
Approximation Algorithms for the Joint
Replenishment Problem with Deadlines⋆

Marcin Bienkowski1, Jaroslaw Byrka1, Marek Chrobak2, Neil Dobbs3,
Tomasz Nowicki3, Maxim Sviridenko4, Grzegorz Świrszcz4, and Neal E. Young2

1 Institute of Computer Science, University of Wroc!law, Poland
2 Department of Computer Science, University of California at Riverside, USA

3 IBM T.J. Watson Research Center, Yorktown Heights, USA
4 Department of Computer Science, University of Warwick, UK

Abstract. The Joint Replenishment Problem (JRP) is a fundamental
optimization problem in supply-chain management, concerned with opti-
mizing the flow of goods over time from a supplier to retailers. Over time,
in response to demands at the retailers, the supplier sends shipments, via
a warehouse, to the retailers. The objective is to schedule shipments to
minimize the sum of shipping costs and retailers’ waiting costs.

We study the approximability of JRP with deadlines, where instead of
waiting costs the retailers impose strict deadlines. We study the integral-
ity gap of the standard linear-program (LP) relaxation, giving a lower
bound of 1.207, and an upper bound and approximation ratio of 1.574.
The best previous upper bound and approximation ratio was 1.667; no
lower bound was previously published. For the special case when all de-
mand periods are of equal length we give an upper bound of 1.5, a lower
bound of 1.2, and show APX-hardness.

Keywords: Joint replenishment problem with deadlines, inventory the-
ory, linear programming, integrality gap, randomized rounding, approx-
imation algorithm.

1 Introduction

The Joint Replenishment Problem with Deadlines (JRP-D) is an optimization
problem in inventory theory concerned with optimizing a schedule of shipments
of a commodity from a supplier, via a warehouse, to satisfy demands at m
retailers (cf. Figure 1). An instance is specified by a tuple (C, c,D) where C ∈
Q is the warehouse ordering cost, each retailer ρ ∈ {1, 2, . . . ,m} has retailer
ordering cost cρ ∈ Q, and D is a set of n demands, where each demand is a triple
(ρ, r, d), where ρ is a retailer, r ∈ N is the demand’s release time and d ∈ N is
its deadline. The interval [r, d] is the demand period. Without loss of generality,
we assume r, d ∈ [2n], where [i] denotes {1, 2, . . . , i}.
⋆ Full version available at [4]. Research supported by MNiSW grant number N N206
368839 (2010-2013); NSF grants CCF-1217314, CCF-1117954, OISE-1157129; EP-
SRC grants EP/J021814/1 and EP/D063191/1; FP7 Marie Curie Career Integration
Grant; and Royal Society Wolfson Research Merit Award.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 135–147, 2013.
c⃝ Springer-Verlag Berlin Heidelberg 2013

136 M. Bienkowski et al.

C
c1 c2

c3
c4

ret
ail
ers

supp
lier

ware
hous

e

Fig. 1. An instance with four retailers, with ordering costs as distances. The cost of an
order is the weight of the subtree connecting the supplier and the involved retailers.

A solution (called a schedule) is a set of orders, each specified by a pair (t, R),
where t is the time of the order and R is a subset of the retailers. An order (t, R)
satisfies those demands (ρ, r, d) whose retailer is in R and whose demand period
contains t (that is, ρ ∈ R and t ∈ [r, d]). A schedule is feasible if all demands are
satisfied by some order in the schedule.

The cost of order (t, R) is the ordering cost of the warehouse plus the ordering
costs of respective retailers, i.e., C +

∑
ρ∈R cρ. It is convenient to think of this

order as consisting of a warehouse order of cost C, which is then joined by each
retailer ρ ∈ R at cost cρ. The cost of the schedule is the sum of the costs of its
orders. The objective is to find a feasible schedule of minimum cost.

Previous Results. The decision variant of JRP-D was shown to be strongly
NP-complete by Becchetti et al. [3]. (They considered an equivalent problem of
packet aggregation with deadlines on two-level trees.) Nonner and Souza [12]
then showed that JRP-D is APX-hard, even if each retailer issues only three
demands. Using the primal-dual method, Levi, Roundy and Shmoys [9] gave
a 2-approximation algorithm. Using randomized rounding, Levi et al. [10,11]
(building on [8]) improved the approximation ratio to 1.8; Nonner and Souza [12]
reduced it further to 5/3. These results use a natural linear-program (LP) relax-
ation, which we use too.

The randomized-rounding approach from [12] uses a natural rounding scheme
whose analysis can be reduced to a probabilistic game. For any probability dis-
tribution p on [0, 1], the integrality gap of the LP relaxation is at most 1/Z(p),
where Z(p) is a particular statistic of p (see Lemma 1). The challenge in this
approach is to find a distribution where 1/Z(p) is small. Nonner and Souza show
that there is a distribution p with 1/Z(p) ≤ 5/3 ≈ 1.67. As long as the distri-
bution can be sampled from efficiently, the approach yields a polynomial-time
(1/Z(p))-approximation algorithm.

Our Contributions. We show that there is a distribution p with 1/Z(p) ≤
1.574. We present this result in two steps: we show the bound e/(e − 1) ≈ 1.58
with a simple and elegant analysis, then improve it to 1.574 by refining the under-
lying distribution. We conjecture that this distribution minimizes 1/Z(p). This
shows that the integrality gap is at most 1.574 and gives a 1.574-approximation
algorithm. We also prove that the LP integrality gap is at least 1.207 and we
provide a computer-assisted proof that this gap is at least 1.245. (As far as we
know, no explicit lower bounds have been previously published.)

Approximation Algorithms for Joint Replenishment Problem with Deadlines 137

For the special case when all demand periods have the same length (as occurs
in applications where time-to-delivery is globally standardized) we give an upper
bound of 1.5, a lower bound of 1.2, and show APX-hardness.

Related Work. JRP-D is a special case of the Joint Replenishment Problem
(JRP). In JRP, instead of having a deadline, each demand is associated with a
delay-cost function that specifies the cost for the delay between the times the
demand was released and satisfied by an order. JRP is NP-complete, even if the
delay cost is linear [2,12]. JRP is in turn a special case of the One-Warehouse
Multi-Retailer (OWMR) problem, where the commodities may be stored at the
warehouse for a given cost per time unit. The 1.8-approximation by Levi et
al. [11] holds also for OWMR. JRP was also studied in the online scenario: a
3-competitive algorithm was given by Buchbinder et al. [6] (see also [5]).

Another generalization of JRP involves a tree-like structure with the supplier
in the root and retailers at the leaves, modeling packet aggregation in converge-
casting trees. A 2-approximation is known for the variant with deadlines [3]; the
case of linear delay costs has also been studied [7].

The LP Relaxation. Here is the standard LP relaxation of the problem. Let
U = max{d | (ρ, r, d) ∈ D} be the maximum deadline, and assume that each
release time and deadline is in universe U = [U].

minimize cost(x) =
∑U

t=1 (C xt +
∑m

ρ=1 cρ x
ρ
t)

subject to xt ≥ xρ
t for all t ∈ U , ρ ∈ {1, . . . ,m} (1)

∑d
t=r x

ρ
t ≥ 1 for all (ρ, r, d) ∈ D (2)

xt, x
ρ
t ≥ 0 for all t ∈ U , ρ ∈ {1, . . . ,m}.

We use x to denote an optimal fractional solution to this LP relaxation.

2 Upper Bound of 1.574

The statistic Z(p). The approximation ratio of algorithm Roundp (defined be-
low) and the integrality gap of the LP are at most 1/Z(p), where Z(p) is defined
by the following so-called tally game (following [12]). To begin the game, fix any
threshold z ≥ 0, then draw a sequence of independent samples s1, s2, . . . , sh from
p, stopping when their sum exceeds z. Call z − (s1 + s2 + . . .+ sh−1) the waste.
Note that, since the waste is less than sh, it is in [0, 1). Let W(p, z) denote the
expectation of the waste. Abusing notation, let E[p] denote the expected value
of a single sample drawn from p. Then Z(p) is defined to be the minimum of
E[p] and 1− supz≥0 W(p, z).

Note that the distribution p that chooses 1/2 with probability 1 has Z(p) =
1/2. The challenge is to increase E[p] and reduce the maximum expected waste.

A Generic Randomized-Rounding Algorithm.Nextwedefine the randomized-
rounding algorithm Roundp. The algorithm is parameterized by any probability
distribution p on [0, 1].

138 M. Bienkowski et al.

For the rest of this section, fix any instance (C, c,D) and fractional solution

x of the LP relaxation. Define Û =
∑U

t=1 xt. For each retailer ρ, let ωρ denote

the piecewise-linear continuous bijection from [0, Û] to [0,
∑U

t=1 x
ρ
t] such that

ωρ(0) = 0, and, for each T ∈ [U],

ωρ(
∑T

t=1 xt) =
∑T

t=1 x
ρ
t .

The intuition is that ωρ(z) is the cumulative fractional number of orders joined
by retailer ρ by the time the fractional number of warehouse orders reaches z. The
equations above determine ωρ at its breakpoints; since ωρ is piecewise linear and
continuous, this determines the entire function. The LP inequalities (1) imply
that 0 ≤ ωρ(z′)−ωρ(z) ≤ z′− z when z′ ≥ z. That is, ωρ has derivative in [0, 1].

Here is the rounding algorithm. Recall that Û denotes
∑U

t=1 xt.

Algorithm Roundp(C, cρ,D,x)

1: Draw independent random samples s1, s2, . . . from p. Let gi =
∑

h≤i sh.

Set global cutoff sequence g = (g1, g2, . . . , gI), where I = min{i | gi ≥ Û−1}.
2: For each retailer ρ independently, choose ρ’s local cutoff sequence ℓρ ⊆ g

greedily to touch all intervals [a, b] with ωρ(b)− ωρ(a) ≥ 1.
That is, ℓρ = (ℓρ1, ℓ

ρ
2, . . . , ℓ

ρ
Jρ) where ℓ

ρ
j is max{g ∈ g | ωρ(g)−ωρ(ℓ

ρ
j−1) ≤ 1}

(interpret ℓρ0 as 0), and Jρ is min{j | ωρ(Û)− ωρ(ℓ
ρ
j) ≤ 1}.

3: For each gi ∈ g, define time ti ∈ [U] to be minimum such that
∑ti

t=1 xt ≥ gi.
Return the schedule

{(
ti, {ρ | gi ∈ ℓρ}

)
| gi ∈ g

}
.

The idea of algorithm Roundp and its analysis are from [12]. The presentation
below highlights some important technical subtleties in the proof.

Lemma 1. For any distribution p and fractional solution x, the above algorithm,
Roundp(C, c,D,x), returns a schedule of expected cost at most cost(x)/Z(p).

Proof. Feasibility. Suppose for contradiction that the schedule does not satisfy
some demand (ρ, r, d) in D. Then (ignoring boundary cases) there are consecutive
local cutoffs ℓρj and ℓρj+1 equal to global cutoffs gi and gi′ whose times ti and ti′
(per Step 3) satisfy ti < r ≤ d < ti′ , and, hence, ti + 1 ≤ r ≤ d ≤ ti′ − 1. But,
then, by Step 2 of the algorithm,

1 ≥ ωρ(ℓ
ρ
j+1)− ωρ(ℓ

ρ
j) = ωρ(gi′)− ωρ(gi) >

ti′−1∑

t=ti+1

xρ
t ≥

d∑

t=r

xρ
t ≥ 1,

where the last step follows from LP constraint (2), and the proper inequality
in the second-to-last step follows from the minimality of ti′ in Step 3 of the
algorithm. This gives 1 > 1, a contradiction. (The boundary cases, and the
proof that Step 2 is well-defined, are similar.)

To finish the proof, for each term in the cost C|g|+
∑

ρ cρ|ℓ
ρ|, we bound the

term’s expectation by 1/Z(p) times its corresponding part in cost(x).

Approximation Algorithms for Joint Replenishment Problem with Deadlines 139

 . . .

z

ℓj ℓj+1gfj gfj+1 gfj+1

w

2⃝ℓ′

. . .sfj+2 sfj+1sfj+1

ω(ℓ′)− ω(ℓj) = 1

Fig. 2. The proof of E
[
ω(ℓj+1) − ω(ℓj) | Sj

]
≥ Z(p). Dashed lines are for quantities

that are independent of the current state Sj , but determined by the next state Sj+1.

The global order cost C|g|. The expectation of each global cutoff gi+1, given gi,
is gi + E[p], which (by definition of Z(p)) is at least gi + Z(p). The final index
I is the first such that gI ≥ Û − 1, so gI < Û . By Wald’s equation (Lemma 5),
since I is a stopping time, the expected length of g is at most Û/Z(p). So,
E[C|g|] is at most CÛ/Z(p). In comparison the global order cost in cost(x) is

C
∑U

t=1 xt = C Û .

The retailer cost cρ|ℓρ| for ρ. Fix a retailer ρ. Since ρ is fixed for the rest of the
proof, we may omit it as a subscript or superscript. Let ℓ be ρ’s local cutoff
sequence (ℓ1, ℓ2, . . . , ℓJ). For each j = 1, 2, . . . , J , define the state Sj after step
j to be the first fj random samples, where fj is the number of random samples
needed to determine ℓj . Generally, a given global cutoff gi will be chosen as the
jth local cutoff ℓj iff ω(gi) − ω(ℓj−1) ≤ 1 < ω(gi+1) − ω(ℓj−1). So, fj equals
i + 1, where i is the index such that gi = ℓj. That is, gfj follows ℓj in the
global sequence. (The only exception is the last local cutoff ℓJ , which can be the
maximum global cutoff gI , in which case it is not followed by any cutoff and
fJ = I.)

For the analysis, define S0 = (s1) and ℓ0 = 0 so ω(ℓ0) = 0.
We claim that, with each step j = 0, . . . , J − 1, given the state Sj after step j,

the expected increase in ω(·) during step j + 1, namely E[ω(ℓj+1)− ω(ℓj) | Sj],
is at least Z(p). Before we prove the claim, note that this implies the desired
bound: by the stopping condition for ℓ, the total increase in ω is at most ω(Û),
so by Wald’s equation (using that the last index J is a stopping time), the
expectation of J is at most ω(Û)/Z(p). So, E[cρ|ℓ|], the expected cost for

retailer ρ, is at most cρ ω(Û)/Z(p). In comparison, the cost for retailer ρ in

cost(x) is cρ
∑U

t=1 x
ρ
t = cρ ω(Û).

To prove the claim, we describe how moving from state Sj to state Sj+1 is a
play of the tally game in the definition of Z(p). Fix any j and condition on the
state Sj . Fig. 2 shows the steps:

1⃝ The current state Sj determines the j’th local cutoff ℓj and the following
global cutoff gfj .

2⃝ Given ℓj and gfj , the next local cutoff for retailer ρ will be the maximum
global cutoff in the interval [gfj , ℓ

′], where ℓ′ is chosen so that ω(ℓ′)−ω(ℓj) equals

1. (Note that ℓ′ < Û because, since we haven’t stopped yet, ω(Û)− ω(ℓj) > 1.)

140 M. Bienkowski et al.

3⃝ The algorithm reaches the next state Sj+1 by drawing some more random
samples sfj+1, sfj+2, . . . , si from p, stopping with the first index i such that the
corresponding global cutoff gi exceeds ℓ′. (That is, such that gi = gfj + sfj+1 +
· · ·+ si > ℓ′.) The next local cutoff ℓj+1 is gi−1 (the global cutoff just before gi,
so that gi−1 ≤ ℓ′ < gi) and this index i is fj+1; that is, the next state Sj+1 is
(s1, s2, . . . , si).

Step 3⃝ is a play of the “tally game” in the definition of Z(p), with threshold
z = ℓ′ − gfj . The waste w equals the gap ℓ′ − ℓj+1. By the definition of Z(p),
the expectation of w is W(p, z) ≤ 1− Z(p). Finally,

ω(ℓj+1)− ω(ℓj) = 1− (ω(ℓ′)− ω(ℓj+1)) ≥ 1− (ℓ′ − ℓj+1) = 1− w.

The expectation of 1− w is at least Z(p), proving the claim.

The careful reader may notice that the above analysis is incorrect for the last
step J , because it may happen that there is no global cutoff after ℓ′. (Then
ℓJ = gI = maxi gi.) To analyze this case, imagine modifying the algorithm so
that, in choosing g = (g1, g2, . . . , gI), instead of stopping with I = i such that
gi ≥ Û − 1, it stops with I = i such that gi ≥ Û . Because the last global cutoff
is now at least Û , and ℓ′ < Û , there is always a global cutoff after ℓ′. So the
previous analysis is correct for the modified algorithm, and its expected local
order cost is bounded as claimed. To finish, observe that, since this modification
only extends g, it cannot decrease the number of local cutoffs selected from g,
so the modification does not decrease the local order cost. ⊓&

2.1 Upper Bound of e/(e − 1) ≈ 1.582

The next utility lemma says that, in analyzing the expected waste in the tally
game, it is enough to consider thresholds z in [0, 1].

Lemma 2. For any distribution p on [0, 1], supz≥0 W(p, z) = supz∈[0,1)W(p, z).

Proof. Play the tally game with any threshold z > 1. Consider the first prefix
sum s1+s2+· · ·+sh of the samples such that the “slack” z−(s1+s2+· · ·+sh) is at
most 1. Let random variable z′ be this slack. Note z′ ∈ [0, 1). Then, conditioned
on z′ = y, the expected waste is W(p, y), which is at most supY ∈[0,1]W(p, Y).
Thus, for any threshold z ≥ 1, W(p, z) is at most supY ∈[0,1) W(p, Y). ⊓&

Now consider the specific probability distribution p on [0, 1] with probability
density function p(y) = 1/y for y ∈ [1/e, 1] and p(y) = 0 elsewhere.

Lemma 3. For this distribution p, Z(p) ≥ (e− 1)/e = 1− 1/e.

Proof. By Lemma 2, Z(p) is the minimum of E[p] and 1−maxz∈[0,1] W(p, z).

By direct calculation, E[p] =
∫ 1
1/e y p(y) dy =

∫ 1
1/e 1 dy = 1− 1/e.

Now consider playing the tally game with threshold z. If z ∈ [0, 1/e], then
(since the waste is at most z) trivially W(p, z) ≤ z ≤ 1/e.

So consider any z ∈ [1/e, 1]. Let s1 be just the first sample.

Approximation Algorithms for Joint Replenishment Problem with Deadlines 141

The waste is z if s1 > z and otherwise is at most z − s1.
So, the expected waste is at most Pr[s1 > z]z + Pr[s1 ≤ z]E[z−s1 | s1 ≤ z].
This simplifies to z − Pr[s1 ≤ z]E[s1 | s1 ≤ z], which by calculation is

z −
∫ z
1/e y p(y) dy = z −

∫ z
1/e dy = z − (z − 1/e) = 1/e. ⊓$

2.2 Upper Bound of 1.574

Next we define a probability distribution on [0, 1] that has a point mass at 1.
Fix θ = 0.36455 (slightly less than 1/e). Over the half-open interval [0, 1), the

probability density function p is p(y) =

⎧
⎪⎨

⎪⎩

0 for y ∈ [0, θ)

1/y for y ∈ [θ, 2θ)
1−ln((y−θ)/θ)

y for y ∈ [2θ, 1).

The probability of choosing 1 is 1−
∫ 1
0 p(y) dy ≈ 0.0821824.

Note that p(y) ≥ 0 for y ∈ [2θ, 1) since ln((1− θ)/θ) ≈ 0.55567.

Lemma 4. The statistic Z(p) for this p is at least 0.63533 > 1/1.574.

The proof is in the full paper [4]. Here is a sketch.

Proof (sketch). ByLemma2,Z(p) is theminimumofE[p] and1−supz∈[0,1]W(p, z).
That E[p] ≥ 0.63533 follows from a direct calculation (about five lines; details

in the full proof).
It remains to show 1 − supz∈[0,1) W(p, z) ≥ 0.63533. To do this, we show

supz∈[0,1)W(p, z) = θ (≤ 1− 0.63533).
In the tally game defining W(p, z), let s1 be the first random sample drawn

from p. If s1 > z, then the waste equals z. Otherwise, the process continues
recursively with z replaced by z′ = z − s1. This gives the recurrence

W(p, z) = z Pr[s1 > z] +
∫ z
θ W(p, z − y) p(y) dy.

We analyze the right-hand side of the recurrence in three cases.

Case (i) z ∈ [0, θ). The recurrence gives W(p, z) = z because Pr[s1 > z] = 1.

Case (ii) z ∈ [θ, 2θ). For y ∈ [θ, z], we have z−y < θ, so by Case (i) W(p, z−y) =
z − y. Substituting and calculating (about two lines) gives W(p, z) = θ.

Case (iii) z ∈ [2θ, 1). For y ∈ [θ, z], we have z−y < 2θ, so Case (i) or (ii) applies
to simplify W(p, z − y) (to z − y if z − y < θ or θ otherwise). The calculation
(about seven lines) gives W(p, z) = θ. ⊓$

Theorem 1. JRP-D has a randomized polynomial-time 1.574-approximation al-
gorithm, and the integrality gap of the LP relaxation is at most 1.574.

Proof. By Lemma 4, for any fractional solution x, the algorithm Roundp (using
the probability distribution p from that lemma) returns a feasible schedule of
expected cost at most 1.574 times cost(x).

To see that the schedule can be computed in polynomial time, note first that
the (discrete-time) LP relaxation can be solved in polynomial time. The optimal

142 M. Bienkowski et al.

solution x is minimal, so each xt is at most 1, so Û =
∑

t xt is at most the number
of demands, n. In the algorithm Roundp, each sample from the distribution p
from Lemma 4 can be drawn in polynomial time. Each sample is Ω(1), and the
sum of the samples is at most Û ≤ n, so the number of samples is O(n). Then,
for each retailer ρ, each integral µ(ℓρj−1, g) in step 3 can be evaluated in constant
amortized time per evaluation, so the time per retailer is O(n). ⊓#

For the record, here is the variant of Wald’s equation (also known as Wald’s
identity or Wald’s lemma, and a consequence of standard “optional stopping”
theorems) that we use above. Consider a random experiment that, starting from
a fixed start state S0, produces a random sequence of states S1, S2, S3, . . . Let
random index T ∈ {0, 1, 2, . . .} be a stopping time for the sequence, that is, for
any positive integer t, the event “T < t” is determined by state St. Let function
φ : {St} → R map the states to R.
Lemma 5 (Wald’s equation). Suppose that
(i) (∀t < T) E[φ(St+1) | St] ≥ φ(St) + ξ for fixed ξ, and
(ii) either (∀t < T) φ(St+1)− φ(St) ≥ F or (∀t < T) φ(St+1)− φ(St) ≤ F , for
some fixed finite F , and T has finite expectation.

Then ξE[T] ≤ E[φ(ST)− φ(S0)].

The proof is standard; it is in the full paper [4].
In the applications here, we always have ξ = Z(p) > 0 and φ(ST)−φ(S0) ≤ U

for some fixed U . In this case Wald’s equation implies E[T] ≤ U/Z(p).

3 Upper Bound of 1.5 for Equal-Length Periods

In this section, we present a 1.5-approximation algorithm for the case where all
the demand periods are of equal length. For convenience, we allow here release
times and deadlines to be rational numbers and we assume that all demand
periods have length 1.

We denote the input instance by I. Let the width of an instance be the
difference between the deadline of the last demand and the release time of the
first one. The building block of our approach is an algorithm that creates an
optimal solution to an instance of width at most 3. Later, we divide I into
overlapping sub-instances of width 3, solve each of them optimally, and finally
show that by aggregating their solutions we obtain a 1.5-approximation for I.

Lemma 6. A solution to any instance J of width at most 3 consisting of unit-
length demand periods can be computed in polynomial time.

Proof. We shift all demands in time, so that J is entirely contained in inter-
val [0, 3]. Recall that C is the warehouse ordering cost and cρ is the ordering
cost of retailer ρ ∈ {1, 2, ...,m}. Without loss of generality, we can assume that
all retailers 1, ..,m have some demands.

Let dmin be the first deadline of a demand from J and rmax the last release
time. If rmax ≤ dmin, then placing one order at any time from [rmax, dmin] is
sufficient (and necessary). Its cost is then equal to C +

∑
ρ cρ.

Approximation Algorithms for Joint Replenishment Problem with Deadlines 143

Thus, in the following we focus on the case dmin < rmax. Any feasible solution
has to place an order at or before dmin and at or after rmax. Furthermore, by
shifting these orders we may assume that the first and last orders occur exactly
at times dmin and rmax, respectively.

The problem is thus to choose a set T of warehouse ordering times that
contains dmin, rmax, and possibly other times from the interval (dmin, rmax),
and then to decide, for each retailer ρ, which warehouse orders it joins. Note
that rmax − dmin ≤ 1, and therefore each demand period contains dmin, rmax, or
both. Hence, all demands of a retailer ρ can be satisfied by joining the warehouse
orders at times dmin and rmax at additional cost of 2bρ. It is possible to reduce
the retailer ordering cost to cρ if (and only if) there is a warehouse order that
occurs within Dρ, where Dρ is the intersection of all demand periods of retailer
ρ. (To this end, Dρ has to be non-empty.)

Hence, the optimal cost for J can be expressed as the sum of four parts:

(i) the unavoidable ordering cost cρ for each retailer ρ,
(ii) the additional ordering cost cρ for each retailer ρ with empty Dρ,
(iii) the total warehouse ordering cost C · |T |, and
(iv) the additional ordering cost cρ for each retailer ρ whose Dρ is non-empty

and does not contain any ordering time from T .

As the first two parts of the cost are independent of T , we focus on minimizing
the sum of parts (iii) and (iv), which we call the adjusted cost. Let AC(t) be the
minimum possible adjusted cost associated with the interval [dmin, t] under the
assumption that there is an order at time t. Formally,AC(t) is the minimum, over
all choices of sets T ⊆ [dmin, t] that contain dmin and t, of C · |T |+

∑
ρ∈Q(T) cρ,

where Q(T) is the set of retailers ρ for which Dρ ̸= ∅ and Dρ ⊆ [0, t]− T . (Note
that the second term consists of expenditures that actually occur outside the
interval [dmin, t].)

As there are no Dρ’s strictly to the left of dmin, AC(dmin) = C. Furthermore,
to compute AC(t) for any t ∈ (dmin, rmax], we can express it recursively using
the value of AC(u) for u ∈ [dmin, t) being the warehouse order time immediately
preceding t in the set T that realizes AC(t). This gives us the formula

AC(t) = C + min
u∈[dmin,t)

(
AC(u) +

∑

ρ:∅̸=Dρ⊂(u,t)

cρ
)

.

In the minimum above, we may restrict computation of AC(t) to t’s and u’s that
are ends of demand periods. Hence, the actual values of function AC(·) can be
computed by dynamic programming in polynomial time. Finally, the total ad-
justed cost is equal to AC(rmax). Once we computed the minimum adjusted cost,
recovering the actual orders can be performed by a straightforward extension of
the dynamic programming presented above. ⊓(

Now, we construct an approximate solution for the original instance I consisting
of unit-length demand periods. For i ∈ N, let Ii be the sub-instance contain-
ing all demands entirely contained in [i, i + 3). By Lemma 6, an optimal solu-
tion for Ii, denoted A(Ii), can be computed in polynomial time. Let S0 be the

144 M. Bienkowski et al.

solution created by aggregating A(I0), A(I2), A(I4), . . . and S1 by aggregating
A(I1), A(I3), A(I5), Among solutions S0 and S1, we output the one with the
smaller cost.

Theorem 2. The above algorithm produces a feasible solution of cost at most
1.5 times the optimum cost.

Proof. Each unit-length demand of instance I is entirely contained in some I2k
for some k ∈ N. Hence, it is satisfied in A(I2k), and thus also in S0, which yields
the feasibility of S0. An analogous argument shows the feasibility of S1.

To estimate the approximation ratio, we fix an optimal solution Opt for
instance I and let opti be the cost of Opt’s orders in the interval [i, i+1). Note
that Opt’s orders in [i, i+3) satisfy all demands contained entirely in [i, i+ 3).
Since A(Ii) is an optimal solution for these demands, we have cost(A(Ii)) ≤
opti + opti+1 + opti+2 and, by taking the sum, we obtain cost(S0) + cost(S1) ≤∑

i cost(A(Ii)) ≤ 3 · cost(Opt). Therefore, either of the two solutions (S0 or S1)
has cost at most 1.5 · cost(Opt). ⊓$

4 Two Lower Bounds

In this section we present two lower bounds on the integrality gap of the LP
relaxation from Section 1:

Theorem 3. (i) The integrality gap of the LP relaxation is at least 1
2 (1 +

√
2),

which is at least 1.207. (ii) The integrality gap is at least 1.2 for instances with
equal-length demand periods.

In the full paper [4], we sketch how the lower bound in Part (i) can be increased
to 1.245 via a computer-based proof; we also give the complete proof of Thm. 3
(about six pages altogether). Here is a sketch of that proof.

Proof (sketch). It is convenient to work with a continuous-time variant of the
LP, in which the universe U of allowable release times, deadlines and order times
is the entire interval [0, U], where U is the maximum deadline. Time t now is a
real number ranging over interval [0, U]. A fractional solution is now represented
by functions, x : [0, U] → R≥0 and xρ : [0, U] → R≥0, for each retailer ρ. To
retain consistency, we will write xt and xρ

t for the values of these functions.
For any fractional solution x, then, in the LP formulation each sum over t is
replaced by the appropriate integral. For example, the objective function will
now take form

∫ U
t=0 (C xt +

∑m
ρ=1 cρ x

ρ
t). By a straightforward limit argument

(to be provided in the final version of the paper), the continuous-time LP has
the same integrality gap as the discrete-time LP.

(i) The instance used to prove Part (i) has C = 1 and two retailers numbered
(for convenience) 0 and 1, one with c0 = 0 and the other with c1 =

√
2. We use

infinitely many demand periods: for any t, the first retailer has demand periods
[t, t + 1] and the second retailer has demand periods [t, t +

√
2]. A fractional

solution where retailer 0 orders at rate 1 and retailer 1 orders at rate 1/
√
2

Approximation Algorithms for Joint Replenishment Problem with Deadlines 145

is feasible and its cost is 2 per time step. Now consider some integral solution.
Without loss of generality, retailer 0 orders any time a warehouse order is issued.
Retailer 0 must make at least one order per time unit, so his cost (counting the
warehouse order cost as his) is 1 per time unit. Retailer 1 must make at least one
order in any time interval of length

√
2, so the cost of his orders, not including

the warehouse cost, is at least 1 per time unit as well. This already gives us
cost 2 per time unit, the same as the optimal fractional cost. But in order to
synchronize the orders of retailer 1 with the warehouse orders, the schedule needs
to increase either the number of retailer 1’s orders or the number of warehouse
orders by a constant fraction, thus creating a gap.

(ii) The argument for Part (ii) is more involved. We only outline the general
idea. Take C = 1 and three retailers numbered 0, 1 and 2, each with order cost
cρ = 1

3 . The idea is to create an analogue of a 3-cycle, which has a fractional
vertex cover with all vertices assigned value 1

2 and total cost 5
6 , while any integral

cover requires two vertices. We implement this idea by starting with the following
fractional solution x: if t mod 3 = 0, then xt = x0

t = x1
t = 1

2 and x2
t = 0;

if t mod 3 = 1, then xt = x1
t = x2

t = 1
2 and x0

t = 0; if t mod 3 = 2, then
xt = x0

t = x2
t = 1

2 and x1
t = 0. The cost is 5

6 per time unit. Then we choose
demand periods that x satisfies, but such that, in any (integral) schedule, each
retailer must have at least one order in every three time units {t, t + 1, t + 3},
and there has to be a warehouse order in every two time units {t, t+ 1}. These
costs independently add up to 5

6 per time unit, even ignoring the requirement
that retailers have orders only when the warehouse does. To synchronize the
orders to meet this additional requirement, any schedule must further increase
the order rate by a constant fraction, thus creating a gap. ⊓#

5 APX Hardness for Unit Demand Periods

Theorem 4. JRP-D is APX-hard even if restricted to instances with unit de-
mand periods and with at most four demands per retailer.

The proof (about four pages) is in the full paper [4]. Here is the idea.

Proof (idea). We use the result by Alimonti and Kann [1] that Vertex Cover is
APX-hard even for cubic graphs. For any given cubic graph G = (V,E) with n
vertices (where n is even) and m = 1.5n edges, in polynomial time we construct
an instance JG of JRP-D, such that the existence of a vertex cover for G of
size at most K is equivalent to the existence of an order schedule for JG of cost
at most 10.5n + K + 6. In JG all demand periods have the same length and
each retailer has at most four demands. The construction consists of gadgets
that represent G’s vertices and edges. The main challenge, related to the equal-
length restriction, is in “transmitting information” along the time axis about the
vertices chosen for a vertex cover. We resolve it by having each vertex represented
twice and assuring consistency via an appropriate sub-gadget. ⊓#

146 M. Bienkowski et al.

6 Final Comments

The integrality gap for standard JRP-D LP relaxation is between 1.245 and
1.574. We conjecture that neither bound is tight, but that the refined distribution
for the tally game given here is essentially optimal, so that improving the upper
bound will require a different approach.

There is a simple algorithm for JRP-D that provides a (1, 2)-approximation,
in the following sense: its warehouse order cost is not larger than that in the
optimum, while its retailer order cost is at most twice that in the optimum [12].
One can then try to balance the two approaches by choosing each algorithm with
a certain probability. This simple approach does not improve the ratio. But it
may be possible to achieve a better ratio if, instead of using our algorithm as
presented, we appropriately adjust the probability distribution.

If we parametrize JRP-D by the maximum number p of demand periods of
each retailer, its complexity status is essentially resolved: for p ≥ 3 the problem
is APX-hard [12], while for p ≤ 2 it can be solved in polynomial time (by a greedy
algorithm for p = 1 and dynamic programming for p = 2). In case of equal-length
demand periods, we showed that the problem is APX-hard for p ≥ 4, but the
case p = 3 remains open, and it would be nice to settle this case as well. We
conjecture that in this case the problem is NP-complete.

Acknowledgements. We would like to thank "Lukasz Jeż, Jǐŕı Sgall, and Grze-
gorz Stachowiak for stimulating discussions and useful comments.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theo-
retical Computer Science 237(1-2), 123–134 (2000)

2. Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated
multi-echelon production planning problems. Operations Research Letters 8(2),
61–66 (1989)

3. Becchetti, L., Marchetti-Spaccamela, A., Vitaletti, A., Korteweg, P., Skutella, M.,
Stougie, L.: Latency-constrained aggregation in sensor networks. ACM Transac-
tions on Algorithms 6(1), 13:1–13:20 (2009)

4. Bienkowski, M., Byrka, J., Chrobak, M., Dobbs, N., Nowicki, T., Sviri-
denko, M., Świrszcz, G., Young, N.E.: Approximation algorithms for the
joint replenishment problem with deadlines. CoRR abs/1212.3233v2 (2013),
http://arxiv.org/abs/1212.3233v2

5. Brito, C., Koutsoupias, E., Vaya, S.: Competitive analysis of organization networks
or multicast acknowledgement: How much to wait? In: Proc. of the 15th ACM-
SIAM Symp. on Discrete Algorithms (SODA), pp. 627–635 (2004)

6. Buchbinder,N., Kimbrel, T., Levi, R.,Makarychev,K., Sviridenko,M.: Onlinemake-
to-order joint replenishment model: Primal dual competitive algorithms. In: Proc. of
the 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 952–961 (2008)

7. Khanna, S., Naor, J.(S.), Raz, D.: Control message aggregation in group communi-
cation protocols. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eiden-
benz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 135–146. Springer,
Heidelberg (2002)

Approximation Algorithms for Joint Replenishment Problem with Deadlines 147

8. Levi, R., Roundy, R., Shmoys, D.B.: A constant approximation algorithm for the
one-warehouse multi-retailer problem. In: Proc. of the 16th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pp. 365–374 (2005)

9. Levi, R., Roundy, R., Shmoys, D.B.: Primal-dual algorithms for deterministic in-
ventory problems. Mathematics of Operations Research 31(2), 267–284 (2006)

10. Levi, R., Roundy, R., Shmoys, D.B., Sviridenko, M.: A constant approximation
algorithm for the one-warehouse multiretailer problem. Management Science 54(4),
763–776 (2008)

11. Levi, R., Sviridenko, M.: Improved approximation algorithm for the one-warehouse
multi-retailer problem. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.)
APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 188–199. Springer,
Heidelberg (2006)

12. Nonner, T., Souza, A.: Approximating the joint replenishment problem with dead-
lines. Discrete Mathematics, Algorithms and Applications 1(2), 153–174 (2009)

