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triangulation. ---O(1)-approx

● [2006] Remy and Steger. A quasi-polynomial time 
approximation scheme for minimum weight 
triangulation. ---QPTAS
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● Most random instances with 40,000 points are solvable in this way.                      
                                                                                              [Dickerson et al. '97]

● For random instances the expected number of  components of LMT-skeleton is 
Ω(n). (with astronomically small constant            ).                      [Bose et al. '02]10−51



Linear Programs for MWT

Triangle-based LP:
● [1985] Dantzig et al. Triangulations (tilings) and certain block triangular matrices. 

● [1996] Loera et al. The polytope of all triangulations of a point configuration.

● [2004] Kirsanov. Minimal discrete curves and surfaces.

Edge-based LP:
● [1997] Kyoda et al. A branch-and-cut approach for minimum weight triangulation.

● [1996] Kyoda. A study of generating minimum weight triangulation within practical time.

● [1996] Ono et al. A package for triangulations.

● [1998] Tajima. Optimality and integer programming formulations of triangulations in 
general dimension.

● [2000] Aurenhammer and Xu. Optimal triangulations.
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Heuristics

● Edges In:
● β-skeleton                   

● LMT-skeleton                      
● Mutual Nearest Neighbors

● Edges Out:
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Proof Overview

I. Feasibility: New triangles cover 
every point with weight one.

II. Cost Bound: The total cost of 
new triangles is bounded by 

∣OPT I∣
∣OPT F∣

=O 1

O ∣OPT F∣
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Feasibility

● Feasibility: Every point is 
covered with weight one.

∀ p ∑
t∋ p

X t
f
=1

1-α α

Blanket B

α



Cost Bound

● There are constants λ and r 
and a convex partition (LK) 
such that:

1)                             

2)  The edges of LK are all  
r-sensitive (r ≈ 4.45).

∣LK∣  ⋅∣MCP∣

[Levcopoulos and Krznaric '96]:



Cost Bound

● Theorem: If C is an arbitrary r-sensitive convex 
partition, then there is a triangulation T that costs at 
most                          . 

● Lemma: 

T3∣LK∣54∣OPT F∣

T3∣MCP∣54∣OPT F∣ T354⋅∣OPT I∣

∣MCP∣18⋅∣OPT F∣

3∣C∣12r∣OPT F∣

T3∣MCP∣54∣OPT F∣ T54 1⋅∣OPT F∣
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Open Problems

●  What is the integrality gap of the LP?

 

● Is there an r-sensitive convex partition that λ-approximates 
MCP for some small λ?

● Does constant rounds of lift and project bring the integrality 
gap to 1+ε?

1.00188  integrality gap  541



Thank you!
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