the

probability that either Vmin(A) or Vmax(A) falls either before or after the interval is
at most

2m exp(−n ϵ20 p/3) + 2n exp(−m ϵ20 p/3).

The first of the two terms is at most 2/m2 because the definition of ϵ0 implies ϵ20 p ≥
9 ln(m)/n.
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Likewise, the second of the first two terms is at most 2/m2 because, using the
definition of ϵ0 again, ϵ20 p ≥ m1/2−δ, so

m ϵ20 p ≥ m1/2+δ ≥ m1/2 ≥ 3 lnn + 6 lnm

(using that m is large enough so that 0.9
√
m ≥ 3δ−1 lnm ≥ 3 lnn and 0.1

√
m ≥

6 lnm).
Part 2. Define r.v. S∗

min(ϵ) to be the minimum support size of any mixed strategy
that achieves value (1 + ϵ)p or less for min as the column player of A. Analogously
let S∗

max(ϵ) be the minimum support size that achieves value at least (1− ϵ)p for max
as the column player.

Next we use the skewed-game lemma (Lemma 7) and the union bound to bound
the probability that either player (playing the columns of A) has a good strategy with
small support. Let ℓ(ϵ) = δ p−1ϵ−2 ln(m)/1000 denote the desired lower bound on the
support size for a given ϵ.

Observation 8.1. Let ϵ ∈ [ϵ0, 1/10]. Let s = ⌊4 ℓ(ϵ)⌋ = ⌊δ ln(m)/ 250ϵ2p⌋. If
s ≤ m1/2−δ and n ≤ m1/δ, then

(i) PrA[S∗
max(3ϵ) ≤ s] ≤ 1/ns, and

(ii) PrA[S∗
min(3ϵ) ≤ s] ≤ 1/ns.

(Note that S∗
max(3ϵ) ≤ s iff ma]x can get value (1− 3ϵ)p or more using at most s

columns.)
Proof. (i) If max has a mixed strategy with support of size s that has value at

least (1− 3ϵ)p, then A has an m× s submatrix B with Vmax(B) ≥ (1− 3ϵ)p.
Consider all

(n
s

)
possible such submatrices B. By Lemma 7, given any one of these

submatrices B, the probability of Vmax(B) ≥ (1− 3ϵ)p is at most 1/n2s. Thus, by the
union bound, the probability that any such submatrix B of A has Vmax(B) ≥ (1−3ϵ)p
is at most

(
n
s

)
/n2s ≤ 1/ns.

The proof for (ii) is essentially the same.
Observation 8.1 bounds the probability of failure for a single given ϵ. We want

to show that w.h.p. the bound holds for all ϵ ∈ (0, 1/10] simultaneously. We start
by considering a sequence Q of geometrically increasing ϵ values: Q = {2iϵ0 : i =
0, 1, 2, . . . , ⌊log2(0.1/ϵ0)⌋}.

The maximum ϵ in Q is just less than 0.1.
Observation 8.2. With probability 1 − O(1/m2), for all ϵ ∈ Q, support of size

4ℓ(ϵ) is necessary for max to achieve value (1 − 3ϵ)p or for min to achieve value
(1+3ϵ)p. Specifically, for n and m large enough (as a function of δ), with probability
1−O(1/m2), for all ϵ ∈ Q, S∗

max(3ϵ) > 4 ℓ(ϵ) and S∗
min(3ϵ) > 4 ℓ(ϵ).

Proof. By Observation 8.1, for every ϵ in the set Q, the probability of the event
S∗
max(3ϵ) ≤ 4 ℓ(ϵ) is at most 1/n⌊4ℓ(ϵ)⌋. By the union bound, the probability that there

exists an ϵ ∈ Q with S∗
max(3ϵ) ≤ 4 ℓ(ϵ) is at most

∑
ϵ∈Q 1/n⌊4ℓ(ϵ)⌋. Using that ℓ(2iϵ0) =

ℓ(ϵ0)/4i for i ≥ 0 and the definition of Q, this sum is at most
∑∞

i=0 1/n
⌊4iℓ(0.1)⌋. The

terms in this sum decrease supergeometrically, so the sum is proportional to its first
term, which is at most 1/nδ ln(m)/10p−1, which is O(1/m2) as long as n and m are
large enough (as a function of δ).

The proof for min is similar.
To complete the proof of Theorem 8, we extend the previous observation to all

ϵ ∈ [ϵ0, 1/10].
Observation 8.3. With probability 1−O(1/m2), for all ϵ ∈ [ϵ0, 1/10], support of

size ℓ(ϵ) is necessary for max to achieve value (1− 3ϵ)p and for min to achieve value
(1+3ϵ)p. Specifically, for n and m large enough (as a function of δ), with probability
1−O(1/m2), for all ϵ ∈ [ϵ0, 1/10], S∗

max(3ϵ) > ℓ(ϵ) and S∗
min(3ϵ) > ℓ(ϵ).



1166 PHILIP KLEIN AND NEAL E. YOUNG

Proof. We show that if the event in Observation 8.2 happens, then the event de-
sired above happens. Assume the former event happens, i.e., for all ϵ′ ∈ Q, S∗

max(3ϵ
′) >

4 ℓ(ϵ′).
Now consider any ϵ ∈ [ϵ0, 1/10]. By the choice of Q, there is some ϵ′ ∈ Q such

that ϵ ∈ (ϵ′/2, ϵ′]. Then we have
(i) S∗

max(3ϵ) ≥ S∗
max(3ϵ

′) (since S∗
max(·) is monotone decreasing and ϵ ≤ ϵ′),

(ii) S∗
max(3ϵ

′) ≥ 4 ℓ(ϵ′) (since ϵ′ ∈ Q), and
(iii) ℓ(ϵ′) > ℓ(ϵ)/4 (by the definition of ℓ(·) and ϵ > ϵ′/2).

By transitivity, we conclude that S∗
max(3ϵ) > ℓ(ϵ) for all ϵ ∈ [ϵ0, 1/10].

The proof for S∗
min(ϵ) is similar.

We now finish the proof of Theorem 8, part (2). From part 1 of the theorem, with
probability 1−O(1/m2), for all ϵ ∈ [ϵ0, 1/10], to achieve (1 + ϵ)-approximation, max
must achieve absolute value at least (1 − ϵ0)p/(1 + ϵ) ≥ (1 − 3ϵ)p. By Observation
8.3, with probability 1 − O(1/m2), for all ϵ ∈ [ϵ0, 1/10], support size at least ℓ(ϵ) is
needed for max to achieve this absolute value. By the union bound, with probability
1 − O(2/m2), every (1 + ϵ)-approximate strategy for max has support size at least
ℓ(ϵ). By a similar argument (using (1 + ϵ0)(1 + ϵ)p ≤ (1 + 3ϵ)p), with probability
1−O(1/m2), every (1+ ϵ)-approximate strategy for min also has support size at least
ℓ(ϵ). This completes the proof of Theorem 8.

Before we prove Theorem 11, we observe that Corollary 2 is indeed just a simplified
(and somewhat weaker) statement of Theorem 8.

Proof of Corollary 2. Fix any δ, m, n, and p as in the corollary. (Take kδ in the
corollary to be the same as in the theorem.) Assume without loss of generality that
n ≤ m1/δ. (Otherwise, decrease n to n′ = ⌊m1/δ⌋ ≥ m2, apply the corollary to get
a game with m× n′ payoff matrix A′, and then duplicate any of the columns n− n′

times to get an equivalent m× n game with the desired properties.)
Redefine ℓ(ϵ) = p−1ϵ−2 logm. Fix ϵ0 as in the theorem. The choice of ϵ0 im-

plies ℓ(ϵ0) = Θ(min(m1/2−δ, n)), so the support bound desired for the corollary is
equivalent to the following:
∀ ϵ ∈ (0, 1/10], any (1 + ϵ)-approximate mixed strategy has support size Ωδ

(
ℓ
(
max(ϵ0, ϵ)

))
.

Assume without loss of generality that ϵ0 ≤ 1/10. (If ϵ0 > 1/10, raise p until the
corresponding ϵ0 decreases to 1/10; the corollary for the smaller p follows from the
corollary for the larger p because in both cases the lower bound in question is the
same: Ωδ(min(m1/2−δ, n)) for all ϵ ∈ (0, 1/10).)

Now we have ϵ0 ≤ 1/10 and n ≤ m1/δ. Applying Theorem 8, there are (many)
m × n zero-sum matrix games with value Ω(p) such that, for all ϵ ∈ [ϵ0, 1/10], any
(1 + ϵ)-approximate strategy for the column player requires support of size at least
Ωδ(ℓ(ϵ)). To finish, note that, for the remaining ϵ ∈ (0, ϵ0], any (1 + ϵ)-approximate
strategy is also a (1 + ϵ0)-approximate strategy, so it must have support size at least
Ωδ(ℓ(ϵ0)) = Ωδ(min(m1/2−δ, n)), proving the corollary.

6. Theorem 11 (iteration bound). Before we state and prove Theorem 11, we
prove two utility lemmas. The first says that the output x̂ of any Dantzig–Wolfe-type
algorithm has to be a convex combination of the vectors output by the oracle.

Lemma 9. Suppose that a deterministic Dantzig–Wolfe-type algorithm, given
some input (A, b,XP ), returns a solution x̂ ∈ P . Then x̂ must be a convex combination
of the outputs returned by the oracle XP during the computation. The same holds if
the algorithm is randomized (and has zero probability of error).

Proof. First we consider the deterministic case. Let Q denote the set of oracle
inputs generated by the algorithm on input (A, b,XP ). Define polyhedron P ′ ⊆ P to
be the convex hull of the vectors output by XP during the algorithm. That is, P ′ is
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the polyhedron whose vertices are {XP (q) : q ∈ Q}. Suppose for contradiction that
x̂ ̸∈ P ′, and consider the modified input (A, b, P ′), with polyhedron P ′ instead of P .
Define the oracle X ′

P ′ for the polyhedron P ′ such that X ′
P ′(q) outputs a minimizer of

qTx among x ∈ P ′. For q ∈ Q, break any ties among the minimizers for q by choosing
X ′

P ′(q) = XP (q). This X ′
P ′ optimizes correctly over P ′. Observe that it also has the

following key property: Let q ∈ Q be any input that the algorithm gave to oracle XP

on input (A, b,XP ). Then, on input q, oracle X ′
P ′ gives the same output, XP (q), that

XP did.
Consider rerunning the Dantzig–Wolfe-type algorithm, this time on the input

(A, b,X ′
P ′). The Dantzig–Wolfe-type algorithm is deterministic, and, as observed

above, XP (q) = X ′
P ′(q) for all inputs q ∈ Q that the algorithm gave to the oracle

when the algorithm ran on input (A, b,XP ). Recall that the algorithm interacts with
the polyhedron only via the oracle (XP or X ′

P ′). By induction on the number of
queries, when run on (A, b,X ′

P ′), the algorithm behaves the same—that is, it makes
the same sequence of queries and computes the same final answer x̂—as it did when
run on (A, b,X ′

P ′). But this is an incorrect output, as x̂ is not in the polyhedron P ′

for the second input. This proves the lemma for the deterministic case.
Now consider running any (error-free) randomized Dantzig–Wolfe-type algorithm

on (A, b,XP ). Suppose for contradiction that the algorithm has nonzero probability
of producing an output x̂ that is not a convex combination of the oracle outputs made
during the run. Fix any such outcome that has positive probability, say p′ > 0. Let
Q, P ′, and X ′

P ′ be as in the proof above, and consider running the algorithm on input
(A, b,X ′

P ′). With probability at least p′, the algorithm will make the same random
choices that it made in the first run. When this happens, then (as in the proof for the
deterministic case) it returns the same vector x̂, which is (just as for the deterministic
case) an error, because x̂ ̸∈ P ′. Hence, the algorithm has positive probability of error
on input (A, b,X ′

P ′).
The next lemma is a convenient restatement of Theorem 8 in terms of packing(A)

and covering(A).
Lemma 10. For every constant δ ∈ (0, 1/2), there exists constant kδ > 0 such

that the following holds. Fix any integers m,n > kδ and any desired width ρ ≥ 2. Let
ϵ0 be such that ρ ϵ−2

0 ln(m) = min(m1/2−δ, n/9). Assume n ≤ m1/δ and ϵ0 ≤ 1/10.
Let A be a random m × n 0/1 matrix with i.i.d. entries, where each entry Aij is 1
with probability p = 1/ρ. Then, with probability 1−O(1/m2), for both packing(A) and
covering(A),

1. the instance has width at most 2ρ;
2. for all ϵ ∈ [ϵ0, 1/10], every (1 + ϵ)-approximate solution has support size at

least

δ ρ ϵ−2 ln(m) / 1000.
Proof. Note that we take p = 1/ρ.
The (1+ϵ)-approximate solutions to packing(A) and covering(A) are, respectively,

the (1 + ϵ)-approximate mixed strategies for min and max (as the column player of
the game with payoff matrix A). Thus, part 2 of Theorem 8 implies part 2 of the
lemma.

Regarding part 1 of the lemma, suppose that part 1 of the theorem holds, so
Vmin(A) and Vmax(A) are both at least (1−ϵ0)p. By definition of packing(A), each bi is
Vmin(A), so the width is maxx,iAix/Vmin(A), where x ranges over the simplex. Since
A is a 0/1 matrix and

∑
j xj = 1 (and A is not all zeros, as Vmin(A) ≥ (1− ϵ0)p > 0),

we have maxx,iAix = maxij Aij = 1, so the width is 1/Vmin(A) ≤ 2/p = 2ρ. The
same argument shows that covering(A) has width 1/Vmax(A) ≤ 2ρ.
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Next we state and prove Theorem 11.
Theorem 11 (iteration bound). For every constant δ ∈ (0, 1/2), there exists

constant kδ > 0 such that the following holds. Fix arbitrary integers m,n > kδ and
an arbitrary desired width ρ ≥ 2. Let ϵ0 be such that ρ ϵ−2

0 ln(m) = min(m1/2−δ, n/9).
Assume n ≤ m1/δ and ϵ0 ≤ 1/10. Let A be a random m × n 0/1 matrix with i.i.d.
entries, where each entry Aij is 1 with probability p = 1/ρ. Then, with probability
1−O(1/m2), for both packing(A) and covering(A),

1. the instance has width at most 2ρ;
2. for all ϵ ∈ [ϵ0, 1/10], all deterministic Dantzig–Wolfe-type algorithms and

all Las Vegas–style randomized Dantzig–Wolfe-type algorithms must make at least
δ ρ ϵ−2 ln(m) / 1000 iterations to find a (1 + ϵ)-approximate solution.

Proof. Fix any values of the parameters δ,m, n, ρ, p = 1/ρ. Let A be as described.
Assume the events 1 and 2 in Lemma 10 happen for A (as they do with probability
1−O(1/m2)).

Part 1. Part 1 of the theorem is immediate from event 1 of Lemma 10.

Part 2. Let ej denote the jth standard basis vector for Rn, that is, the vector
that is 1 in the jth coordinate and zero elsewhere, so that the set of vertices of ∆n is
{ej : j ∈ [n]}.

Fix any oracle Xn whose output Xn(q) for each input q is some vertex ej of
∆n (one minimizing qTej ; breaking ties consistently). For any ϵ ∈ [ϵ0, 1/10], run the
(deterministic or randomized) Dantzig–Wolfe-type algorithm on input (A, b,Xn). Let
x̂ be the (1 + ϵ)-approximate solution it returns.

By Lemma 9, x̂ is a convex combination of the vectors returned by the oracle.
Each such vector has just one nonzero coordinate. Thus, the number of nonzero
coordinates in x̂ is at most the number of iterations made by the algorithm. On the
other hand, x̂ is a (1+ϵ)-approximate solution, so by event 2 of Lemma 10, the number
of nonzero coordinates is at least the desired lower bound δ ρ ϵ−2 ln(m) / 1000.

Finally, we observe that Corollary 1 is indeed just a simplified and somewhat
weaker statement of Theorem 11. The proof is identical to the proof that Corollary 2
follows from Theorem 8.

Proof of Corollary 1. Fix any δ, m, n, and p as in the corollary. (Take kδ in the
corollary to be the same as in the theorem.) Assume without loss of generality that
n ≤ m1/δ. (Otherwise, decrease n to n′ = ⌊m1/δ⌋ ≥ m2, apply the corollary to get
m × n′ packing or covering instances, and then duplicate any of the columns n − n′

times to get equivalent m× n instances with the desired properties.)

Let ℓ(ϵ) = p−1ϵ−2 logm. Fix ϵ0 as in the theorem. As ℓ(ϵ0) = Θ(min(m1/2−δ, n)),
the support bound desired for the corollary is equivalent to

∀ϵ ∈ (0, 1/10], any (1 + ϵ)-approximate solution has support size Ωδ

(
ℓ
(
max(ϵ0, ϵ)

))
.

Assume without loss of generality that ϵ0 ≤ 1/10. (If ϵ0 > 1/10, lower ρ until
the corresponding ϵ0 decreases to 1/10; the corollary for the larger ρ follows from the
corollary for the smaller ρ because in both cases the lower bound in question is the
same: Ωδ(min(m1/2−δ, n)) for all ϵ ∈ (0, 1/10).)

Now we have ϵ0 ≤ 1/10 and n ≤ m1/δ. Applying Theorem 11, there are (many)
m × n packing/covering instances with width O(ρ) such that, for all ϵ ∈ [ϵ0, 1/10],
every (1 + ϵ)-approximate solution has support of size at least Ωδ(ℓ(ϵ)). To finish,
note that, for the remaining ϵ ∈ (0, ϵ0], any (1 + ϵ)-approximate solution is also
a (1 + ϵ0)-approximate solution, so it must have support size at least Ωδ(ℓ(ϵ0)) =
Ωδ(min(m1/2−δ, n)), proving the corollary.
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Appendix. Lemma 4 (tightness of Chernoff bound). Here is the proof
of Lemma 4—that a standard Chernoff bound is tight up to constant factors in the
exponent for a particular range of the parameters (in particular, whenever the vari-
ables are 0 or 1, and 1 with probability 1/2 or less, and ϵ ∈ (0, 1/2), and the Chernoff
upper bound is less than a particular constant). First we prove the following useful
inequality.

Lemma 12. If 1 ≤ ℓ ≤ k − 1, then
(
k

ℓ

)
≥ 1

e
√
2πℓ

(k
ℓ

)ℓ( k

k − ℓ

)k−ℓ

.

Proof. By Stirling’s approximation, i! =
√
2πi(i/e)ieλ, where λ ∈ [ 1

12i+1 ,
1
12i ].

Thus,
(
k
ℓ

)
is

k!

ℓ!(k − ℓ)!
≥

√
2πk (ke )

k

√
2πℓ ( ℓe)

ℓ √
2π(k − ℓ) (k−ℓ

e )
k−ℓ

exp
( 1

12k + 1
− 1

12ℓ
− 1

12(k − ℓ)

)

≥ 1√
2πℓ

(k
ℓ

)ℓ( k

k − ℓ

)k−ℓ

e−1.

Lemma 4 (tightness of Chernoff bound). Let X be the average of s independent,
0/1 random variables (r.v.). For every ϵ ∈ (0, 1/2] and p ∈ (0, 1/2], if ϵ2ps ≥ 3, the
following hold:

(i) If each r.v. is 1 with probability at most p, then Pr[X ≤ (1−ϵ)p] ≥ exp
(
−9ϵ2ps).

(ii) If each r.v. is 1 with probability at least p, then Pr[X ≥ (1+ϵ)p] ≥ exp
(
−9ϵ2ps).

Proof. Part (i). Without loss of generality assume each 0/1 random variable in
the sum X is 1 with probability exactly p. Note that Pr[X ≤ (1− ϵ)p] equals the sum∑⌊(1−ϵ)pk⌋

i=0 Pr[X = i/k], and Pr[X = i/k] =
(
k
i

)
pi(1− p)k−i.

Fix ℓ = ⌊(1− 2ϵ)pk⌋+ 1. The terms in the sum are increasing, so the terms with
index i ≥ ℓ each have value at least Pr[X = ℓ/k], so their sum has total value at least
(ϵpk − 2)Pr[X = ℓ/k]. To complete the proof, we show that

(ϵpk − 2)Pr[X = ℓ/k] ≥ exp(−9ϵ2pk).

The assumptions ϵ2pk ≥ 3 and ϵ ≤ 1/2 give ϵpk ≥ 6, so the left-hand side above

is at least 2
3ϵpk

(k
ℓ

)
pℓ(1− p)k−ℓ. Using Lemma 12 to bound

(k
ℓ

)
, this is in turn at least

AB, where A = 2
3e ϵpk/

√
2πℓ and B =

(
k
ℓ

)ℓ( k
k−ℓ

)k−ℓ
pℓ(1− p)k−ℓ. To finish we show

that A ≥ exp(−ϵ2pk) and B ≥ exp(−8ϵ2pk).
Observation 4.1. A ≥ exp(−ϵ2pk).
Proof. The assumption ϵ2pk ≥ 3 implies exp(−ϵ2pk)≤ exp(−3) ≤ 0.04. To finish

we show A ≥ 0.1:

12 ≤ pk By assumptions ϵ2pk ≥ 3 and
ϵ ≤ 1/2.

(12)

ℓ ≤ 1.1pk From (12) and ℓ ≤ pk+ 1 (from
ℓ’s definition).

(13)

A ≥ 2

3e
ϵ
√
pk/2.2π Using (13) to substitute for ℓ in

definition of A.
(14)

A ≥ 2

3e

√
3/2.2π ≥ 0.1 From (14) and ϵ

√
pk ≥

√
3 (from

ϵ2pk ≥ 3).
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Observation 4.2. B ≥ exp(−8ϵ2pk).
Proof. Fix δ such that ℓ = (1 − δ)pk. The choice of ℓ implies δ ≤ 2ϵ, so the

observation will hold as long as B ≥ exp(−2δ2pk). Taking each side of this latter
inequality to the power −1/ℓ and simplifying, it is equivalent to

ℓ

pk

( k − ℓ

(1 − p)k

)k/ℓ−1

≤ exp
(2δ2pk

ℓ

)
.

Substituting ℓ = (1− δ)pk and simplifying, it is equivalent to

(1− δ)
(
1 +

δp

1− p

)
1

(1− δ)p
− 1

≤ exp
( 2δ2

1− δ

)
.

Taking the logarithm of both sides and using ln(1 + z) ≤ z twice, it will hold as long
as

−δ +
δp

1− p

( 1

(1− δ)p
− 1

)
≤ 2δ2

1− δ
.

The left-hand side above simplifies to δ2/ (1−p)(1− δ), which is less than 2δ2/(1− δ)
because p ≤ 1/2.

Observations 4.1 and 4.2 imply AB ≥ exp(−ϵ2pk) exp(−8ϵ2pk). This implies part
(i) of Lemma 4.

Part (ii). Without loss of generality assume each random variable is 1 with
probability exactly p.

Note Pr[X ≥ (1 + ϵ)p] =
∑n

i=⌈(1−ϵ)pk⌉ Pr[X = i/k]. Fix ℓ̂ = ⌈(1 + 2ϵ)pk⌉ − 1.

The last ϵpk terms in the sum total at least (ϵpk − 2)Pr[X = ℓ̂/k], which is at
least exp(−9ϵ2pk). (The proof of that is the same as for (i), except with ℓ replaced
by ℓ̂ and δ replaced by −δ̂ such that ℓ̂ = (1 + δ̂)pk.)
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