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Abstract In the k-median problem we are given sets of facilities and customers, and
distances between them. For a given set F of facilities, the cost of serving a customer
u is the minimum distance between u and a facility in F . The goal is to find a set F

of k facilities that minimizes the sum, over all customers, of their service costs.
Following the work of Mettu and Plaxton, we study the incremental medians prob-

lem, where k is not known in advance. An incremental algorithm produces a nested
sequence of facility sets F1 ⊆ F2 ⊆ · · · ⊆ Fn, where |Fk| = k for each k. Such an
algorithm is called c-cost-competitive if the cost of each Fk is at most c times the
optimum k-median cost. We give improved incremental algorithms for the metric
version of this problem: an 8-cost-competitive deterministic algorithm, a 2e ≈ 5.44-
cost-competitive randomized algorithm, a (24 + ε)-cost-competitive, polynomial-
time deterministic algorithm, and a 6e + ε ≈ 16.31-cost-competitive, polynomial-
time randomized algorithm.

We also consider the competitive ratio with respect to size. An algorithm is s-size-
competitive if the cost of each Fk is at most the minimum cost of any set of k facili-
ties, while the size of Fk is at most sk. We show that the optimal size-competitive
ratios for this problem, in the deterministic and randomized cases, are 4 and e.
For polynomial-time algorithms, we present the first polynomial-time O(logm)-
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size-approximation algorithm for the offline problem, as well as a polynomial-time
O(logm)-size-competitive algorithm for the incremental problem.

Our upper bound proofs reduce the incremental medians problem to the following
online bidding problem: faced with some unknown threshold T ∈ R

+, an algorithm
must submit “bids” b ∈ R

+ until it submits a bid b ≥ T , paying the sum of all its bids.
We present folklore algorithms for online bidding and prove that they are optimally
competitive.

We extend some of the above results for incremental medians to approximately
metric distance functions and to incremental fractional medians. Finally, we consider
a restricted version of the incremental medians problem where k is restricted to one of
two given values, for which we give a deterministic algorithm with a nearly optimal
cost-competitive ratio.

1 Introduction and Summary of Results

The k-Median Problem An instance of the k-median problem is specified by a finite
set C of customers, a finite set F of facilities, and, for each customer u and facility f ,
a distance duf ≥ 0 from u to f representing the cost of serving u from f . The cost
of a set of facilities F ⊆ F is cost(F ) = ∑

u∈C duF , where duF = minf ∈F duf . For a
given k, the offline k-median problem is to compute a k-median, that is, a set F ⊆ F
of cardinality k for which cost(F ) is minimum (among all sets of cardinality k). This
minimum cost is denoted optk . An instance of the k-median problem is called metric
if the distance function is a metric (the shortest u-to-f path has length duf for each
u ∈ C and f ∈ F ).

The k-median problem is a well-known NP-hard facility location problem. Sub-
stantial work has been done on efficient approximation algorithms that, given k, find
a set Fk of k facilities of approximately minimum cost [1–3, 7–9, 17–19, 26, 30]. In
particular, for the metric version, Arya et al. [2, 3] show that, for any ε > 0, a set Fk

of cost at most (3 + ε)optk can be found in polynomial time.

Incremental Medians The incremental medians problem is a version of the k-
median problem where k is not specified in advance [27, 28]. Instead, authorizations
for additional facilities arrive over time. Given an instance of the k-median prob-
lem, a (possibly randomized) algorithm produces a sequence F̄ = (F1,F2, . . . ,Fn)

of facility sets, where F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ F , and |Fk| ≤ k for all k.
In general, in an incremental solution, the Fk’s cannot all simultaneously have

minimum cost. An algorithm is said to be c-cost-competitive, or to have cost-
competitive ratio of c, if it produces a (possibly random) sequence F̄ of sets which
is c-cost-competitive, that is, such that for each k, the set Fk has size at most k and
(expected) cost at most c · optk .

Alternatively, an algorithm is s-size-competitive if it produces a (possibly random)
sequence F̄ of sets which is s-size-competitive, that is, such that each set Fk has cost
at most optk and (expected) size at most sk.

For offline solutions we use the term “approximate” instead of “competitive”.
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Online Bidding To analyze incremental medians, we reduce the various incremental
medians problems to the following folklore online bidding problem. An algorithm
repeatedly submits “bids” b ∈ R

+, until it submits a bid b that is at least as large as
some unknown threshold T ∈ R

+. The algorithm’s cost is the sum of the submitted
bids. The algorithm is β-competitive if, for any T ∈ R

+, its cost is at most βT (or,
if the algorithm is randomized, its expected cost is at most βT ). More generally, the
algorithm may be given in advance a closed universe U ⊆ R

+, with a guarantee that
the threshold T is in U and a requirement that all bids be in U . (To handle the case
when U includes arbitrarily small positive numbers, we allow the bidding sequence
to be left-infinite—see Sect. 2 for a formal definition.)

In Sect. 2 we completely characterize optimal competitive ratios for deterministic
and randomized algorithms for online bidding:

Theorem 1 (folklore)

(a) The online bidding problem has a deterministic 4-competitive algorithm. If the
universe U is finite, this algorithm runs in time polynomial in |U |.

(b) The online bidding problem has a randomized e-competitive algorithm. If U is
finite, this algorithm runs in time polynomial in |U |.

Throughout, [n] denotes {1,2, . . . , n}.

Theorem 2 (folklore)

(a) No deterministic algorithm for online bidding is less than 4-competitive, even
when restricted to instances of the form U = [n] for some integer n.

(b) No randomized algorithm for online bidding is less than e-competitive, even when
restricted to instances of the form U = [n] for some integer n.

Portions of Theorems 1 and 2 are folklore. In particular, Theorem 1(a) uses a
doubling algorithm that has been used previously in several papers, first in [21, 29]
and later in [5, 6, 13, 15, 16]. Some of these papers also have the randomized upper
bound. We include proofs of all bounds for completeness. Our main new contribution
in this setting is Theorem 2(b), a randomized lower bound that matches the known
upper bound.

Size-Competitiveness To our knowledge, size-competitive algorithms for incremen-
tal medians have not been studied, although other online problems have been ana-
lyzed in an analogous setting of resource augmentation (e.g. [10, 20, 23]). For unre-
stricted (possibly non-polynomial-time) algorithms, we completely characterize the
optimal size-competitive ratios:

Theorem 3

(a) The incremental medians problem has a 4-size-competitive deterministic algo-
rithm.

(b) No deterministic incremental algorithm has size-competitive ratio smaller than 4.
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Theorem 4

(a) The incremental medians problem has an e-size-competitive randomized algo-
rithm.

(b) No randomized incremental algorithm has size-competitive ratio smaller than e.

We stress that the upper and lower bounds in Theorems 3 and 4 are for unrestricted
algorithms and hold for both the metric and non-metric problems.

Regarding polynomial-time algorithms, previously no polynomial-time size-
approximation algorithms for k-medians were known, even for the offline problem.
The best previous result for the offline problem is a bicriteria-approximation algo-
rithm which finds a facility set of size O(k log(m+m/ε)) and cost at most (1+ε)optk
[30] (improving on the previous work in [22, 25, 26, 30]). We first improve this result
to obtain an offline size-approximation algorithm:

Theorem 5 The offline k-median problem has a polynomial-time O(logm)-size-
approximation algorithm, where m = |C| is the number of customers.

Note that this algorithm finds a true (not bicriteria) approximate solution: a facility
set of size O(k logm) and cost at most optk . We use this result and a reduction to give
a polynomial-time size-approximation algorithm for the incremental problem:

Theorem 6 The incremental medians problem has a polynomial-time O(logm)-size-
competitive algorithm.

The bounds in Theorems 5 and 6 are optimal in the sense that no polynomial-time
algorithm (incremental or offline) is o(logm)-size-competitive unless P=NP, even for
the metric case. This follows from known results on the hardness of approximating
set cover.

Theorems 3, 4, and 6 (proven in Sect. 3) imply the size-competitive ratios shown
in Table 1.

Cost-competitive Incremental Medians For incremental medians, Mettu and Plax-
ton [27, 28] give a c-cost-competitive linear-time algorithm with c ≈ 30. We improve
this result. The problem is difficult both because (i) the solution must be incremental,
and (ii) even the offline problem is NP-hard. To study separately the effects of the two
difficulties, we consider both polynomial-time and unrestricted algorithms, proving
the following two theorems (see Sect. 4 for the proofs):

Table 1 Competitive ratios shown for incremental medians and online bidding. Ratios in bold are optimal

problem cost-competitive, metric size-competitive bidding

time polynomial unrestricted polynomial unrestricted polynomial

deterministic 24 + ε 8 O(logm) 4 4

randomized 6e + ε < 16.31 2e < 5.44 O(logm) e < 2.72 e < 2.72
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Theorem 7

(a) The metric incremental medians problem has an 8-cost-competitive deterministic
algorithm.

(b) Suppose that the offline metric k-median problem has a polynomial-time c-
cost-approximation algorithm. Then the incremental medians problem has a
polynomial-time 8c-cost-competitive deterministic algorithm.

Theorem 8

(a) The metric incremental medians problem has a 2e-cost-competitive randomized
algorithm.

(b) Suppose that the offline metric k-median problem has a polynomial-time c-
cost-approximation algorithm. Then the incremental medians problem has a
polynomial-time 2ec-cost-competitive randomized algorithm.

As it is known that there is a polynomial-time (3 + ε)-cost-approximation algo-
rithm for the metric k-median problem [2, 3], Theorems 7 and 8 imply the cost-
competitive ratios shown in Table 1.

Theorems 7 and 8 were recently and independently discovered by Lin, Nagarajan,
Rajaraman and Williamson [24]. For polynomial-time algorithms, they improve the
cost-competitive ratios further to 16 and 4e, in the deterministic and randomized
cases, respectively. (The general approach in [24] is based on the doubling method
similar to ours; the improvements were accomplished using a Lagrangian-multiplier-
preserving approximation for facility location.) They also generalize the approach to
incremental versions of k-MST, k-vertex cover, k-set cover, facility location, and to
hierarchical k-median.

λ-Relaxed Metrics Mettu and Plaxton show that their incremental medians algo-
rithm also works in “λ-approximate” metric spaces, achieving cost-competitive-ratio
O(λ4) [27, 28]. We get a similar result. Let λ ≥ 1. We say that the cost function d is a
λ-relaxed metric if dfy ≤ λ(df x + dxg + dgy) for any facilities f,g and customers x

and y. (This condition is somewhat less restrictive than the one in [27, 28]. A related
concept was studied in [14].) In Sect. 5, we prove that Theorems 7 and 8 generalize
as follows:

Theorem 9

(a) The incremental medians problem for λ-relaxed metrics has a deterministic al-
gorithm with cost-competitive ratio 8λ2.

(b) If the offline k-median problem for λ-relaxed metrics has a polynomial-time c-
cost-approximation algorithm, then the incremental version has a deterministic
polynomial-time algorithm with cost-competitive ratio 8λ2c.

Theorem 10

(a) The incremental medians problem for λ-relaxed metrics has a randomized algo-
rithm with cost-competitive ratio 2eλ2.
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(b) If the offline k-median problem for λ-relaxed metrics has a polynomial-time c-
cost-approximation algorithm, then the incremental version has a randomized
polynomial-time algorithm with cost-competitive ratio 2eλ2c.

Incremental Fractional Medians A fractional k-median x is a solution to the stan-
dard linear program relaxation for the k-median problem (see Sect. 6). In this linear
program, xuf specifies how much of the demand from customer u is served by fa-
cility f ; thus we have a constraint

∑
f ∈F xuf = 1. For each f ∈ F , the capacity

required at f is |x|f = maxu∈C xuf , and the total capacity of x is |x| = ∑
f ∈F |x|f .

(Naturally, this corresponds to the cardinality of x in the integral case.) We require
that |x| ≤ k, and the objective is to minimize the cost of x, defined by cost(x) =∑

u∈C,f ∈F duf xuf .
For two fractional medians x, x′, we say that x dominates x′ if |x′|f ≤ |x|f for

each facility f ∈F . An incremental fractional median is defined by a sequence (xk)k
of fractional k-medians, one for each k ∈ [n], where each xk+1 dominates xk , for
k > n. This sequence is c-cost-competitive if cost(xk) ≤ c · optk for each k, where
optk is the minimum cost of any (non-incremental) fractional k-median.

To prove the theorem below (see Sect. 6), we extend the proof of Theorem 8 to the
fractional case, then note that the randomized algorithm for the fractional problem
can be derandomized without increasing the competitive ratio.

Theorem 11 If the distance function is metric then there is a deterministic
polynomial-time algorithm that produces a 2e-cost-competitive incremental frac-
tional median.

One motivation for introducing fractional incremental medians (in addition to its
own independent interest) is the possibility that the above theorem, or its improve-
ments, could be used to improve the c-cost-competitive ratio for the integral case.
Note that optk ≤ optk , so if we could somehow round a fractional c-competitive in-
cremental median to an integral solution, giving up a factor of, say, 3 in the cost, then
we would have a 3c-cost-competitive deterministic algorithm for incremental medi-
ans. (See [4] for a similar approach for online problems.) However, the ratio 2e above
is insufficient for this, in that even with c = 2e, the resulting ratio 3c = 6e is larger
than the current best ratio of 16. Note that we are unlikely to lose less than a factor of
3 in rounding the fractional incremental median, as it is at least as hard as rounding a
fractional k-median.

The kl-Medians Problem A natural question to ask is whether better competitive
ratios are possible if the number of facilities can take only some limited number
of values. As shown in [27, 28], no algorithm can be better than 2-competitive even
when there are only two possible numbers of facilities, either 1 or k, for some large k.

For any 1 ≤ k < l ≤ n, we define the kl-medians problem as the restricted version
of the incremental medians problem where the number of facilities is either k or l. In
Sect. 7, we determine almost exactly the competitive ratio of the kl-medians problem
in the deterministic case:



Algorithmica (2008) 50: 455–478 461

Theorem 12 Let 1 ≤ k < l ≤ n. (a) If the distance function is metric, then there is
a deterministic kl-median algorithm with cost-competitive ratio 2 − 1/l, and (b) no
ratio better than 2 − 1/(l − k + 1) is possible.

Bicriteria Approximations We say that an algorithm for the k-median problem is
a bicriteria (c, s)-approximation algorithm if it approximates the cost within the
ratio of c and the size within the ratio of s. Such bicriteria approximation algo-
rithms for k-medians have been studied by many authors, [22, 25, 26, 30]. We re-
mark without proof that, analogously to Theorem 7 and Theorem 3, one can trans-
form any offline polynomial-time bicriteria (c, s)-approximation algorithm into a
polynomial-time incremental algorithm whose bicriteria performance guarantee is
either (c,4s) or (8c, s). For example, for metric spaces, using the approximation
results from [2, 3, 22, 25] one can obtain incremental polynomial-time algorithms
with the following respective bicriteria ratios: (3 + ε,4), (2 + ε,4(1 + 2ε−1)), and
(1 + ε,4(3 + 5ε−1)), where ε > 0.

Weighted Medians It is quite easy to see that all of the results in this paper extend
to the version of k-medians where customers are given non-negative weights. Denote
by wu the weight of u ∈ C. In this generalization, the cost of a facility set F is defined
by cost(F ) = ∑

u∈C wuduF . The results on size-competitive algorithms can be further
extended to the case where each facility f is assigned a weight wf . The definition of
the cost function remains the same. The value k represents now an upper bound on
the allowed total facility weight

∑
f ∈F wf .

2 Online Bidding

In this section we provide a complete analysis of online bidding by proving Theo-
rems 1 and 2.

Throughout the paper, R
+ denotes the set of non-negative reals, Z the set of inte-

gers, and N
+ the set of positive integers. For n ∈ N

+, let [n] = {1,2, . . . , n}.
Given a universe U which is a closed subset of R

+, an online bidding algorithm
outputs a bid set B ⊆ U . Against a particular threshold T ∈ U , the algorithm’s cost is

∑
{b ∈ B : b < T } + min{b ∈ B : b ≥ T }.

The bid set B is β-competitive if, for any T ∈ U , this cost is at most βT .

Proof of Theorem 1(a) We give a deterministic 4-competitive algorithm.
First, consider the case U = R

+. Define the algorithm to produce the set of bids
B = {0} ∪ {2i : i ∈ Z}. If the threshold T is zero, the algorithm pays zero. For
any other threshold T > 0, let p be such that T ∈ (2p−1,2p]. The algorithm pays∑

i≤p 2i = 2p+1 ≤ 4T , and thus its competitive ratio is at most 4.
Next, we reduce the general case to the case U = R

+. Let B be a 4-competitive bid
set for U = R

+. For an arbitrary closed universe U ′ ⊆ R
+, the algorithm produces the

bid set

B′ = {max(U ′ ∩ [0, b]) : b ∈ B}.
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In other words, we replace each b ∈ B with the maximum element in U ′ ∩ [0, b] (if
any). The cost incurred against any threshold T ∈ U ′ is at most the cost incurred
when using the bid set B against the same threshold T . Thus, the bid set B′ is also
4-competitive.

Note that if U is finite then for the bid set B described in the previous paragraph,
the corresponding bid set B′ can be computed in time polynomial in |U |. �

Proof of Theorem 1(b) We give a randomized e-competitive algorithm.
First, we consider the case U = R

+. The algorithm picks a real number ξ ∈ [0,1)

uniformly at random, then produces the set of bids B = {0} ∪ {eξ ei : i ∈ Z}.
We now give the analysis of this algorithm. We first observe that for any inte-

ger x, the set L = {ln(b) : b ∈ B − {0}} induces a uniform distribution in the interval
[x, x + 1), in the sense that [x, x + 1) contains exactly one element of L and this el-
ement is uniformly distributed in [x, x + 1). This immediately implies that the above
property holds in fact for any real x.

Let T > 0 be the threshold. For any constant τ , by the paragraph above, we can
equivalently describe the algorithm as producing the set of bids B = {0} ∪ {eξ+τ+i :
i ∈ Z} where ξ is distributed uniformly in [0,1). In particular, we can take τ = ln(T ).

Let b be the random variable equal to the largest bid paid by the algorithm, defined
by eξ+ln(T )+i−1 < T ≤ eξ+ln(T )+i = b, or, in other words, eξ+i−1 < e0 ≤ eξ+i =
b/T . Thus i = 0 and b/T is distributed like eξ with ξ uniform in [0,1). It follows
that the expectation of b is T

∫ 1
0 ez dz = T (e − 1), thus the expected total payment

incurred by the algorithm is E[∑∞
i=0 be−i] = E[b]e/(e−1) = eT , and the algorithm

is e-competitive.
The general case, for an arbitrary closed universe, reduces to the case U = R

+ just
as in the proof of Theorem 1(a) above. �

Proof of Theorem 2(a) We now show a deterministic lower bound matching the upper
bound.

In the simple case where U = N
+, assume (towards a contradiction) that there

exists an online algorithm with competitive ratio a < 4. Let B = {bi}i≥1 be the bid

set produced by the algorithm, sj = ∑j

i=1 bi and yj = sj+1/sj , for j ≥ 1. Against
the threshold T = bj + 1, the algorithm pays sj+1. By our assumption, sj+1 ≤
a(bj + 1) = a(sj − sj−1 + 1) for all j . Rearranging, and using sj ≥ j , we get:

(yj+1 − yj )yj ≤ −y2
j + a(sj+1 − sj + 1)yj /sj+1

= −y2
j + ayj − a(1 − 1/sj )

≤ −y2
j + ayj − a(1 − 1/j). (1)

For a < 4 and j large enough, the discriminant a2 − 4a(1 − 1/j) is negative, thus
the last expression is negative, and so the sequence (yj ) is ultimately decreasing. As
it is bounded below by 1, it converges to some limit y which, by continuity, must
satisfy 0 = (y − y)y ≤ −y2 + ay − a—a contradiction, since −y2 + ay − a < 0 for
0 < a < 4 and any y.
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In the case when U = [n], for arbitrarily large n, the proof is similar but a bit more
explicit. Let B = {bi}mi=1. We start out the same. Note that sj+1 ≤ a(bj + 1) implies
sj+1 < 8sj , and so yj < 8 for all j = 1, . . . ,m − 1.

Let j0 be the smallest positive integer such that a2 − 4a(1 − 1/j0) = −δ < 0.
Inequality (1) is valid for j = j0, . . . ,m − 2, so we have:

(yj+1 − yj )yj ≤ max
y

(−y2 + ay − a(1 − 1/j0)) = −δ/4.

Since yj ≤ 8, the above inequality implies that yj+1 − yj ≤ −δ/32. Therefore, for
j = j0, . . . ,m − 1, we have 1 ≤ yj ≤ yj0 − (j − j0)δ/32 ≤ 8 − (j − j0)δ/32, so, in
particular, m ≤ j0 +1+224/δ. Since bm = n (otherwise, B would not be competitive
at all), b1 ≤ 8, and bj+1 ≤ 8bj for all j = 1, . . . ,m − 1, we get n ≤ 8j0+1+224/δ ,
contradicting our assumption that n can be arbitrarily large. �

Proof of Theorem 2(b) We now show a randomized lower bound matching the upper
bound. The proof consists of the two lemmas below.

Lemma 1 Let n ∈ N
+. Suppose that there are μ : [n] → R

+ and π : [n] → R
+ that

satisfy

n∑

T =t

1

T
π(T ) ≥ 1

b

b∑

T =t

μ(T ) ∀b, t : 1 ≤ t ≤ b ≤ n. (2)

Then any randomized β-competitive online bidding algorithm for U = [n] must have

β ≥
∑n

T =1 μ(T )
∑n

T =1 π(T )
. (3)

Proof Consider a β-competitive randomized algorithm for U , and let B = {b1, b2,

. . . , bm} be the ordered (random) sequence of bids produced by the algorithm. With-
out loss of generality, bm = n.

For t ≤ b, let X(t, b) be the characteristic function of the event that t − 1 and b

are consecutive elements of {0} ∪ B. The algorithm pays
∑

t≤T

∑
b bX(t, b) against

threshold T . Since it is β-competitive, this is at most βT in expectation. Since the
algorithm only stops when reaching a bid greater than or equal to T , we must al-
ways have

∑
t,b:t≤T ≤b X(t, b) ≥ 1. Hence, together with β , the expectation x(t, b) of

X(t, b) must form a feasible solution to the following linear program (LP):

minimizeβ,x β subject to

⎧
⎪⎪⎨

⎪⎪⎩

β − ∑n
b=1

b
T

∑T
t=1 x(t, b) ≥ 0 ∀T ∈ [n],

∑n
b=T

∑T
t=1 x(t, b) ≥ 1 ∀T ∈ [n],

x(t, b) ≥ 0 ∀t, b ∈ [n].
Thus, the value of (LP) is a lower bound on the optimal competitive ratio of the
randomized algorithm. To get a lower bound on the value of (LP), we use the dual
(DLP) (where the dual variables π(T ) correspond to the first set of constraints and
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μ(T ) to the second set of constraints):

maximizeμ,π

n∑

T =1

μ(T ) subject to

⎧
⎪⎪⎨

⎪⎪⎩

∑n
T =1 π(T ) ≤ 1,

∑b
T =t μ(T )− ∑n

T =t
b
T

π(T ) ≤ 0 ∀t, b ∈ [n],
μ(T ),π(T ) ≥ 0 ∀T ∈ [n].

Now, given any μ and π meeting the condition of the lemma, if we scale μ

and π by dividing by
∑

T π(T ), we get a feasible dual solution whose value is∑
T μ(T ) /

∑
T π(T ), and the lemma follows. �

Lemma 2 There exist μ : [n] → R
+ and π : [n] → R

+ satisfying Condition (2) of
Lemma 1 and such that

∑n
T =1 μ(T )/

∑n
T =1 π(T ) ≥ (1 − o(1))e as n → ∞.

Proof Fix U arbitrarily large and let n = U2 logU�. Let α > 0 be a constant to be
determined later. We will choose α so that Condition (2) holds, and then show that
the corresponding lower bound is e(1 − o(1)) as U → ∞. Define

μ(T ) =
{

α/T if U ≤ T ≤ U2,

0 otherwise
and π(T ) =

{
1/T if U ≤ T ≤ U2 logU,

0 otherwise.

If t > U2, then the right-hand side of Condition (2) has value 0, so the condition
holds trivially. On the other hand, since π(T ) and μ(T ) are zero for T < U , if the
condition holds for t = U , then it also holds for t < U . So, we need only verify the
condition for t in the range U ≤ t ≤ U2. The expression on the left-hand side of (2)
then has value

U2 logU∑

T =t

1

T 2
≥

∫ 1+U2 logU

t

1

T 2
dT = 1

t
− 1

1 + U2 logU

≥ 1

t

(

1 − U2

1 + U2 logU

)

≥ 1

t
(1 − o(1)).

In comparison, the expression on the right-hand side has value at most

max
b≥t

1

b

b∑

T =t

α

T
≤ α max

b≥t

1

b

∫ b

t−1

1

T
dT = α max

b≥t

1

b
ln

b

t − 1
= α

e t (1 − o(1))
.

(The second equation follows by calculus, for the maximum occurs when b =
e(t − 1).) Thus, Condition (2) is met for α = (1 − o(1))e. Denoting by Hj the j th
harmonic number, we have Hj = (1 + o(1)) ln(j). Using this and the bounds derived
above we get

∑
T μ(T )

∑
T π(T )

=
∑U2

T =U α/T
∑U2 logU

T =U 1/T
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= (1 − o(1))e · HU2 − HU−1

HU2 logU − HU−1

≥ (1 − o(1))e · ln(U2/(U − 1))

ln((U2 logU)/(U − 1))
≥ (1 − o(1))e

completing the proof of the lemma. �

Using the functions μ and π from Lemma 2 in Lemma 1, we obtain a lower bound
of β ≥ (1 − o(1))e on the competitive ratio, and Theorem 2 follows. �

3 Incremental Size-Competitive Medians

In this section we prove Theorems 3, 4, 5, and 6. The proofs are based on the re-
duction shown in the next lemma. We show that from a β-competitive algorithm for
online bidding, and a c-size-approximation algorithm for the offline k-median prob-
lem, we can construct a cβ-size-competitive algorithm for the incremental medians
problem. This reduction works even for the non-metric case. The reduction takes
polynomial time, so, if the offline size-approximation algorithm runs in polynomial
time, the reduction yields a polynomial-time size-competitive algorithm. Likewise, if
the online bidding algorithm is randomized then the size-competitive algorithm will
be randomized.

Lemma 3 Assume that for each k we have a set of facilities F ∗
k of size at most sk

and cost at most optk . Let β ≥ 1.
Suppose that there exists a (randomized) polynomial-time β-competitive algorithm

for online bidding. Then, in (randomized) polynomial time, we can compute an incre-
mental solution F̄ = (F1, . . . ,Fn) where each Fk has cost at most optk and (expected)
size at most βsk.

Proof We give the proof for the deterministic case. (The proof in the randomized
setting is an easy extension, and we omit it.) Let U = [n] and take B to be the set
of bids used by the β-competitive online bidding algorithm for universe U . Let Bk

be the set of bids issued against threshold T = k. We define Fk = ⋃
b∈Bk

F ∗
b . Note

that Bj ⊆ Bj+1 for all j < n, and so F̄ is indeed an incremental solution. Further, Fk

contains F ∗
b for some b ≥ k, so cost(Fk) ≤ cost(F ∗

b ) ≤ optb ≤ optk . Finally, |Fk| ≤∑
b∈Bk

|F ∗
b | ≤ ∑

b∈Bk
sb ≤ sβk since B is β-competitive. �

Proof of Theorems 3(a) and 4(a) By Theorems 1(a), and 2(a), there are determinis-
tic and randomized algorithms for online bidding with competitive ratios of 4 and e,
respectively. Using these online bidding algorithms, and taking each F ∗

k to be the
optimal k-median, the reduction in Lemma 3 gives a 4-size-competitive determinis-
tic algorithm and an e-size-competitive randomized algorithm for incremental medi-
ans. �

Next, we turn our attention to the proof of Theorem 3(b), our lower bound on
the size-competitiveness of unrestricted algorithms for incremental medians. We do
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this by showing the converse of the reduction in Lemma 3. That is, we show that
competitive online bidding reduces to size-competitive incremental medians:

Lemma 4 Let s ≥ 1 and assume that, for incremental medians (metric or not), there
is a (possibly randomized) s-size-competitive algorithm. Then, for any integer n, there
is a (randomized) s-competitive algorithm for online bidding with U = [n].

Proof We give the proof in the deterministic setting. (The proof in the randomized
setting is an easy extension, and we omit it.) For any arbitrarily large m, we construct
a set C of customers, a set F of facilities, and a metric distance function duf , for u ∈ C
and f ∈ F . The facility set F will be partitioned into disjoint sets M1,M2, . . . ,Mm,
where |Mk| = k for each k, with the following property:

(∗) For all k, and for every set F of facilities, if cost(F ) ≤ cost(Mk) then there exists

 ≥ k such that M
 ⊆ F .

Notice that the condition (∗) implies that cost(Mk) > cost(Mk+1) for k < m, and that
each Mk is the unique optimum k-median.

Assume for the moment that there exists such a metric space, and consider an
s-size-competitive incremental median F̄ = (F1, . . . ,Fm) for it. This means that for
each k we have |Fk| ≤ βk and that Fk satisfies condition (∗).

Let B = {k : Mk ⊆ Fk}. We show that B is an s-competitive bid set for universe
U = [m]. For k = m, (∗) implies that Mm ⊆ Fm, and thus B �= ∅. Against any thresh-
old T ∈ [m], the total of the bids paid will be

C =
∑

{k : k < T,Mk ⊆ Fk} + min{
 : 
 ≥ T ,M
 ⊆ F
}.

Now,
∑{k : k < T,Mk ⊆ Fk} ≤ ∑{k : k < T,Mk ⊆ FT } since F̄ is a nested se-

quence. Similarly, we have min{
 : 
 ≥ T ,M
 ⊆ F
} ≤ min{
 : 
 ≥ T ,M
 ⊆ FT }.
Note that by (∗), M
 ⊆ FT for some 
 ≥ T , so the minimum on the right is well-
defined for T ∈ [m]. Thus we can bound the cost of B as follows:

C ≤
∑

{k : k < T,Mk ⊆ FT } + min{
 : 
 ≥ T ,M
 ⊆ FT }
=

∑
{|Mk| : k < T,Mk ⊆ FT } + min{|M
| : 
 ≥ T ,M
 ⊆ FT }

because |Mk| = k

≤
∑

{|Mk| : Mk ⊆ FT }
≤ |FT | since the Mk’s are disjoint

≤ sT since F̄ is s-size-competitive.

Thus, the bid set B is s-competitive for universe U = [m].
We now present the construction of the metric space satisfying condition (∗). Let

C = [1] × [2] × . . . × [m], that is, C is the set of integer vectors ū = (u1, u2, . . . , um)

where u
 ∈ [
] for all 
 = 1,2, . . . ,m. For each 
 ∈ [m], introduce a set M
 =
{f
,1, f
,2, . . . , f
,
}, and for each node ū in C, connect ū to f
,u


with an edge of
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length δ
 = 1 + (m!)−
. The set of facilities is F = ⋃m

=1 M
. All distances between

points in C ∪ F other than those specified above are determined by shortest-path
lengths. Since 1 < δ
 ≤ 2 for all 
, the resulting distance function satisfies the trian-
gle inequality.

We have cost(Mj ) = m!δj for each j ∈ [m]. We prove (∗) by contradiction. Fix
some index j and consider a set F ⊆ F that does not contain M
 for any 
 ≥ j :
for each 
 ≥ j there is i
 ≤ 
 such that f
,i
 /∈ F . Define a customer ū as follows:
ui = 1 for 
 = 1, . . . , j − 1 and ui = i
 for 
 = j, . . . ,m. Then the facility f
,i ∈ F

serving this ū must have 
 < j or i �= i
. Either way, it is at distance at least δj−1
from ū. Since every other customers pays strictly more than 1, we get cost(F ) >

m! − 1 + δj−1 = m!δj = cost(Mj )—a contradiction. �

Proof of Theorems 3(b) and Theorem 4(b) Lemma 4 and the lower bounds for online
bidding in Theorem 2 immediately imply Theorems 3(b) and 4(b). �

Next we turn attention to polynomial-time algorithms. First, we prove Theo-
rem 5—that there exists a polynomial-time O(logm)-size-approximation algorithm
for the offline problem. We will give a polynomial-time algorithm that, given k and a
problem instance, finds a facility set of size O(k logm) and cost at most optk . (Here
m = |C| is the number of customers.)

Proof of Theorem 5 Without loss of generality, we assume that each customer has
distance 0 to its closest facility. (Otherwise, for each customer u we can subtract duF
from the distance duf to each facility. This decreases the cost of each facility set by
a uniform amount, so any solution having optimal cost in the modified instance will
also have optimal cost in the original instance.)

The algorithm first runs the bicriteria approximation algorithm from [30] that, in
time O(k(m+n) log(m/ε)), finds a facility set of size O(k log(m+m/ε)) and cost at
most (1+ε)optk . This algorithm is run with ε = 1/m. As a result, we obtain a facility
set F of size O(k logm) and cost at most (1 + 1/m)optk . We then greedily add to F

a single facility f that minimizes cost(F ∪ {f }). The algorithm returns F ∪ {f }.
To finish, we show that the facility set F ∪ {f } has size O(k logm) and cost at

most optk . The size bound is immediate from the size bound on F . To show the cost
bound, note that if we add to F , for the customer contributing the maximum amount
to the current cost, the closest facility f to that customer, the cost for that customer
would decrease to 0. (Recall our assumption that duF = 0 for each customer u.) Thus,
adding this f decreases the overall cost by at least the current cost times 1/m, and
we get cost(F ∪ {f }) ≤ (1 − 1/m)cost(F ) ≤ (1 − 1/m)(1 + 1/m)optk ≤ optk . �

By the reduction in Lemma 3, this gives a polynomial-time size-approximation
algorithm for the incremental problem:

Proof of Theorem 6 By Theorem 1(a), there is a deterministic polynomial-time algo-
rithm for online bidding with competitive ratio O(1). Using this online bidding algo-
rithm, and using Theorem 5 to compute an O(logm)-size-approximate k-median F ∗

k

for each k, the reduction in Lemma 3 gives an O(logm)-size-competitive determin-
istic polynomial-time algorithm for incremental medians. �
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4 Incremental Cost-Competitive Medians

In this section we prove Theorems 7 and 8.
In the analysis we will use the following fact, whose proof can be found in [12]

and is also implicit in [19]. (See also Sects. 5 and 6 for generalizations with proofs.)
Given two sets of facilities A and B , let Γ (A,B) be a set C ⊆ B of cardinality at most
|A| defined as follows. For each facility g ∈ A, choose a single customer r(g) ∈ C to
be defined shortly, and let f be the facility of B serving r(g). We define C to be the
set of such f ’s as g spans A, where r(g) is chosen so as to minimize dgr(g) + dr(g)f .

It will be convenient to introduce distances between facilities: given two f,g ∈ F ,
let dfg = minx∈C(df x + dxg). For f ∈ F and F ⊆ F , define the distance from f to
F by df F = ming∈F dfg . In other words, in order to define C, for each a ∈ A we add
to C an element of B closest to a.

Fact 1 Let 1 ≤ h < k ≤ n, and assume that the distance function is metric. Consider
an h-median A and a k-median B , and let C = Γ (A,B). Then |C| ≤ h, and C is a
subset of B such that for every customer u we have duC ≤ 2duA + duB .

This implies cost(C) ≤ cost(B) + 2cost(A).
To prove Theorems 7 and 8, the argument is based on another reduction from

incremental medians to online bidding, presented in the lemma below. This implies
the theorems.

Lemma 5 Consider an instance of the metric medians problem. Assume that for each
k we have a set of facilities F ∗

k of size at most k and cost at most c · optk . Let β ≥ 1.
Assume that we have a (randomized) polynomial-time β-competitive algorithm for
online bidding. Then in (randomized) polynomial time we can compute an incremen-
tal solution F̄ = (F1, . . . ,Fn), where each Fk has size at most k and (expected) cost
at most 2βc · optk .

Proof Without loss of generality cost(F ∗
k ) ≥ cost(F ∗

k+1) for all k < n. The algorithm
constructs the incremental solution F̄ from F ∗

1 , . . . ,F ∗
n in several steps. First, fix

some indices 1 = κ(1) < κ(2) < · · · < κ(m) by a method to be described later, and
let K ⊆ [n] denote the set of indices.

Next, compute the sets Fκ(i) as follows. Fκ(m) = F ∗
κ(m). For i = m − 1,m −

2, . . . ,1, inductively define Fκ(i) to contain the facilities within Fκ(i+1) that are “clos-
est” to F ∗

κ(i) in the following sense. With the Γ (·, ·) notation seen above, we define
Fκ(i) = Γ (F ∗

κ(i),Fκ(i+1)). Directly from the definition, |Fκ(i)| ≤ |F ∗
κ(i)| ≤ κ(i).

Finally, for indices k /∈ K, define Fk = Fκ(i), where i is maximum such that
κ(i) ≤ k (this i is well defined, since κ(1) = 1.) Obviously, |Fk| ≤ κ(i) ≤ k. To com-
plete the construction, it remains to describe how to compute K, which we momen-
tarily defer.

To analyze the cost, for a given k, let i be maximum such that κ(i) ≤ k. From
the definition of Fκ(i) and Fact 1 summed over all u ∈ C, we have: cost(Fκ(i)) ≤
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2cost(F ∗
κ(i)) + cost(Fκ(i+1)). Applying this inequality repeatedly gives:

cost(Fk) = cost(Fκ(i)) ≤ 2
m∑

j=i

cost(F ∗
κ(j)).

To complete the proof of the lemma, it suffices to define K so that

m∑

j=i

cost(F ∗
κ(j)) ≤ βcost(F ∗

k ) (4)

since this will imply cost(Fk) ≤ 2βcost(F ∗
k ) ≤ 2βc · optk .

We now prove (4). Let U = {cost(F ∗
k ) : 1 ≤ k ≤ n} and take B to be the set of

bids used by the β-competitive online bidding algorithm for universe U . We define
K = {κ : cost(F ∗

κ ) ∈ B}, with ties broken in favor of smaller indices (ties may happen
if several sets of facilities have the same cost). Note that with this tie-breaking rule,
we always have 1 ∈ K. (If the online bidding algorithm is randomized, then B and
therefore K are random.) Then the left-hand side of (4) is exactly the sum of the
bids paid by the online bidding algorithm for threshold T = cost(F ∗

k ). Since B is β-
competitive, this cost is at most β cost(F ∗

k ), so (4) holds. This completes the proof. �

The algorithm of Theorem 7(a) is obtained by combining the reduction used in
the proof of Lemma 5 with the deterministic 4-competitive online bidding algorithm
given in the proof of Theorem 1(a). The resulting algorithm is detailed in the dis-
played Algorithm 1.

Algorithm 1 The 8-cost-competitive deterministic incremental median algo-
rithm

for all k = 1, . . . , n, do

compute a k-median solution F ∗
k

end for

K ← {1}
for all k = 2, . . . , n, do

if cost(F ∗
k
) = 0 < cost(F ∗

k−1) then add k to K
if cost(F ∗

k
) > 0 then if log cost(F ∗

k
)� < log cost(F ∗

k−1)� then add k to K
end for


 ← max(K); F
 ← F ∗



for all k = 
 + 1, . . . , n do Fk ← F


for each k ∈ K− {max(K)}, in decreasing order do

Fk ← Γ (F ∗
k
,F
)

for all k′ = k + 1, . . . , 
 − 1 do Fk′ ← Fk


 ← k

end for
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Fig. 1 Illustration of Lemma 6

5 λ-Relaxed Metrics

In this section we prove Theorem 9, namely the upper bounds for cost-competitive
ratios when the distance function is a λ-relaxed metric. For λ ≥ 1, by a λ-relaxed
metric, we mean a distance function that satisfies dyf ≤ λ(dxf + dxg + dyg) for all
f,g ∈F and x, y ∈ C.

We start with a generalization of Fact 1 from the previous section. Recall that
Γ (A,B) is the set of up to |A| elements of B that are closest to the elements of A

(see the definition in previous section.)

Lemma 6 Assume that the distance function is a λ-relaxed metric. Given two sets
of facilities A and B , let C = Γ (A,B). Then for every customer u ∈ C we have
duC ≤ 2λduA + λduB .

Proof For a given u ∈ C, choose a ∈ A such that duA = dua , b ∈ B such that duB =
dub, and c ∈ C such that daB = dac. (See Fig. 1.) By the definition of the λ-relaxed
metric, for every customer x ∈ C we have duc ≤ λ(dua + dxa + dxc). There is x ∈ C
for which dac = dxa + dxc , and choosing this x we get duc ≤ λ(dua + dac). Thus:

duC ≤ duc ≤ λ(dua + dac) ≤ λ(dua + dab) ≤ λ(dua + (dua + dub))

= 2λduA + λduB,

completing the proof. �

Proof of Theorem 9 The algorithm used to prove Theorem 9 is the same as in the
metric case (see the proof of Lemma 5), except for the definition of B. Let U =
{cost(F ∗

k ) : 1 ≤ k ≤ n}.
B contains 0 iff U does, plus the following elements: in the deterministic case, for

every i ∈ Z, B contains the maximum element in the set U ∩ [0, (2λ)i] (if it is non-
empty); in the randomized case, pick a real number ξ ∈ (0,1] uniformly at random,
and for every i ∈ Z, B contains the maximum element in the set U ∩ [0, eξ (eλ)i] (if
it is non-empty).

The analysis is similar to the proof of Theorem 7. Let K = {κ(i) : 1 ≤ i ≤ |B|} be
defined from U and B as in the proof of Theorem 7. Choose i to be the maximum
index such that κ(i) ≤ k. From Lemma 6 summed over u ∈ C, we have: cost(Fκ(i)) ≤
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2λcost(F ∗
κ(i)) + λcost(Fκ(i+1)). Applying this inequality repeatedly gives

cost(Fk) = cost(Fκ(i)) ≤ 2λ

m∑

j=i

λj−icost(F ∗
κ(j)).

To continue the analysis in the deterministic case, let p be such that (2λ)p−1 <

cost(F ∗
κ(i)) ≤ (2λ)p . By the definition of κ(i), we have:

cost(Fk) ≤ 2λ
∑

j≥i

λj−i (2λ)p−j+i = 2(2λ)(2λ)p ≤ 8λ2cost(F ∗
k ),

since k < κ(i + 1) and so cost(F ∗
k ) ≥ (2λ)p−1. Hence our algorithm is 8λ2-cost-

competitive when F ∗
k is the optimal k-median and is 8λ2c-cost-competitive when F ∗

k

is a c-approximation.
In the randomized case, let p such that eξ (eλ)p−1 < cost(F ∗

κ(i)
) ≤ eξ (eλ)p . By

the definition of κ(i), we have:

cost(Fk) ≤ 2λeξ
∑

j≥i

λj−i (eλ)p−j+i = 1

1 − 1/e
2λeξ (eλ)p.

As in the proof of Theorem 1(b), the expected value of eξ (eλ)p/cost(F ∗
k ) is distrib-

uted like eξλ where ξ is uniform in (0,1], so

E[cost(Fk)] ≤ 1

1 − 1/e
(2λ)cost(F ∗

k )λ(e − 1) = 2eλ2cost(F ∗
k ),

and the theorem follows. �

6 Incremental Fractional Medians

In this section we prove Theorem 11.
A fractional k-median is given by a feasible solution to the following linear pro-

gram relaxation of the standard k-median integer linear program:

minimizex,y

∑

f ∈F ,u∈C
duf xuf subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
f ∈F xuf = 1 ∀u ∈ C,

xuf ≤ yf ∀u ∈ C, f ∈ F ,
∑

f ∈F yf ≤ k,

xuf ≥ 0 ∀u ∈ C, f ∈ F .

In this section we let x denote a fractional median. The capacity required by x at f

is defined as |x|f = maxu∈C xuf (essentially, the value of yf in the linear program).
The total capacity required by x is |x| = ∑

f ∈F |x|f , and the cost of x is the objective
function value cost(x) = ∑

f ∈F ,u∈C duf xuf . Recall that for two fractional medians
x, x′, we say that x dominates x′ if |x′|f ≤ |x|f for all f ∈F .
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Lemma 7 Let 1 ≤ h ≤ k ≤ n, and assume that the distance function is metric. Con-
sider two fractional medians, a fractional k-median x and a fractional h-median z.
There exists a fractional h-median x′ dominated by x such that cost(x′) ≤ cost(x) +
2 · cost(z).

Proof Construct x′ as follows. For each facility g ∈ F , choose (by a method to be
described later) a single customer r(g) ∈ C “responsible” for g. For each u ∈ C and
f ∈F , take x′

uf = ∑
g∈F zugxr(g)f .

For each u ∈ C, applying the first constraint of the above linear program, we have∑
f ∈F x′

uf = ∑
f,g∈F zugxr(g)f = ∑

g∈F (
∑

f ∈F xr(g)f )zug = ∑
g∈F zug = 1, so x′

is a valid fractional median (for some capacity value).
Next we prove that |x′| is a fractional h-median. The intuition is that “routing” x′

through z (as described later) ensures this. To prove that x′ is a h-median, we bound
the total capacity required by x′:

|x′| =
∑

f ∈F
max
u∈C

∑

g∈F
zugxr(g)f ≤

∑

g,f ∈F
max
u∈C

zugxr(g)f

=
∑

g∈F

(∑

f ∈F
xr(g)f

)

max
u∈C

zug =
∑

g∈F
max
u∈C

zug = |z| ≤ h.

We now claim that the fractional median x′ is dominated by x. Indeed, fixing an
f ∈ F , for any u ∈ C we have x′

uf = ∑
g∈F zugxr(g)f ≤ ∑

g∈F zug · maxw∈C xwf ≤
maxw∈C xwf = |x|f ; therefore |x′|f ≤ |x|f , as claimed.

To finish the proof, we show that we can choose the responsible customers so that
cost(x′) ≤ 2cost(z) + cost(x). Consider choosing r(g) randomly for each g ∈F so
that Pr[r(g) = w] = zwg/

∑
u∈C zug (if the denominator is zero, choose r(g) arbitrar-

ily). Now bound the expected cost of x′ as follows. Imagine “routing” one unit of
weight from each customer u ∈ C to the facilities in stages: (stage 1) send zug units
from each u ∈ C to each g ∈F ; (stage 2) from each g ∈ F , send all arriving weight to
r(g) ∈ C; (stage 3) from each w ∈ C, split all arriving weight and send an xwf fraction
to each f ∈F .

For each u ∈ U and f ∈ F , an easy calculation shows that for every choice of
r(g), x′

uf units of the weight that leaves u at the start end up at f at the end.
Since duf ≤ dug + dr(g)g + dr(g)f , the cost of x′ is at most the sum of the costs of

the stages, where the cost of sending weight between any u ∈ C and any f ∈ F in a
stage is duf per unit.

The first stage costs
∑

u∈C,g∈F dugzug = cost(z).
In the second stage, for each g ∈F , the total weight to be sent is

∑
u∈C zug . There-

fore, with the random choice of r(g), the expected weight sent to any given w ∈ C
is (

∑
u∈C zug)Pr[r(g) = w] = zwg (using the definition of r(g)). Thus, the expected

cost of the second stage is
∑

g∈F ,w∈C dwgzwg = cost(z).
In the third stage, for each w ∈ C, the expected weight to be split and sent on is∑
g∈F zwg = 1 (using from above that the expected weight sent from g ∈ C to w in

the second stage is zwg). The fraction of this weight sent to each f ∈F is xwf , so the
expected weight sent from w to f is xwf . Thus, the expected cost of the third stage
is

∑
w∈C,f ∈F dwf xwf = cost(x).
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In sum, the expected total cost of the stages is at most 2cost(z) + cost(x). Since
the cost of the stages is an upper bound on the expectation of cost(x′), we conclude
E[cost(x′)] ≤ 2cost(z) + cost(x). So there is some way to choose the responsible
customers so that cost(x′) ≤ 2cost(z) + cost(x). �

Proof of Theorem 11 With the lemma in place, the proof of the theorem is essentially
the same as the proof of Theorems 7 and 8, along with a minor observation about
fractional strategies being closed under randomization. More precisely, recall that a
c-cost-competitive incremental fractional median gives, for every integer k ∈ [n], a
fractional k-median xk with cost(xk) ≤ c · optk , such that xk is dominated by xk+1

for all k < n.
We first show that a c-cost-competitive fractional median with the minimum ratio

c can be computed in polynomial time using linear programming as follows. For each
k ∈ [n], compute optk (using linear programming). Then, set up a linear program that
has the following constraints: (i) the fractional k-median constraints for each xk ,
(ii) the incrementality constraints saying that each xk+1 dominates xk for k < n, and
(iii) the cost-competitiveness constraints saying that cost(xk) ≤ c · optk , for each k.
The objective function is to minimize c. The solution of this linear program is a c-
cost-competitive incremental fractional median with minimum c.

It remains to show that c ≤ 2e, by proving that there exists a 2e-cost-competitive
fractional incremental median. We first show that c ≤ 8, using the existence of a
deterministic 4-competitive online bidding algorithm.

First, fix some indices 1 = κ(1) < κ(2) < · · · < κ(m) by a method to be described
later, and let K ⊆ [n] denote this set of indices.

Next, compute the fractional medians xk as follows. Let zk denote an optimal
fractional k-median. We initialize xκ(m) = zκ(m). Then, for i = m − 1,m − 2, . . . ,1,
inductively define xκ(i) to be a minimum-cost fractional κ(i)-median among those
dominated by xκ(i+1). Finally, for indices k /∈ K, define xk = xκ(i), where i is maxi-
mum such that κ(i) ≤ k. To complete the construction, it remains to describe how to
compute K, which we momentarily defer.

To analyze the required capacity, note that for κ(i) ≤ k < κ(i + 1) we have |xk| =
|xκ(i)| ≤ κ(i) ≤ k, and thus xk is indeed a fractional k-median.

To analyze the cost, for a given k, let i be maximum such that κ(i) ≤ k. From
Lemma 7 we have cost(xκ(i)) ≤ cost(xκ(i+1)) + 2 · optκ(i). Applying this inequality
repeatedly gives:

cost(xk) = cost(xκ(i)) ≤ 2
m∑

j=i

optκ(j). (5)

To complete the proof, it suffices to define K so that

m∑

j=i

cost(xκ(j)) ≤ βcost(zk) (6)

since this will imply cost(xk) ≤ 2βcost(zk) ≤ 2βc · optk .
We will now prove (6) for β = 4. Let U = {optk : 1 ≤ k ≤ n} and take B to be

the set of bids used by the 4-competitive online bidding algorithm for universe U .
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Let K = {κ(i) : 1 ≤ i ≤ m} be a minimal set (containing 1) such that B = {optκ(i) :
1 ≤ i ≤ m} (breaking ties in favor of smaller indices). Then the left hand side of (6)
is exactly the sum of the bids paid by the online bidding algorithm for threshold
T = cost(zk). Since B is β-competitive, this cost is at most βcost(zk), so (6) holds.
This completes the proof of 8-competitiveness.

To improve this ratio to 2e, consider carrying out the above construction using
the e-competitive randomized online bidding algorithm. That algorithm generates a
random bidding set B for our universe U . Applying the construction above gives us
a random incremental fractional solution (xk)k . For each k, f and u, take x̄k

uf to be

the expectation of xk
uf for this random solution. This gives an incremental fractional

solution which, for each k, has |x̄| ≤ k, and whose cost is equal to the expected cost
of the random solution. Thus, (x̄k)k is 2e-cost-competitive.

Summarizing, we showed that there exists a 2e-cost-competitive fractional incre-
mental median. As the algorithm given earlier computes a c-cost-competitive frac-
tional incremental median that minimizes c, the theorem follows. �

7 Incremental Algorithms for kl-Medians

In this section we prove Theorem 12. Recall that in the kl-median problem, for given
1 ≤ k < l ≤ n, we need to compute two facility sets Fk ⊆ Fl with |Fk| = k and
|Fl | = l, minimizing the cost-competitive ratio

c = max

{
cost(Fk)

optk
,

cost(Fl)

optl

}

.

We now prove that the optimal ratio c for this problem is between 2 − 1/(l − k + 1)

and 2 − 1/l.

Proof of Theorem 12(a) We start with the upper bound proof. Our method here is
very different from the previous bounds in this paper and it does not rely on online
bidding. Let F and G denote, respectively, the optimum k-median and the optimum
l-median. Without loss of generality, we can assume that F ∩ G = ∅, for otherwise
we can duplicate the facilities in F ∩ G. Our algorithm chooses the better of two
options below (the one with the better ratio):

(i) Fk = F , and Fl is a set with minimum cost(Fl), such that |Fl | = l and F ⊆
Fl ⊆ F , or

(ii) Fk is a set with minimum cost(Fk) such that |Fk| = k and Fk ⊆ G, and Fl = G.

We now show that this algorithm’s competitive ratio is at most 2 − 1/l. It is suffi-
cient to show that there exists a k-element set X ⊆ G such that

cost(X) + cost(F ∪ G − X) ≤ (2 − 1/l)[cost(F ) + cost(G)]. (7)

Indeed, Inequality (7) implies that at least one of the following two options must
hold: either cost(X) ≤ (2 − 1/l)cost(F ), or cost(F ∪G−X) ≤ (2 − 1/l)cost(G). In
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the first case our algorithm can choose option (ii), and then we will have cost(Fk) ≤
cost(X) ≤ (2 − 1/l)cost(F ). In the second case it can choose option (i), and then
cost(Fl) ≤ cost(F ∪ G − X) ≤ (2 − 1/l)cost(G). In both cases, the algorithm’s ratio
is at most 2 − 1/l.

It remains to show that there is a k-element set X ⊆ G that satisfies (7). Our proof
is based on a probabilistic argument. We start with some notation. For each f ∈ F

and g ∈ G, denote by Cfg the set of customers that are served by f when F is the
facility set and by g when G is the facility set. Let wfg be the cardinality of Cfg .
By afg (resp. bfg) we denote the average distance between a customer x ∈ Cfg and
f (resp. g.) Formally, afg = ∑

u∈Cfg
duf /|Cfg| and bfg = ∑

u∈Cfg
dug/|Cfg|. It is

convenient to think of Cfg as a single point with weight wfg whose distances to f

and g are afg and bfg , respectively. The costs of F and G can then be written as
cost(F ) = ∑

f ∈F,g∈G wfgafg , and cost(G) = ∑
f ∈F,g∈G wfgbfg .

We now define a probability distribution on k-element subsets of G. Let wf G =
∑

g∈G wfg . For each f ∈ F and g ∈ G, define w̄fg = wfg(wf G −wfg)
−1. (Assume

for now that wfg > 0 for all f,g. We will explain later how to extend the argument to
the general case.) Choose a random mapping π : F → G as follows: for any f ∈ F

set π(f ) = g with probability w̄fg/
∑

h∈G w̄f h. For any such mapping π let Xπ be
the k-element subset of G that consists of π(F) and arbitrary k − |π(F)| elements of
G − π(F). (Intuitively, we would like to take our random k-set X ⊆ G to be π(F),
but then F ∪ G − π(F) may have cardinality larger than l and will not be a valid
l-median. This is why we add these additional elements to Xπ .)

Consider some f ∈ F and h ∈ G. The cost of serving Cf h from F ∪ G − Xπ is
at most wf haf h. If h /∈ X, we can also bound this cost by wf hbf h. We also want to
estimate the cost of serving Cf h from Xπ . If h ∈ Xπ then this cost is at most wf hbf h.
If h ∈ G − Xπ then, for any g ∈ Xπ , the cost of serving Cf h from Xπ is bounded
by the cost of serving Cfg from g, and thus (by the triangle inequality) it is at most
wf haf h + wf h minu∈Cfg

(duf + dug) ≤ wf h(af h + afg + bfg). Using g = π(f ) and
summing over all f ∈ F and h ∈ G, we get

cost(Xπ) + cost(F ∪ G − Xπ)

≤
∑

f ∈F

[ ∑

h∈G−Xπ

wf h(af h + af π(f ) + bf π(f ) + bf h)

+
∑

h∈Xπ

wf h(af h + bf h)

]

= cost(F ) + cost(G) +
∑

f ∈F

∑

h∈G−Xπ

wf h(af π(f ) + bf π(f ))

≤ cost(F ) + cost(G) +
∑

f ∈F

(wf G − wf π(f ))(af π(f ) + bf π(f )).
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Now, by the linearity of expectation, we have

E[cost(Xπ) + cost(F ∪ G − Xπ)]
≤ cost(F ) + cost(G) +

∑

f ∈F

∑

g∈G

w̄fg
∑

h∈G w̄f h

(wf G − wfg)(afg + bfg)

= cost(F ) + cost(G) +
∑

f ∈F

1
∑

h∈G w̄f h

∑

g∈G

wfg(afg + bfg)

≤ (2 − 1/l)[cost(F ) + cost(G)].
The last inequality holds because, for each f ∈ F ,

∑
h∈G w̄f h is minimized when

wf h = wf G/l for all h ∈ G, and thus (
∑

h∈G w̄f h)
−1 ≤ 1 − 1/l. We conclude that

there exists a set Xπ that satisfies (∗), as claimed.
To complete the proof, we still need to extend the argument to the general case,

when some weights wfg are zero. Suppose first that we allow arbitrary positive
weights. Choose an arbitrarily small ε > 0 and set all zero weights wfg to ε instead.
The earlier argument implies that for each ε there is X that satisfies (∗). Since there
are finitely many choices for X, there is X that satisfies (∗) for infinitely many values
of ε. The continuity of cost(X) + cost(F ∪ G − X) with respect to ε implies that (∗)

holds for ε = 0 as well.
In our case the weights are integer, so we cannot use arbitrarily small weights.

Instead, we create a large number of copies of each customer (same for each), and
then add one customer to each empty set Cfg . Then the same asymptotic argument
as above applies. �

Proof of Theorem 12(b) Our lower bound is a slight refinement of the one in [27, 28].
Let k = 1 and 1 < l ≤ n. Consider the metric space M with customers v1, . . . , vl and
facilities f1, g1, g2, . . . , gl . Each customer vj is connected to facility gj by an edge of
length δ = 1/l. All customers are also connected to facility f1 with edges of length 1.
(See Fig. 2.) All other distances are measured along the above defined edges.

Let G = {g1, . . . , gl}. We have cost(f1) = l and cost(G) = lδ. Further, for each i,
we have cost(gi) = δ + (l − 1)(2 + δ) and cost(G − {gi} ∪ {f1}) = (l − 1)δ + 1.
Thus, substituting δ = 1/l, we get cost(gi)/cost(f1) = 2 − 1/l and cost(G − {gi} ∪
{f1})/cost(G) = 2 − 1/l for all i. So, if an incremental algorithm chooses F1 = {gi},
for some i, the ratio is at least 2 − 1/l. On the other hand, if it chooses F1 = {f1},
then Fl = G − {gi} ∪ {f1}, for some i, and the ratio is again at least 2 − 1/l.

This completes the lower bound proof for k = 1. For 1 < k < l, we use the above
construction with l′ = l − k + 1 instead of l. We add k − 1 facilities f2, . . . , fk at
a very large distance from the above space and each other, and k − 1 customers

Fig. 2 The metric space in the
lower bound. Facilities are
represented by squares and
customers by circles
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vl+1 = f2, . . . , vl+k−1 = fk . Any k-median must include f2, . . . , fk , and thus the
argument above applies to this new space. �
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