On a Linear Program for Minimum Weight Triangulation

Arman Yousefi and Neal Young

University of California Riverside

January 2012

Minimum Weight Triangulation (MWT)

- Input: a set of point in 2D

Minimum Weight Triangulation (MWT)

- Input: a set of point in 2D

Minimum Weight Triangulation (MWT)

- Input: a set of point in 2D
- Goal: a triangulation T minimizing $\sum_{e \in T}|e|$

Outline

- Previous Results
- Linear Program
- Heuristics
- Integrality Gap

Outline

- Previous Results
- Linear Program
- Heuristics
- Integrality Gap

Previous Results

- [2006] Mulzer and Rote. Minimum weight triangulation is NP-hard.

Previous Results

- [2006] Mulzer and Rote. Minimum weight triangulation is NP-hard.

Approximation Algorithms:

Previous Results

- [2006] Mulzer and Rote. Minimum weight triangulation is NP-hard.

Approximation Algorithms:

- [1987] Plaisted and Hong. A heuristic triangulation algorithm. ---O(logn)-approx

Previous Results

- [2006] Mulzer and Rote. Minimum weight triangulation is NP-hard.

Approximation Algorithms:

- [1987] Plaisted and Hong. A heuristic triangulation algorithm. ---O(logn)-approx
- [1996] Levcopoulos and Krznaric. Quasi-greedy triangulations approximating the minimum weight triangulation. ---O(1)-approx

Previous Results

- [2006] Mulzer and Rote. Minimum weight triangulation is NP-hard.

Approximation Algorithms:

- [1987] Plaisted and Hong. A heuristic triangulation algorithm. ---O(logn)-approx
- [1996] Levcopoulos and Krznaric. Quasi-greedy triangulations approximating the minimum weight triangulation. ---O(1)-approx
- [2006] Remy and Steger. A quasi-polynomial time approximation scheme for minimum weight triangulation. ---QPTAS

Previous Results (cont'd)

Simple Polygons

- [1979] Gilbert. New results on planar triangulations.
- [1980] Klincsek. Minimal triangulations of polygonal domains.

Previous Results (cont'd)

Simple Polygons

- [1979] Gilbert. New results on planar triangulations.
- [1980] Klincsek. Minimal triangulations of polygonal domains.

Heuristics

- Edges In:
- β-skeleton
[Keil '93][Yang '95][Cheng and Xu '96]
- LMT-skeleton
[Dickerson et al. '97][Beirouti and Snoeyink '98][Cheng et al. '96] [Aichholzer et al '99][Belleville et al. '96][Bose et al. '02]
- Mutual Nearest Neighbors
[Gilbert '79][Yang et al. '94]
- Edges Out:
- Diamond Test
[Das and Joseph '89][Drysdale et al. '01]

Heuristics

- Edges In:
- β-skeleton
[Keil '93][Yang '95][Cheng and Xu '96]
- LMT-skeleton

[Dickerson et al. '97][Beirouti and Snoeyink '98][Cheng et al. '96] [Aichholzer et al '99][Belleville et al. '96][Bose et al. '02]
- Mutual Nearest Neighbors
[Gilbert '79][Yang et al. '94]
- Edges Out:
- Diamond Test
[Das and Joseph '89][Drysdale et al. '01]

Heuristics

- Edges In:
- β-skeleton
[Keil '93][Yang '95][Cheng and Xu '96]
- LMT-skeleton

[Dickerson et al. '97][Beirouti and Snoeyink '98][Cheng et al. '96] [Aichholzer et al '99][Belleville et al. '96][Bose et al. '02]
- Mutual Nearest Neighbors
[Gilbert '79][Yang et al. '94]
- Edges Out:
- Diamond Test
[Das and Joseph '89][Drysdale et al. '01]

Heuristics (cont'd)

Heuristics (cont'd)

Heuristics (cont'd)

Heuristics (cont'd)

- Most random instances with 40,000 points are solvable in this way.
[Dickerson et al. '97]

Heuristics (cont'd)

- Most random instances with 40,000 points are solvable in this way.
[Dickerson et al. '97]
- For random instances the expected number of components of LMT-skeleton is $\Omega(\mathrm{n})$. (with astronomically small constant 10^{-51}). [Bose et al. '02]

Linear Programs for MWT

Triangle-based LP:

- [1985] Dantzig et al. Triangulations (tilings) and certain block triangular matrices.
- [1996] Loera et al. The polytope of all triangulations of a point configuration.
- [2004] Kirsanov. Minimal discrete curves and surfaces.

Edge-based LP:

- [1997] Kyoda et al. A branch-and-cut approach for minimum weight triangulation.
- [1996] Kyoda. A study of generating minimum weight triangulation within practical time.
- [1996] Ono et al. A package for triangulations.
- [1998] Tajima. Optimality and integer programming formulations of triangulations in general dimension.
- [2000] Aurenhammer and Xu. Optimal triangulations.

Outline

- Previous Results
- Linear Program
- Heuristics
- Integrality Gap

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

Triangle-based LP

[Dantzig et al. '85]

$$
\sum_{t \ni p} X_{t}=1, \quad \forall p
$$

Triangle-based LP

[Dantzig et al. '85]

minimize $\sum_{t \in \Delta}|t| \cdot X_{t}$
subject to

$$
\begin{aligned}
& \sum_{t \ni p} X_{t}=1, \quad \forall p \\
& X_{t} \in\{0,1\}, \quad \forall t \in \Delta
\end{aligned}
$$

Triangle-based LP

[Dantzig et al. '85]

minimize $\sum_{t \in \Delta}|t| \cdot X_{t}$
subject to

$$
\begin{array}{ll}
\sum_{t \ni p} X_{t}=1, & \forall p \\
0 \leqslant X_{t} \leqslant 1 & \forall t \in \Delta
\end{array}
$$

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]: The integrality gap of the LP in the simple-polygon case is one.

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]: The integrality gap of the LP in the simple-polygon case is one.
- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]: The integrality gap of the LP in the simple-polygon case is one.
- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

Bounds on the Integrality Gap

- An Upper Bound [Dantzig et al. '85][Loera et al. '96][Kirsanov '04]:

The integrality gap of the LP in the simple-polygon case is one.

- A Lower Bound [Kirsanov '04]:

$$
\frac{\left|O P T_{I}\right|}{\left|O P T_{F}\right|}=1.00188
$$

Our Results

I. The integrality gap of the LP is $\mathrm{O}(1)$.

Our Results

I. The integrality gap of the LP is $\mathrm{O}(1)$.
II. An O(1)-approximation algorithm with reduced approximation factor.

Our Results

I. The integrality gap of the LP is $\mathrm{O}(1)$.
II. An O(1)-approximation algorithm with reduced approximation factor.
III. Given any instance, if the heuristics find the MWT, then so does the LP.

Outline

- Previous Results
- Linear Program
- Heuristics
- Integrality Gap

Heuristics

- Edges In:
- β-skeleton
- LMT-skeleton
- Mutual Nearest Neighbors
- Edges Out:

- Diamond Test

Theorem: Given any instance, if the heuristics find the MWT, then so does the LP (i.e. every optimal extreme point of the LP is the incidence vector of an MWT).

Theorem: Given any instance, if the heuristics find the MWT, then so does the LP (i.e. every optimal extreme point of the LP is the incidence vector of an MWT).

Theorem: Given any instance, if the heuristics find the MWT, then so does the LP (i.e. every optimal extreme point of the LP is the incidence vector of an MWT).

Theorem: Given any instance, if the heuristics find the MWT, then so does the LP (i.e. every optimal extreme point of the LP is the incidence vector of an MWT).

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

- If an edge e is determined to be in MWT based on the heuristics, then no triangle with positive weight in $O P T_{F}$ crosses e.

Outline

- Previous Results
- Linear Program
- Heuristics
- Integrality Gap
[Levcopoulos and Krznaric '96]:
[Levcopoulos and Krznaric '96]:

[Levcopoulos and Krznaric '96]:

LK Convex Partition
[Levcopoulos and Krznaric '96]:

LK Convex Partition
[Levcopoulos and Krznaric '96]:

LK Convex Partition

High-Level Idea

LK Convex Partition

$O P T_{F}$

High-Level Idea

LK Convex Partition

$O P T_{F}$

Proof Overview

Proof Overview

Proof Overview

Proof Overview

Proof Overview

I. Feasibility: New triangles cover every point with weight one.

Proof Overview

I. Feasibility: New triangles cover every point with weight one.
II. Cost Bound: The total cost of new triangles is bounded by

$$
O\left(\left|O P T_{F}\right|\right)
$$

Proof Overview

I. Feasibility: New triangles cover every point with weight one.
II. Cost Bound: The total cost of new triangles is bounded by

$$
O\left(\left|O P T_{F}\right|\right)
$$

$$
\frac{\left|O P T_{I}\right|}{\left|O P T_{F}\right|}=O(1)
$$

How to Break Triangles?

Feasibility

- Feasibility: Every point is covered with weight one.

$$
\forall p \quad \sum_{t \ni p} X_{t}^{f}=1
$$

Cost Bound

[Levcopoulos and Krznaric '96]:

- There are constants λ and r and a convex partition (LK) such that:

1) $|L K| \leqslant \lambda \cdot|M C P|$
2) The edges of LK are all r-sensitive ($r \approx 4.45$).

Cost Bound

- Theorem: If C is an arbitrary r-sensitive convex partition, then there is a triangulation T that costs at most $3|C|+12 r\left|O P T_{F}\right|$.

$$
T \leqslant 3|L K|+54\left|O P T_{F}\right|
$$

$$
T \leqslant 3 \lambda|M C P|+54\left|O P T_{F}\right| \quad \square \quad T \leqslant(3 \lambda+54) \cdot\left|O P T_{I}\right|
$$

- Lemma: $|M C P| \leqslant 18 \cdot\left|O P T_{F}\right|$

$$
T \leqslant 3 \lambda|M C P|+54\left|O P T_{F}\right| \quad \Rightarrow T \leqslant 54(\lambda+1) \cdot\left|O P T_{F}\right|
$$

Open Problems

- What is the integrality gap of the LP?

$$
1.00188 \leqslant \text { integrality gap } \leqslant 54(\lambda+1)
$$

Open Problems

- What is the integrality gap of the LP?

$$
1.00188 \leqslant \text { integrality gap } \leqslant 54(\lambda+1)
$$

- Is there an r-sensitive convex partition that λ-approximates MCP for some small λ ?

Open Problems

- What is the integrality gap of the LP?

$$
1.00188 \leqslant \text { integrality gap } \leqslant 54(\lambda+1)
$$

- Is there an r-sensitive convex partition that λ-approximates MCP for some small λ ?
- Does constant rounds of lift and project bring the integrality gap to $1+\varepsilon$?

Thank you!

