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Abstract  

The traditional multi-commodity flow problem assumes a given flow net- 
work in which multiple commodities are to be maximally routed in response to 
given demands. This paper considers the multi-commodity flow network-desigu 
problem: given a set of multi-commodity flow demands, find a network subject 
to certain constraints such that the commodities can be maximally routed. 

This paper focuses on the case when the network is required to be a tree. 
The main result is an approximation algorithm for the case when the tree is 
required to be of constant degree. The algorithm reduces the problem to the 
minimum-weight balanced-separator problem; the performance guarantee of the 
algorithm is within a factor of 4 of the performance guarantee of the balanced- 
~parator procedure. If Leighton and P~o's balanced-separator proced'~-e is 
used, the performance guarantee is O(logn). 

1 I n t r o d u c t i o n  

Let a graph G = (V, E) represent multicommodity flow demands: the weight of each 
edge e = {a, b} represents the demand of a distinct commodity to be transported 
between the sites a and b. Our goal is to design a network, in which the vertices of 
G will be embedded, and to route the commodities in the network. The maximum 
capacity edge of the network should be low in comparison to the best possible in any 
network meeting the required constraints. For example, the weight of each edge could 
denote the expected rate of phone calls between two sites. The problem is to design a 
network in which calls can be routed minimizing the maximum bandwidth required; 
the cost of building the network increases with the required bandwidth. 

We consider the case when the network is required to be a tree, called the tree 
congestion problem. Given a tree in which the vertices of G are embedded, the load 
on an edge e is defined as follows: delete e from T. This breaks T into two connected 
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components. If S is the set of vertices from G in one of the connected components, 
then load(e) is equal to 

w ( s , 3 )  = 
(~,y)EE,~E$,yE~ 

In other words, the demand of each edge e = {a, b} in G, maps to the unique path in 
T from a to b, and loads each edge on the path. The load of a single edge is the sum 
of the demands that load this edge. 

In this paper we study two different versions of this problem. 

1.1 R o u t i n g  T r e e  P r o b l e m  

The following problem was proposed and studied by Seymour and Thomas [ST]. 

Definition 1 [ST] A tree T is called a routing tree if it satisfies the following condi- 
tions: 

 9 The leaves of T correspond to vertices of G. 

 9 Each internal vertex has degree 3. 

The congestion of T is the maximum load of any edge of T. The congestion of G, 
denoted by fiG, is defined to be the minimum congestion over all routing trees T of G. 

We would like to find a routing tree T with minimum congestion (that achieves 

Seymour and Thomas showed that this problem is NP-hard by showing that graph 
bisection can be reduced to this problem. They also showed that in the special case 
when G is planar, the problem can be solved optimally in polynomial time. 

We provide a polynomial time approximation algorithm for the congestion problem 
when G is an arbitrary graph. Our algorithm computes a routing tree T whose 
congestion is within an O(log n) factor from the optimal congestion (Section 3). The 
alg6rithm extends to the case when the routing tree is allowed to have vertices of 
higher degree. 

1.2 C o n g e s t i o n  T r e e  P r o b l e m  

We also study the case when T is required to be a spanning tree of a given feasibility 
graph GF. We show that the problem is NP-complete (Section 4). In the special 
case when GF is complete, we show that an optimal solution can be computed in 
polynomial time 1. We conjecture that using ideas similar to the ones used to solve 
the routing tree problem, one can design an O(log n) approximation scheme for the 
congestion tree problem. 

aWe actually show that  if the Gomory-Hu cut tree Taw of G [GH, Gu] is a subgraph of GF then 
Ta.~ is an optimal solution. 
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1.3 Main Ideas 
Our algorithm is a simple divide-and-conquer algorithm that uses the Leighton-Rao 
[LR] balanced separator algorithm to split the graph. By a naive application of  the 
LR algorithm, one obtains an O(log 2 n) approximation factor. Our main contribution 
is to show that by a subtle application of LR, one can actually obtain an O(log n) 
approximation factor. We suspect that this kind of an application of LR will actually 
be useful for other problems as well (in improving approximation factors by a factor 
of log n). 

2 P r e l i m i n a r i e s  
A cut in a graph G is a set of edges which separate G into two pieces S and S = V \ S .  
A cut can be represented by the vertex set S. The weight of a cut S, denoted by 
W(S,  S), is the sum of the weights of those edges which have one endpoint in S and 
one endpoint in S. We use W(v) to refer to the sum of the weights of the edges 
incident to v. A cut S is b-balanced if n -  b _< IS l < (1 - b) - n. The definition is 
extended to the case when vertices are weighted as follows. Let U be a non-negative 
weight function on the vertices and let U(S) be the sum of the weights of all the 
vertices in S. A cut S is b-balanced if 

b U(V) < U(S) <_ (1 - b). U(V) 

Defini t ion 2 A )~-approximate minimum b-bisector is a b-balanced cut whose weight 
is at most )~ times the weight of a minimum-weight  89 cut, for some constant 

The following result was proved by Leighton and Rao ([LR], Section 1.4). 

T h e o r e m  2.1 ([LR]) It is possible to compute an O(logn)-approzimate minimum 
l-bisector in polynomial time. 

The above theorem can be extended to the case when vertices are given non- 
negative weights [Rao, Tar]. 

Def ini t ion 3 Let T be a tree and let u be a vertex of degree two in T. Let v and w 
be the neighbors of u. The following operation is said to short-cut u in T - delete u 
from T :and add the edge {v, w}. Short-cutting T implies the deletion of all vertices 
of degree two by short-cutting them in arbitrary order. 

3 R o u t i n g  Tree  P r o b l e m  
W(v)  corresponds to the total weight between v and other vertices and is called the 
load of a vertex. Note that the load of any vertex v is a lower bound on fla, because 
the edge incident to the leaf corresponding to v in any routing tree has to handle this 
load. 
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L e m m a  3.1 For any vertez v, W(v) < fla. 

Given a procedure to compute a ~-approximate minimum b-bisector, our algorithm 
finds a routing tree whose congestion is at most )~/b times the optimal congestion. 

3 .1  L o w e r  B o u n d s  

We show two ways of finding lower bounds on the weight of the optimal solution. First, 
we show that the weight of a minimum-weight balanced separator is a lower bound 
on flQ. Second, we show that the optimal solution for the problem in a subgraph 
G t induced by an arbitrary set of vertices V' C V is a lower bound on the optimal 
solution of G. This implies that an optimal solution to a sub-problem costs no more 
than any feasible solution to the whole problem. 

L e m m a  3 . 2  Let G = (V, E) be a graph with non-negative weights on the edges. Sup- 
pose we are given a non-negative weight function U(v) on the vertices. Let the weight 
of each vertez be at most one-half of the total weight of all the vertices. Let Q be 
the weight of a minimum-weight b-balanced separator of G for any b < 1/3. Then 
Q<_f~. 

Proof. Let T be a routing tree with congestion fa .  Each edge e of T naturally 
induces a cut in G as follows: delete e from T to obtain subtrees T1 and T2. Let 
Se be the set of yertices in G that are leaves of T1 (this yields a cut in G). Clearly, 

~ r  r I *~'kS,,ae) is the congestion on edge e and hence W(S'~,~) _< fa .  Since T is a tree 
of degree three, and by the assumption on the weights of vertices, it contains at least 
one edge e' which yields a b-balanced separator. Since Q is the minimum b-balanced 
separator of G we have Q <_ W(Se,, S~,) <_ f t .  D 

L e m m a  3.3 Let G = (V, E) be a graph. Let H be a subgraph of G. Then fH ~ fiG" 

Proof. Let T be a routing tree with congestion fla. We will generate a routing tree 
TH for H from T such that the load of any edge in TH is at most the load of some 
edge in T. We generate the tree TH from T as follows. Let VH be the vertex set of H. 
Mark the leaves of T corresponding to VH. Repeatedly delete the unmarked leaves of 
T until it has no unmarked leaves. Delete all vertices of degree two by short-cutting 
the tree, thus yielding TH. The tree that we generate has VH as its leaves and all its 
internal vertices have degree three. Hence it is a routing tree for H. Cuts in TH can 
be associated with corresponding cuts in T and hence the load on any edge in TH is 
at most the load of its corresponding edge in T. [:] 

3 . 2  T h e  R o u t i n g  T r e e  A l g o r i t h m  

Our basic approach is to subdivide the graph into pieces which are smaller by a 
constant fraction using an approximately minimum bisector. Since computing a 
minimum-weight balanced separator is also NP-hard, we use approximation algo- 
rithms designed by Leighton and Rao [LR] for computing approximately minimum- 
weight balanced separators (or approximate minimum bisectors). The solutions for 
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the pieces are obtained recursively. All internal vertices of the solution tree have de- 
gree three except for the root. The two trees are glued together by creating a new root 
and making the roots of the pieces as the children of the new root. If implemented 
naively, this procedure leads to an O(log 2 n) factor approximation. Using balancing 
techniques, we improve the performance ratio to O(log n). 

Suppose S, a subset of the vertices representing a subproblem, is split into two 
pieces $1 and $2 using an approximate bisector. When the problem is solved recur- 
sively on the two pieces, the main obstacle to obtaining an O(log n) approximation is 
the following. In the worst case, it is possible that most of the load corresponding to 
W(S, S) may fall on $1 or $2. If this happens repeatedly, an edge can be overloaded 
proportionally to its depth in the tree. To avoid this, it is necessary to partition the 
demand from S roughly equally among the pieces $1 and $2. The following idea solves 
the problem and leads to an O(log n) approximate solution. Suppose we define a 
weight U(v) for each vertex v in S according to the amount of demand from v to the 
set S. Now when we split S, we use a cut that splits the vertices of S into sets of 
roughly equal weights. Lemma 3.2 guarantees that the minimum value of such a cut 
is a lower bound on/3s, which is a lower bound on/3a by Lemma 3.3. 
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Figure 1: Example to illustrate algorithm. 

We illustrate the recursive step of the algorithm by an example in Fig. 1. The 
algorithm first splits graph G into A, B by using an approximate bisector. Each 
vertex in A is assigned a weight equal to the total demand it has to vertices in 1t. 
Similarly vertices in B are assigned weights corresponding to their demands from/~. 
The algorithm now recursively splits A and B by approximate bisectors. The weight 
of each vertex in A1 is now increased by its demand to vertices in A2 (similarly for 
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sets As, B1,B2). The problem is solved recursively on each piece. These recursive 
calls return with respective trees as solutions for the pieces A and B as shown. By 
adding new edges and a new root vertex, the solution for the entire graph is obtained. 

The algorithm given in Fig. 2 implements the above ideas. Given a graph G, 
ROt/WE-TREE(V) returns a routing tree for G. To make sure that the root of the tree 
has degree three, we can discard the root by short-cutting it. 

ROUTE-TREE(S') - -  Find a routing tree for S. 
1 I f  IS[ = 1 t hen  R e t u r n  S as a tree on a single vertex. 
2 For each v e S, fix its weight U(v) to be W({v}, S). 
Let the sum of the weights of the vertices in S be Us. 
3 I f  for any vertex v, U(v) >_ Us/2 and Us ~ 0 t h en  
4 ROUTE-TREE(S \ {v}) 
5 Create a new tree T by attaching the above tree and v as the children 

of a new root r. R e t u r n  T. 
6 Find an approximate minimum-weight  88 separator for the 

subgraph induced by S in G (if Us = O, find an unweighted balanced 
separator). Let this break S into pieces $1 and $2. 

7 ROUTE-TREE(S1) 
8 ROUTE-TREE(S2) 
9 Create a new tree T by attaching the two trees generated above as the 

children of a new root vertex. R e t u r n  T. 

Figure 2: Approximation Algorithm to Find a Routing Tree 

Let the algorithm use a A-approximate minimum  88 in Line 6. If Leighton 
and Rao's [LR] balanced separator algorithm is used, A = O(log n). The following 
theorem shows that the load of any edge is at most 4A times the optimal congestion. 
We use induction to prove that our load-balancing technique splits the load properly. 

T h e o r e m  3.4 (Pe r fo rmance )  The algorithm in Fig. 2 finds a routing tree T for G 
such that fit <-- 4Aflc. 

Proof. The proof proceeds by induction on the level of recursion. In the first call 
of ROUTE-TREE, G is split into two pieces S and S using an approximate bisector. 
We then find routing trees for S and ,~ and connect the two roots with an edge e. 
The load on e is W(S, S). By Lemma 3.2, the weight of a minlmum-weight balanced 
separator is a lower bound on tic. The weight of the separator the algorithm uses is 
guaranteed to be at most A times the weight an optimal separator. Hence the load 
on edge e is at most Afla. This satisfies the induction hypothesis. 

For the induction step, let us consider the case when we take a set ,5' and split it 
into two pieces $1 and $2 (see Fig. 3). Let L be the load on the edge connecting the 
tree for S to its parent. Similarly, let Li (i = 1, 2) be the load on the edge connecting 
the tree for Si to its parent. Inductively, L <_ 4A/~c. We show that each L~ _< 4Aflc. 
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Z Z 
Figure 3: Inductive proof. 

Let U be the weight function defined by the algorithm in this recursive call. Note 
that L = U(S) = W(S, S) and L, = W(SI, Si) = W(Si, S) + W(S1, SJ .  Also observe 
that U(Si) = W(S~, S). 

Case I: If there is some vertex v in S whose weight U(v) is more than U(S)/2: 
then we split S as S, = {o} and $2 = S \ {v}. Since Li = U(Si) + W(SI, $2) and 
U(S1) > U(S)/2 > U(SJ it follows that L1 > L2. This is because U(S) is the sum of 
V(Sx) and U(SJ. It remains only to bound Lx. The demand from v, W(v), is a lower 
bound on the congestion (by Lemma 3.1) and therefore fig >_ W(v) = L1. Hence both 
L1 and L2 satisfy the induction hypothesis. 

Case ~: Otherwise, the algorithm distributed U(S) into the weights of the vertices 
of S and then used a A-approximate ~-bisector of S. By the induction hypothesis, the 
edge from the subtree of S to its parent has a load L (= U(S)) of at most 4Afla. 

Since W(S~,S) = U(S~) <. ~U(S) and W(S1,SJ  < Aria (by Lemmas 3.2 and 3.3) 
we have: 

Li = W(Si, S) + W(S,, $2) <_ 32~t3c + Aria. 
D 

T h e o r e m  3.5 ( R unn ing  T i m e )  The routing tree algorithm in Fig. 2 runs in poly- 
nomial time. Iq 

Corol la ry  3.6 The algorithm in Fig. 2 finds in polynomial time a routing tree T for 
G such that fir = O(log n)fla. 

Note :  Our algorithm also handles the case when vertices of G are allowed to be 
internal vertices of the output tree. Lemmas 3.2 and 3.3 are valid in this case als0. The 
lower bound in Lemma 3.1 weakens by a factor of 3. This lower bound is not critical 
to the performance ratio, so the performance ratio of the algorithm is unchanged. 
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Our algorithm can be generalized to find routing trees when every internal vertex 
may have degree up to k, for any k > 3. We obtain the same O(log n) approximation 
factor, independent of k. An algorithm obtaining an approximation factor of n/k is 
straightforward and is useful as k approaches n. 

4 General Congest ion Problem 

4 .1  N P - C o m p l e t e n e s s  

In this section we show that the following problem is NP-complete. Given a graph 
G = (V, E) representing a demand network. Each edge e = {a, b} has a nonnegative 
weight w(e) that represents the demand between the sites a and b. We are also given 
a feasibility graph G ~ and an integer D. The problem is to find a tree T that is a 
subgraph of G', such that when the demands of the edges in G aremapped to the 
tree T the congestion on each edge is at most D. 

The reduction is done from the k Edge-Disjoint Paths Problem, known to be 
NP-Complete [G J]. 
k Edge-Dis joint  Pa ths  P r o b l e m :  Given an undirected graph H = (V, E), and sets 
S = {sl,s2,... ,sk} and T = {tl,t2,.. .  ,tk} are there k mutually edge-disjoint paths 
P1,P~,...,P~ such that Pi connects sl with tl ? 

It is easy to see that this problem can be reduced to the general t ree  congestion 
problem. For the reduction we construct G' from H. For each vertex u E V, if u 
has degree d(u), we create a clique on d(u) vertices, ul,u2,...,ud(~). For each edge 
from v to w we introduce an edge from vl to wj where these are distinct vertices (not 
shared with any other edges). (Informally, each vertex is "exploded" into a clique, 
and the edges incident on the vertex are made incident on distinct clique vertices.) 
The demand graph G has edges between sl and tl (for all i). If there is a solution 
to the disjoint paths problem, clearly that yields a congestion tree with bandwidth 
one. The set of paths Pi can form cycles, but these cycles can be "pried" apart in G' 
since we replaced each vertex with a clique. These can now be connected to form a 
congestion tree with bandwidth one. 

If there is a solution to the congestion tree problem it is clear that this yields 
a solution to the edge-disjoint paths problem (the demand edge from st to sj gets 
mapped to a path in the tree and causes a load of one on each edge). Since the 
bandwidth is restricted to one, no other path can use the same edge (even when we 
go from G' to H). 

4 . 2  P o l y n o m i a l l y  S o l v a b l e  C a s e  

In this section we show that when Tall C_ GF (the feasibility graph contains the 
Gomory-Hu cut tree) we can solve the congestion problem optimally. (This is certainly 
the case when GF is a complete graph.) 

Given the demand graph G, we compute the Gomory-Hu cut tree TcH [GH, Gu]. 
This is the tree that is used to route the calls. This yields an optimal solution for the 
following reason: consider any edge e = {s, t} with load L(e). Tall has the property 
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that L(e) is the value of the s-t min cut. Clearly any s-t min cut is a lower bound on 
the optimal congestion. 

Theorem 4.1 Tall is an optimal solution to the congestion problem. 
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