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Abstract—Our objective in this paper is to design topology
control algorithms such that (i) nodes have low degree and (ii)
paths in the network have few hops. Low node degree is de-
sirable in networks equipped with smart antennas and to re-
duce access contention. Short paths are desirable for minimiz-
ing communication delays and for better robustness to chan-
nel impairments and to mobility. Given any arbitrary unit-
disc graph G representing all feasible links, our algorithms
find a sparse subgraph G� having a maximum node degree of
six and, for each pair of vertices u, v, having hopsG�(u, v) =
O(hopsG(u, v)+log �), where � is the maximum node degree
in G and hopsG(u, v) denotes the shortest path length from u
to v in G. This result is near-optimal: (i) there is a connected
UDG G in which no connected subgraph has degree less than
five, and (ii) for any graph G, any bounded-degree subgraph
G� must have hopsG�(u, v) = ⇥(hopsG(u, v)+log �) for some
u, v. Our distributed algorithm scales, preserves link sym-
metry, does not need node synchronization, and requires only
O(n) messages. We perform extensive simulations that quan-
tify the performance of our algorithm in realistic scenarios.

I. INTRODUCTION

In this paper, we design topology control algorithms that

simultaneously facilitate low degree (each node communi-

cates directly with only a few other nodes) and short paths.

Our motivation for low logical degree stems primarily from

networks where nodes are equipped with directional anten-

nas or MIMO (as we elaborate later). Short paths are impor-

tant for a number of reasons, including (i) maintaining low

levels of packet loss – in wireless multi-hop networks links

are error-prone and the probability of packet loss increases

rapidly with path length; and (ii) better coping with mobility

– longer paths are more likely to be disrupted due to motion.

To motivate the goals, consider a mobile ad hoc network

in which nodes are equipped with directional antennas. In

such a network, nodes need to keep track of their neighbors

(to beamform in their direction). However, due to the reduc-

tion in the angular coverage with directional antennas, it is

possible for neighbors to move out of coverage frequently.
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A node may simply resort to omnidirectional communica-

tions; however, omnidirectional transmissions impose se-

vere constraints on the achievable spatial reuse. Further-

more, it has been shown that mixing omnidirectional and di-

rectional communications can lead to link asymmetry which

causes problems both in media access control and in rout-

ing [13], [8]. Alternative to allowing hybrid communica-

tions in the network, each node may periodically send di-

rectional control messages to its neighbors, to allow these

neighbor nodes to track its motion. However, in dense de-

ployments where nodes have too many neighbors, the over-

head for such control messages may be prohibitive. Instead

of maintaining links with all of its neighbors, topology con-

trol may be invoked such that a node maintains links only

with a sub-set of its neighbors. Along with maintaining

connectivity with this restrictive sub-set, it would also be

important to ensure that the route-lengths are not increased

tremondously. Note that a similar situation arises if nodes

are equipped with multi-input multi-output (or MIMO) or

smart antennas. For efficiently using MIMO, a node needs

to exchange channel state information (or CSI) with each

of its neighbors [30]. The overhead burden is likely to be

excessive if a node has a large number of neighbors.

We model the wireless network as an arbitrary unit disk

graph (UDG) G(V,E), wherein a link exists between two

nodes iff the two nodes are within a unit distance of each

other. While it is well known that the transmission range of a

node can be affected by wireless channel impairments such

as multipath fading and shadowing, for the simplicity of un-

derstanding, as in existing topology control papers to-day

[17][29][6], we assume that each node has a unit transmis-

sion range. With the IEEE 802.11 wireless cards, this range

is generally around 250 meters; however, for the purposes

of modeling, it can be scaled down to a unit distance. Disk

models have also been used with directional transmissions

wherein a sequence of disjoint transmissions (called circu-

lar transmissions) cover a radial footprint [13]; disk shaped

footprints have also been considered with MIMO [14].

The most closely comparable previous efforts for topol-

ogy control are (i) algorithms that provide subgraphs with

bounded hop count but no degree bound
1

[1], [11] and (ii)
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algorithms that provide a degree bound but do not provide

any bounds on the hop count of paths [15], [21]. To the

best of our knowledge, there is no work to date that jointly
addresses both these objectives.

In this paper, given the unit-disc graph (UDG) G rep-

resenting all feasible links, we find a sparse subgraph

G⌅(V,EG⇥) having maximum degree 6 and, for each pair of

vertices u, v, having hopsG⇥(u, v)=O(hopsG(u, v)+log �),
where � is the maximum degree of G and hopsG(u, v) de-

notes the shortest path length from u to v in G. We call the

latter property bounded hop stretch. Any graph satisfying

this property is a hop-spanner.

This result is near-optimal: (i) there is a connected UDG

G in which no connected subgraph has degree less than 5,

and (ii) for any graph G, any bounded-degree subgraph G⌅

must have hopsG⇥(u, v)=⇥(hopsG(u, v)+log �) for some

u, v. We prove the above claims later.

In a nutshell, our algorithm first constructs a backbone

spanning a selected subset of nodes. We show that this back-

bone has a maximum degree of 6 and is both a Euclidean

9-spanner and an O(1) hop-spanner. The algorithm then

connects the remaining nodes locally to the backbone. The

resulting graph is G⌅=(V,EG⇥), whose properties are de-

scribed above. We first design a centralized version (which

we call LDS for “Low Degree Spanner”) of our approach,

which facilitates an understanding of why the properties that

we claim, hold. We then present a distributed variant of the

algorithm (D-LDS for Distributed-LDS) that is amenable to

practical implementation. The key features of D-LDS are

summarized below:

• Guaranteed low node degree. With D-LDS nodes

have a maximum degree of 6.

• Low-bounded hop stretch. With D-LDS, all node

pairs are connected by paths that conform to a bounded

hop stretch, as previously specified.

• Low Euclidean distance stretch. In terms of the Eu-

clidean distance covered, the path between any two

nodes in G⌅
is only longer by a constant factor plus

an additive log � term.

• Scalability. Nodes use only local information and do

not require synchronization. Thus, the algorithm can

be used in large ad hoc networks.

• Low communication cost. D-LDS quickly converges

to a connected sub-graph; this process takes O(n) mes-

sages in the worst case.

In addition to showing worst-case bounds for arbitrary

unit disk graphs, we perform extensive simulations to under-

stand the behavior of D-LDS with a realistic CSMA (carrier

sense multiple access) based MAC protocol for facilitating

message exchanges. We observe that, on average, the node

degree is is only about 3 even with fairly dense scenarios.

however, this bound is not imposed on the final topology.

The average hop stretch is also extremely small.

The rest of the paper is organized as follows: In Section II

we present our model and introduce relevant notation. We

present our centralized algorithm and prove its associated

propeties in Section III. Our distributed algorithm is de-

scribed in Section IV. Details of our simulation experiments

and results form Section V. We discuss previous related

work in Section VI and we conclude in Section VII.

II. SYSTEM MODEL AND NOTATION

We model the wireless network as a graph G(V,E),
where the set V of vertices represents the nodes and the

edges in E represent the communication links.

We assume that all nodes use the same, maximum trans-

mission power. We use the unit disk graph (UDG) model

[9]. We scale the (maximum) transmission radius of nodes

to 1 unit; thus, the UDG model implies that a node pair u, v
in the network can have direct communication iff their Eu-

clidean distance is not larger than unity. When u and v have

a direct link, u is said to be a neighbor of v and vice versa.

In our distributed scheme we assume that nodes are able

to infer the direction of the sender of the messages they re-

ceive (as used in [29], [17]). This can be accomplished via

the deployment of antenna arrays and using estimation tech-

niques for computing the Angle-of-Arrival (AOA) [25]. Al-

ternatively, nodes might be equipped with global positioning

system (GPS) units to facilitate this requirement
2

.

In our network model all nodes have distinct IDs (e.g.

MAC address). In our distributed scheme we assume that

nodes have information regarding their two-hop neighbor-

hood [7], [28]. Two-hop neighborhood of node u is defined

as the set of nodes N1 that are neighbors of u, plus those

that are neighbors of the nodes in N1. This information can

simply be collected via the use of HELLO messages [4].

We assume the communication channel is symmetric and

obstacle-free, and that signal degradation occurs only due to

path loss. We do not assume global clock synchronization.

In the following, we define the two data structures that are

used by our algorithms.

Maximal Independent Set: Given a graph G = (V,E), a

subset M � V is an independent set if each edge in E is

incident on at most one vertex in M . A maximal indepen-

dent set (MIS) is an independent set such that for all ver-

tices v � (V �M), the set M ↵ {v} is not independent;

in other words, every vertex that is not in M is adjacent

to some vertex in M . Note that the “Maximal Independent

Set” problem is not the same as the “Maximum Independent

Set” problem (the problem of computing the independent set

of maximum size), which is NP-complete [26].

2
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Our algorithm requires the computation of a maximal in-

dependent set, which can be constructed in O(n) time for

UDGs, where n=|V| [22]. Distributed algorithms for find-

ing a maximal independent set are presented in [22], [27].

Balanced Binary Tree: A non-empty binary tree to is

a balanced binary tree, if both its left and right subtrees

(TL and TR) are balanced binary trees and |height(TL) �
height(TR)| ⌅ 1. In a balanced binary tree consisting of N
nodes, the length of the longest path from the root to a leaf

node is O(log N). An empty tree is a balanced binary tree.

Finally, we introduce the following notation:

Notation (⇥(evf)): If e and f are two edges incident on ver-

tex v, we denote the angle between e and f at v as ⇥(evf).

III. THE LOW-DEGREE SPANNER (LDS)

In this section we describe our centralized algorithm LDS.

First, we show that the achieved bounds on the degree and

hop stretch (as stated earlier) are near-optimal.

Lemma 1. For a subgraph G⌅
of a unit disk graph G, con-

nectivity cannot be guaranteed if the maximum node degree

in G⌅
is less than 5.

Proof. With the UDG model, a node can have at most five

“independent”
3

neighbors [18]. Consider the star topology,

where the central node u has 5 independent neighbors, each

of which is exactly at unit distance from u. If we remove

the edge between u and any neighbor, i.e., make the degree

of u less than five, the topology becomes disconnected. �
Lemma 2. For a unit disk graph G, any bounded-degree

subgraph G⌅
must have hopsG⇥(u, v) = ⇥(hopsG(u, v) +

log �) for some u, v, where hopsG(u, v) represents the hop

count of the shortest path between nodes u, v in G.

Proof. For a unit disk graph G, consider any degree-� node

u and its neighbor set ⇤. In any subgraph G⌅
with maximum

degree ⇥, let k be the maximum hop-distance from u to a

node in ⇤. As there are at most ⇥k+1
nodes within k hops of

u, �=|⇤|⌅⇥k+1
, which implies k⇧log⇥(�)� 1. �

A. Algorithm Description
LDS consists of three phases: organizing the nodes in G=

(V,E) into distinct sets, constructing a backbone that con-

nects all sets, and assembling the remaining nodes (that are

not on the backbone) in each set into balanced binary trees

which are then linked to the backbone.

1) Phase 1: Creating Groupings on G: A maximal sub-

set M of V is found such that every node in the set (V �M)
lies within a distance 1/2 from some node in M , but no

two nodes in M lie within distance 1/2 from each other.

Note that this construction ensures that all nodes that share

3
Two neighbors v,z of node u are independent, if they cannot be con-

nected by a direct edge.

a neighbor in M are within a distance of 1 from each other

(i.e., form a clique). LDS determines M by the maximal

independent set algorithm proposed in [26]. Nodes in M
are called dominators; nodes in the set (V �M) are called

member nodes. Each member node will arbitrarily choose

a unique node in M that is within a distance of 1/2 from it-

self, as its dominator. The set of member nodes that choose

a particular dominator w are said to belong to w’s group,

group(w). Any pair of nodes within a group has an edge in

G = (V,E), and the groups are disjoint.
2) Phase 2: Construction of the Higher-Tier backbone:

In this phase LDS constructs a backbone that interconnects

separate groups. Two groups are said to be connected if

there is at least one edge between them (between any two

members that belong to the distinct groups) in G = (V,E).
If there is only one such edge, it is designated to be a gate-
way link. If there are multiple edges, one of them is arbi-

trarily chosen to be a gateway link. Nodes that are the end

points of gateway links are marked as backbone nodes. In

addition, LDS also marks all dominators as backbone nodes.

At the end of the process, in any group with more than one

node, if the dominator is the only backbone node selected,

an arbitrary additional node s in the group is chosen and

marked as a backbone node (to aid the proof of Lemma 4).

LDS constructs a backbone H=(VH , EH), where VH

consists of the designated backbone nodes and the set EH is

formed as described next.

LDS considers all edges (from G) between vertices in VH ,

in the order of nondecreasing length. At each step, the con-

sidered edge e = (u, v) is added to EH unless there is an

edge f in EH that is incident on u or v, making an angle

of less than 52⇥ with e. (If f was inserted before e, this

implies that d(f) ⌅ d(e), where d(e) represents the Eu-

clidean length
4

of the edge e.) The algorithm terminates

when all edges between the nodes in VH have been thus

considered. The resulting graph H(VH , EH) is the desired

backbone that connects all distinct groups.

3) Phase 3: Connecting the remaining nodes to the
Higher-tier backbone: In this phase LDS finalizes the con-

struction of the connected topology G⌅ = (V,EG⇥). The

process executes in two steps. First, in every group that con-

tains member nodes that do not lie on the backbone, LDS

constructs a rooted, balanced binary tree T (w) to connect

these nodes. This construction is possible, as every group is

a clique (as discussed earlier).

Second, LDS links these trees to the backbone as follows.

Initially, EG⇥ contains the “backbone edges” EH as com-

puted above. For each dominator w, if tree T (w) exists

(i.e., is not empty), then LDS removes an arbitrarily selected

backbone edge (w, v) from EG⇥ (Lemma 4 shows that this

4
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edge has to exist); and replaces it with the two edges (w, r)
and (r, v), where r is the root of T (w). The edges belong-

ing to T (w) are also added to EG⇥ . Note that this process

preserves the degrees of w and v.

B. Analysis of the algorithm
In the following, we validate the properties of LDS.

Lemma 3. Let e=(u, v),f=(u, w) be two edges incident

on node u, and let g=(v, w) be the edge across the angle

⇥(euf). If d(f)<d(e) and ⇥(euf)⌅52⇥, then d(g)<d(e).

Proof. Assume d(g)>d(e). Then ⇥(euf) is the largest

angle in  (uvw), which implies ⇥(euf)⇧60⇥. However

⇥(euf)⌅52⇥, which contradicts the assumption; therefore

d(g)<d(e). �
Lemma 4. In H(VH , EH), each dominator u has an edge

with at least another backbone node (to be removed in Phase

3), if the number of nodes in group(u) is greater than 1. In

particular, edge (u, v)�EG⇥ , where v is the backbone node

closest to u.

Proof. Note that at the beginning of Phase 3, EG⇥⇤EH ;

thus, it is sufficient to show (u, v)�EH . We prove the

lemma by contradiction. First, note that group(u) contains

at least two nodes in VH by construction. (Phase 2 en-

sures that in each group, if the number of member nodes -

excluding the dominator- is greater than zero, the dominator

is not the only backbone node in this group.) Assume that

v � VH is the closest backbone node to dominator u5

, and

that edge (u, v) /� EH . Then, by construction, there exists

either an edge (u, w) or an edge (v, z) in EH , that blocks6

(u, v) (w,z � VH ). The blocking edge cannot be of the

form (u, w), because this would imply d(u, w) ⌅ d(u, v)
which contradicts the assumption. Therefore, it must be

that (v, z) � EH , blocks (u, v). Then d(v, z)⌅d(u, v)
and ⇥(v, z)v(v, u) < 52⇥. By Lemma 3, d(u, z)<d(u, v),
which contradicts the assumption. �
Theorem 1. The maximum node degree in G⌅

is 6.

Proof. It suffices to show that H(VH , EH) has a maximum

degree of 6; this is because Phase 3 of the algorithm ensures

that in each group:

(i) member nodes that are not backbone nodes are assem-

bled into balanced binary trees, such that the tree has a

maximum node degree of 3,

(ii) the degree of the root increases by 2 in connecting to

the backbone, but becomes at most 4,

(iii) the degree of any node in H is preserved in construct-

ing G⌅
via appending the balanced binary trees.

Then, this theorem holds due to the following Lemma. �
5
In case of ties, the backbone node with smaller ID is deemed closer.
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d(e) and �(evf) < 52�
.

Lemma 5. The degree of any node in H is at most 6.

Proof. Assume ⌦ a node u in VH with degree deg(u)>6. In

this case, two of the edges that are incident on u must create

an angle of at most (360/7)<52⇥. However, by construc-

tion, no two edges in H make an angle of less than 52⇥. �
Theorem 2. The backbone H=(VH , EH) is a (Euclidean)

9-spanner; for each pair of backbone nodes u, v with

(u, v) � E, DH(u, v) ⌅ 9 · d(u, v), where DH(u, v) is

the Euclidean length of the path between u and v in H.

Proof. The proof is by induction on the edges between the

backbone nodes in G, in the order they are considered in

constructing EH . Consider one such edge e=(u, v). If

(u, v)�EH , then the theorem holds. If not, then ⌦ an edge

f=(u, w) �EH such that d(u, w)⌅d(u, v) and ⇥(euf) <
52⇥. By Lemma 3 d(v, w)<d(u, v) and thus, (v, w) was

considered by LDS prior to (u, v).
Consider path P (v, u) formed by P ⌅(v, w) followed by edge

(w, u). For induction, we postulate that, ⌦ a path P ⌅(v, w)
in EH such that d(P ⌅)⌅9·d(v, w). We use this to show

dH(u, v)⌅9·d(u, v). Then, d(P )⌅9·d(v, w)+d(w, u).
With this, it is enough to show:

d(u, w) + 9 · d(v, w) ⌅ 9 · d(u, v). (1)

Or, equivalently,

d(u, w)
d(u, v)� d(v, w)

⌅ 9. (2)

Let w⌅
be a point on (u, v) s.t. d(v, w⌅)=d(v, w), so the

triangle (vww⌅) is isosceles with equal angles at w and w⌅
.

Then d(u, w⌅)=d(u, v)-d(v, w), and inequality(2) becomes:

d(u, w)
d(u, w⌅)

⌅ 9. (3)

For any fixed d(u,w) and a fixed angle ⇥(euf) at u,

d(u, w⌅) is minimized when d(u, v) is minimized. The

smallest value d(u, v) can take is d(u, w), since inequality

d(u, w) ⌅ d(u, v) has to be satisfied. Then the value of the

left hand side of inequality(3) is maximum when the denom-

inator d(u, w⌅) is minimized, i.e., when d(u, w)=d(u, v).
The triangle (uvw) is isosceles with equal angles at v and

w. Let z be the midpoint of (v, w). By considering the right

triangle  (uvz) we compute d(v, z) and thereby d(v, w)
as:

d(v, w) = 2 · d(v, z) = 2 · d(u, v) · sin(
⇥(euf)

2
). (4)

Thus, d(u, w) + 9 · d(v, w) = d(u, v) + 9 · d(v, w)

⌅ d(u, v) + 18 · d(u, v) · sin(
⇥(euf)

2
)

⌅ d(u, v) ·
�

1 + 18 · sin(
⇥(euf)

2
)
⇥

⌅ 9 · d(u, v) (5)



The last step in inequality(5) is due to ⇥(euf)<52⇥. �
Remark 1. The factor 9 can be improved to 8 by consider-

ing angles of 51.5 > 360/7 degrees above instead of 52⇥.

Lemma 6. The number of groups connected to any given

group g is O(1).

Proof. In Phase 1, dominators are chosen such that they

are at least 1/2 units apart. Draw disks of radius 1/4 cen-

tered at each dominator whose groups are connected to g.

These disks are disjoint and all lie within a circle of radius

2 centered at g’s dominator. The number of such disks is

O(1). �
Corollary 1. The number of backbone nodes in each group

is O(1). Therefore, the number of backbone nodes that are

reachable from any backbone node is O(1).

Theorem 3. If any two nodes u, v in G(V,E) are connected

by a path P in G, then in G⌅(V,EG⇥), a path P ⌅
such that

hopsG⇥(P ⌅) = O (hopsG(P ) + log �) connects them. (Re-

call that � is the maximum node degree in G(V,E).)

Proof. Note that each group forms a clique in G; then, each

group has at most �+1 nodes. Consider the path P from

u to v in G. Let g1, g2, g3, . . . , gk+1 be the sequence of

groups that P traverses. P has at least k edges: for each

i = 1..k, there is an edge from gi to gi+1 in G. By construc-

tion, there is such an edge also in EH for each i = 1..k.

Let ai and bi be backbone nodes in gi, such that ai con-

nects gi to gi�1 and bi connects gi to gi+1. This implies

d(bi�1, ai) ⌅ 1, d(ai, bi) ⌅ 1 and d(bi, ai+1) ⌅ 1 in G.

By Theorem 2 there is a path pi from bi to ai+1 and a path

qi from ai to bi in the backbone graph H(VH , EH), such

that D(pi) and D(qi) are each ⌅ 9. Construct P ⌅
from u

to v in G⌅
as follows. From u, traverse the edges in the

balanced binary tree of u’s group (g1, w.l.o.g.) to get to

the root. From the root get to a1. Then traverse paths

p1, q2, p2, q3, . . . , pk, qk+1 to get from a1 to bk+1. From

bk+1 get to the root of the balanced binary tree in v’s group

(gk+1); then traverse the tree to get from bk+1 to v. Traversal

in each binary tree requires at most log2 � edges. As each

of the paths pi and qi has Euclidean length at most 9, they

contain nodes from O(1) groups (as they pass through O(1)
groups). By Corollary 1 each such path has O(1) edges

(connecting at most all the backbone nodes in all visited

groups). The number of these paths is 2k. Therefore the

hop count of path P ⌅
is O(k + log �). �

Corollary 2. If two nodes u, v in G(V,E) are connected by

a path P in G, then in G⌅(V,EG⇥) they are connected by a

path P ⌅
such that DG⇥(P ⌅)=O (DG(P ) + log �).

Proof. The proof follows from Theorem 3 and from fact that

each hop is at most of unit length. �
Lemma 7. The time complexity of LDS is O(n log n).

Proof. A maximal independent set can be constructed in

O(n) time [22]. By Corollary 1, the number of edges on

the backbone is O(n) (the number of groups being O(n) in

the worst case). Sorting these edges takes O(n log n) time.

Constructing each binary balanced tree takes O(�log�)
time (requires sorting the nodes in a group w.r.t. their ID’s).

Therefore, the time-complexity of LDS is O(n log n). �

IV. DISTRIBUTED LOW-DEGREE SPANNER (D-LDS)

Next, we present our distributed algorithm Distributed

LDS (D-LDS). With D-LDS, nodes make independent de-

cisions on the links that they maintain, based only on local

information with regards to their two-hop neighborhoods.

D-LDS works on arbitrary networks, does not need synchro-

nization among nodes, is scalable, and converges quickly to

a connected topology with the desired properties.

D-LDS consists of four phases which are described next.

1) Phase 1: Finding the dominators and forming groups:
D-LDS identifies independent dominators to form separate

groups. For the dominator selection, we use the distributed

algorithm for finding a Maximal Independent Set (MIS)

from [27]. In brief the algorithm is as follows (further de-

tails may be found in [27]): Initially every node is colored

white. A node selected as per some tie-breaking criterion

(e.g. node that has the lowest ID in its 1-hop neighbor-

hood) becomes black and declares itself a dominator. It

broadcasts a message within its 1-hop neighborhood, an-

nouncing its transition. All of its 1-hop neighbors that re-

ceive the message become gray (if they were white). Those

that have turned gray declare themselves to be dominated by

this dominator. The algorithm terminates when there are no

more white nodes left. Both time and message complexity

of this construction are O(n). This algorithm ensures that

each node has one dominator, since a node changes color

only once. Upon termination of the MIS construction, each

dominator and its associated gray nodes constitute a group.

In order to guarantee connectivity in the later steps of D-

LDS, all nodes in the same group must be able to reach each

other. Hence, in constructing the MIS and in identifying

the groups, nodes will transmit with a power such that the

range is half the maximum possible range. As with many

topology control methods in literature (designed to achieve

energy efficiency), we assume that nodes are capable of ad-

justing their power levels
7

.

2) Phase 2: Identification of the gateway nodes: Each

dominator w maintains a list, S(w), of the backbone nodes

in group(w); S(w) initially includes {w}. By exchang-

ing small messages, a dominator obtains information as

7
If directional antennas are used, we assume that the broadcasts are

achieved using circular transmissions as in [13]; the power level is ad-

justed such that the broadcast reaches only those neighbors that are within

half of the node’s directional range.



to whether any of its members have neighbors from other

groups. If there is a node (u) in group(w) such that u
has a neighbor v from another group (say group(z)), then

group(z) is “reachable” from group(w). Let Q(w) denote

the set of groups that are reachable from group(w); this set

is initially empty. At each instance when w detects a reach-

able group (e.g. group(z)), it checks whether group(w) is al-

ready connected to this group. If it is, then group(z)� Q(w).
Otherwise w or z nominates gateway nodes for this pair of

groups. Towards this, w checks whether its ID is greater

than the ID of z. If so, it declares u and v to be the gateway

nodes between group(w) and group(z) (if not, z is respon-

sible for gateway selection). Next, w adds u to S(w) and

group(z) to Q(w); it also sends a message to z to trigger the

addition of group(w) to Q(z) and v to S(z).
The ID comparisons in the above discussion ensure that:

i) for every pair of groups, exactly two gateways are identi-

fied, and ii) gateway identification is performed by only one

of the dominators. With this approach, no synchronization

is necessary; equally importantly, there are no conflicts with

regards to the selection of the gateway nodes.

Before proceeding to the Phase 3, w checks if it is the

only nominated backbone node for its group (i.e., whether

S(w) = {w}). If this is the case and there are additional

nodes in group(w), w arbitrarily chooses a node s from

among these nodes and marks it as a backbone node; it in-

cludes s in S(w). This check ensures that, if (group(w)-
S(w)) contains nodes that will be connected to the back-

bone in Phase 4 (to be described), then there is at least one

backbone link such that both end nodes are in group(w).
3) Phase 3: Construction of the Backbone: The backbone

is constructed to span all dominators and gateway nodes (i.e.

all backbone nodes); each backbone node participates in this

construction in a completely local, decentralized manner.

The decisions regarding each communication link is made

on the basis of the computed distance to the one hop back-

bone neighbors. We define the distance estimation function

that facilitates this computation:

Definition (Distance Function): The distance function

⇥ :P⌥D maps power values to distance values as follows:

d̂(u, v)=⇥(Pr(u, v)), where Pr(u, v) is the received power

of a packet from u to v or vice versa (as the channel is as-

sumed symmetric). We assume that the ⇥ function strictly

decreases with received power; this is typically true for

channels wherein only path loss is experienced. Thus, given

two neighbors v and z of u, ⇥ executed at u determines v
to be closer than z, if the power levels of packets

8

received

from v are greater than the power levels of packets received

from z. Ties are broken based on ID numbers; the node with

8
To prevent the distance information from becoming stale, periodic up-

dates will be necessary. We assume that the HELLO messages facilitate

this process.

the higher ID is deemed closer.

Each backbone node u maintains a list, A(u), of its 1-hop

neighbors. u considers each node v in A(u) and examines

whether the link (u, v) is “feasible”.

Definition (Feasibility of a Link): Let Y denote the set of

nodes that are closer to node u than v. The nodes in Y reside

inside a circle centered at u with radius=d̂(u, v). Similarly,

let Z denote the set of nodes that are closer to v than u. (All

links are unprocessed and unmarked, initially.)

1. A link (u, v) is feasible, if both of the following two

conditions are satisfied:

(i) Every link (u, yi) (yi � Y ) that would make an

angle of less than 52⇥ with link (u, v) must be

marked as “unfeasible”.

(ii) Every link (v, zi) (zi � Z) that would make an

angle of less than 52⇥ with link (v, u) must be

marked as “unfeasible”.

A communication link that is feasible is created.

2. On a similar note, for a link (u, v) to be unfeasible, it

is necessary and sufficient that either of the following

two conditions is satisfied:

(i) ⌦ a link (u, yi) (yi � Y ), making an angle of less

than 52⇥ with (u, v) ((u, yi) has been deemed fea-
sible before).

(ii) ⌦ a link (v, zi) (zi � Z), making an angle of less

than 52⇥ with (u, v) ((v, zi) has been deemed fea-
sible before).

If link (u, v) is unfeasible, both endpoints keep this in-

formation and (u, v) is not created.

During this construction phase, each backbone node

broadcasts a message (to its 2-hop neighborhood) upon de-

ciding the status of each of its incident links. The output

graph at the end of this phase is the backbone.

4) Phase 4: Finalizing the construction of the connected
topology: In each group, the nodes that are not backbone

nodes (if any) will form a balanced binary tree. Let the

set of such nodes in group(w) be R(w). The tree construc-

tion is triggered by the dominator (w) of the group and is

performed concurrently at every node in R(w). A simple

scheme for building a balanced binary tree proceeds as every

node in R(w) performs the following: (i) Sorts the nodes in

R(w) as per their IDs, in increasing order. (The sorted array

is unique and is the same at all nodes in R(w), due to 2-hop

neighborhood information at all nodes.) (ii) Checks its in-

dex (w.l.o.g. k) in the sorted order, and connects to nodes

at indices 2k and 2k + 1 (if 2k and 2k+1 do not exceed

the number of elements in R(w)). We note that no message

exchanges are necessary for this construction, since the IDs

are known and the tree is unique for a given set R(w).
Let r be the root of the tree constructed in group(w). Next,

r will attach itself to the backbone, as w=dominator(r) re-

moves any link (w, j) along the backbone and forms links



(w, r) and (r, j). This procedure requires two unicast mes-

sages: from w to j for the removal of the link (w, j), and

from w to r, to trigger the formation of link (r, j). Phase 4

terminates after this construction is complete for all groups.

Theorem 4. Nodes in the topology constructed by D-LDS

have a maximum degree of 6.

Proof. The proof follows from that of Theorem 1 as D-LDS

emulates LDS in all phases. �
Theorem 5. Let G⌅(V,EG⇥) be the topology constructed by

D-LDS. For each pair of nodes u, v that had a path con-

necting them in G, ⌦ a path connecting them in G⌅
, s.t.

hopsG⇥(u, v)⌅O(hopsG(u, v)+log �).
Proof. The proof follows from that of Theorem 3. �
Corollary 3. For each pair of nodes u, v that had a path

connecting them in G, there is a path P ⌅
connecting them

in G⌅
, such that DG⇥(P ⌅) = O (DG(P ) + log �), where

DG(P ) denotes the Euclidian length of path P .

Proof. The proof follows from Theorem 4 and Corollary

2. �
Theorem 6. For any input graph G, D-LDS constructs the

final topology G⌅
using O(n) messages (in the worst case).

Proof. Two-hop neighborhood information can be pro-

vided at all nodes with a total message complexity of O(n)
([7]). Message complexity of finding an MIS is O(n) ([27]).

In the worst case, the number of backbone links is O(n)
(Lemma 7). As each backbone node sends only one mes-

sage upon deciding the status of a link, the total number

of messages generated is O(n). Finally, the balanced bi-

nary tree construction does not require message exchanges

(two-hop neighborhood information is already exchanged).

For appending the trees to the backbone, O(n) messages are

necessary in the worst case (2 messages are exchanged per

group; number of groups is O(n) in the worst case). There-

fore the overall message complexity of D-LDS is O(n). �

V. SIMULATION EXPERIMENTS

We study the performance of our distributed algorithm via

extensive simulations. We have implemented D-LDS in a

C++ simulator. For accessing the channel, all the nodes use

CSMA which has been popularly considered for broadcast-

ing packets in ad hoc networks. Our program takes as input

a unit disk graph, where a unit is the range achieved with

the maximum transmission power; it outputs a hop-spanner

having degree at most six. Figure 1 illustrates the input and

the output graphs: Figure 1(a) is a UDG constructed by ran-

domly placing 360 nodes in a 6x6 unit area, and Figure 1(b)

is the topology output by D-LDS.

Metrics of Interest: The metrics of our interest are as

follows:

(a) The Unit Disk Graph (b) The Graph Generated by D-

LDS

Fig. 1. Visualization of the Unit Disk Graph and the Graph Generated

by D-LDS. (360 nodes are generated in a 6 by 6 topology.)

1) Node degree distribution. For every degree possible,

we measure the fraction (in percentage) of the nodes

in the output graph that have this degree.

2) Average hop stretch. For every edge in the UDG, we

measure the shortest path in terms of hops between its

nodes in the graph constructed by D-LDS. The length

of this shortest path is defined to be the hop stretch

for the particular UDG edge. The average is simply

computed over all UDG edges.

3) 95 percentile hop stretch. We define it as the 95%

tail
9

of the set of the hop stretch values of all the edges

in the considered UDG.

4) Number of messages. The number of messages re-

quired by D-LDS to construct the final topology. Note

that the construction of the MIS and the acquisition of

the two-hop neighborhood are well studied problems

[22],[7]. Therefore, we do not include the messages

required during these phases in our assessments.

Simulation Setup. Our objective is to show that the per-

formance of D-LDS scales when moderate to large networks

are considered. The simulations are performed with a mul-

tiplicity of topologies that are placed in an area of interest;

the area is varied from 4x4 to 10x10 units. We also consider

different node densities; we vary the number of nodes from

5 to 30 per square unit. Every unit is 250m, which is the

coverage range for a wireless card complying with the IEEE

802.11 standard. For every topology we generate nodes ran-

domly, using a uniform distribution. We remark that while

our simulations are performed using the specific considered

distribution, the bounds that were derived previously hold

for arbitrary unit disk graphs.

We first consider the node degree distribution. We per-

form experiments in a 6x6 unit area and with different node

densities. Figure 2(a) shows the degree distribution for the

backbone nodes, since the balanced binary tree nodes have

well defined degrees (half of them have degree 3 and the

other half -the leaves- have degree 1.) As shown in Figure

9
x% tail of a set of values, is the value that is bigger than x% of the

values in that set.



(a) Node Degree Distribution

for the Backbone

(b) Node Degree Distribution

for Global Topology

Fig. 2. Distribution of the Node Degree for the Topology Generated by

D-LDS

2(a), almost half of the nodes have degrees of at most 4, for

node densities of 10 and above. (When the node density is

5, the UDG is quite sparse; this explains the lower node de-

grees as compared to the other densities.) It is also important

to note that not more then 4% of the nodes in the network

reach the worst case bound of 6. To have a complete pic-

ture of the node degree distribution of the final topology, we

also plot the results including the tree nodes. As expected, a

significant number of nodes have degrees less than 3.

The promising results on the node degree acquire more

importance given that (as we plot in Figure 3(a)) the graph

constructed by D-LDS, for all considered networks of high

density, is a hop-spanner with the worst case 95 percentile

stretch being 12. In the same figure we also plotted the av-

erage path stretch factor; this is close to 6 for all considered

network sizes. In addition, we measured the average and

the 95 percentile hop stretch as a function of node density

while the area size is fixed to 6x6 units (Figure 3(b)). We

see that the path stretch factor is even lower for more mod-

erate node densities that are more likely in ad hoc network

deployments.

Another important metric of performance for a topology

control algorithm is the number of messages that are ex-

changed prior to convergence to the global topology with

the desired properties. We showed in Section IV that the

number of messages required by D-LDS is O(n) i.e., = cn,

where c is a constant. The simulations, however, can pro-

vide an estimate of the hidden constant c. Towards this, we

generate enough nodes such that in every square unit ap-

proximately 30 nodes are present; this is considered a very

high density for an ad hoc network. Given this density, the

network construction is varied from a 4x4 unit area with 480

nodes (a moderately sized ad hoc network), to a 10x10 unit

area with 3000 nodes (a large ad hoc network). We mea-

sured the total number of messages required by D-LDS to

construct the final topology, and divided it by the number

of nodes. The results are depicted in Figure 3(c) and they

show that the measured estimate of the constant stabilizes

to between 18 and 19 and does not change even when the

number of nodes is as high as 3000.

Convergence of D-LDS: Next we examine the conver-

gence properties of D-LDS.

Fig. 4. Time Convergence for D-LDS.

Convergence to a connected sub-graph: The unreliable

wireless channel that is considered can result in packet

losses at the link layer. This can, in turn, delay the establish-

ment of edges with D-LDS. We are interested in investigat-

ing how the connectivity of the network is affected by this

delay in edge establishment. In other words, we study the

convergence of D-LDS in terms of forming the final graph.

To understand this, we perform the following experiment.

1000 nodes are placed in a 6 by 6 unit area and we trace the

connectivity of the backbone at different stages of D-LDS

execution; at each stage, note that only a percentage of the

final set of edges is established. We investigate the impact

on the backbone connectivity only; the binary balanced trees

are constructed by nodes that are within the one hop reach

of each other, and hence, do not affect the connectivity of

the other nodes beyond their group.

The results of the experiment are shown in Table I. Note

that D-LDS can provide high connectivity even when just a

subset of edges are established. Full connectivity is practi-

cally provided even if only 70% of the edges are established.

Convergence in time: Finally, we examine the time it

takes for the backbone to converge (after the groups are

identified). This provides us with an idea of the parallelism

posible with D-LDS. We define convergence time in terms

of “the number of rounds”, where a round corresponds to

the the duration of transmission of a single message. Since

with D-LDS, edges can be inserted in parallel, we expect

the time taken for convergence to be much smaller than the

worst case O(n) bound. To corroborate this expectation, we

construct topologies of varying density in a 6 x 6 unit area.

We depict the results in Figure 4. We observe that, even with

a large number of nodes (as high as 2000), only 8 rounds are

needed for convergence. This demonstrates the high degree

of parallelism that is possible with D-LDS.

TABLE I

CONNECTIVITY AT DIFFERENT STAGES OF THE D-LDS

EXECUTION.



(a) Hop Stretch for High Density(30

nodes/ square unit)

(b) Hop Stretch for Various Densities (c) Total Number of Messages Divided

by the Number of Nodes

Fig. 3. Hop Stretch and Average Message Complexity of D-LDS for Various Topologies.

Max. Node Degree Short Links (Low Transm. Power) Hop-Stretch Message Complexity (Comm. Cost)
[4] Not bounded Yes Not bounded 2n

[11] Not bounded Yes Constant C, C > 0 O(n)

[15] 6 Yes Not bounded No claims

[16] Not bounded Yes Not bounded O(nlogn)

[21] 6 Yes Not bounded 13n

[24] (i) 12 ; (ii) 9 Yes. (Longer links in (ii)) Not bounded (i) 24n ; (ii) 3n

[17] 8 Yes Not bounded 13n

[29] 6 Yes Not bounded No claims

D-LDS 6 Yes O(hopsU DG(u, v) + log(�)) O(n)

TABLE II

COMPARISON OF TOPOLOGY CONTROL ALGORITHMS IN TERMS OF KEY FEATURES OF D-LDS.

VI. RELATED WORK

In this section we present an overview of the previous

topology control approaches.

Euclidean Spanners: Most previous work on the con-

struction of sparse and/or low-weight spanners target reduc-

ing energy consumption. A greedy centralized algorithm

is proposed in [12] for constructing a sparse, low-weighted

spanner G⌅
of an input graph G. Despite the attractive prop-

erties of G⌅
, the algorithm is inapplicable to ad hoc net-

works since it assumes that G is a complete graph (i.e., all

pairs of nodes have direct links in between), and it requires

global topology information. There is recent work that of-

fers distributed solutions to bounding the Euclidean length

of paths. In [16], the authors present a distributed algorithm

that constructs a 2.5-spanner of a UDG. However, the pro-

posed methods do not guarantee a bound on the node degree.

Topology Control Algorithms that Bound the Node
Degree: There has been prior work on constructing

bounded-degree subgraphs [15][19] [29][4][21]. The best

theoretical bound on node degree so far is 6 and is achiev-

able by the methods proposed in [15], [21], [29]. Compu-

tational geometric constructions such as Delaunay Triangu-

lation (DT) [16], [11], [1] and the Relative Neighborhood

Graph (RNG)[21] have been considered for localized topol-

ogy control. The properties of these structures allow im-

posing bounds on energy-consumption or maximum node

degree [10]. The proposed algorithms however, do not ad-

dress hop stretch in terms of hop-count.

Algorithms that Construct Euclidean Spanners with
Bounded Node Degree: There are prior efforts on design-

ing Euclidean spanners to achieve sparseness, low weight

and bounded degree [3], [2], [10], [23]. However, the pro-

posed algorithms were not designed for UDGs; furthermore,

it is assumed that global topology information is available

at the nodes. Such limitations render these algorithms in-

appropriate for ad hoc networks. More recently, there have

been efforts to control the energy consumption in a given

wireless network. The centralized algorithm proposed in

[5] constructs a t-spanner of the complete input graph, with

t ⌃ 10.02; however, the degree bound achieved is 27.

The centralized algorithm proposed in [20] achieves a de-

gree bound of 19 + �2⇤
� �, where ��(0,⌅/2). A distributed

version of this algorithm is presented in [28]; the imposed

bounds are the same. In [19], the properties of the proxim-

ity structures, the Yao Graph (YG) and the Gabriel Graph

(GG), are exploited to provide a power-efficient spanner

with bounded degree; however the bounds achieved for the

in-degree and the out-degree are 63 and 7, respectively. The

algorithm proposed in [24] constructs a Euclidean span-

ner; however, the tightest degree bound achieved is strictly

higher than 8. This degree bound has been improved to 8 by

Li et. al in [17]; the proposed algorithm constructs energy-

efficient topologies for both unicast and broadcast commu-

nications.

Topology Control for Bounded Hop Stretch: In [1], Al-

zoubi et.al. propose a localized algorithm that builds a sub-



graph with a hop stretch of 3, but no degree bound is im-

posed. (The algorithm provides a degree bound on a back-

bone constructed on the input graph G; however, the bounds

are very large: 295 for the dominators and 7384 for the con-
nectors, and are not imposed on the final topology.). In [11],

Gao et al. propose a distributed algorithm that constructs

a spanner in terms of both Euclidean and topological dis-

tances. In [6], Burkhart et al. propose an algorithm which,

given a parameter t, can construct a minimum-interference

Euclidean t-spanner of the UDG. (The authors indicate that

their results are extendable to hop spanners with slight mod-

ifications.). However both [6] and [11] do not study bound-

ing the node degree.

In summary, despite the existence of previous work that

optimize the Euclidean path stretch and the node degree,

there are no algorithms, to the best of our knowledge, that

impose bounds on both the node degree and the hop stretch.

Furthermore, our work distinguishes itself from the previ-

ous efforts by achieving the most attractive bounds to date

on these two metrics. In Table VI, we list the distributed,

locally-maintained topology control algorithms to provide a

compact view of what each scheme achieves; the table also

shows that D-LDS compares favorably with these solutions.

VII. CONCLUSIONS

In this paper, we propose algorithms (a centralized and

a distributed version) for the construction of a bounded-

degree spanner with a low hop stretch for ad hoc networks.

These features are highly desirable especially with special-

ized physical layer capabilities such as directional antennas

or MIMO. Our approach leads to the construction of a span-

ner with a maximum node degree of 6. In addition, our ap-

proach offers bounded path stretch in terms of hop count.
If the original path length in terms of hop count is P , the

new path length is O(hops(P ) + log �) (where, � is the

maximum degree of a node in the input graph) in the worst

case. We extensively simulate our distributed algorithm D-

LDS. Our simulations demonstrate that D-LDS constructs

topologies with extremely low average path stretch in typi-

cal ad hoc network deployments. The induced node degree

is also typically much smaller than the theoretical bound 6
in typical deployments.
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