Deriving greedy algorithms and Lagrangian-relaxation algorithms

Neal E. Young

February 16, 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

set cover

standard randomized rounding

existence proof method of conditional probabilities algorithm

iterated sampling

existence proof method of conditional probabilities algorithm

vertex cover (duality)

existence proof method of conditional probabilities algorithm implicit primal-dual algorithm

multicommodity flow

existence proof algorithm for integer solution algorithm for fractional solution

lower bound on iterations

fast algorithm for explicitly given problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

two open questions

set cover

input: collection s_1, s_2, \ldots, s_m of sets over universe U

minimize
$$\sum_{i=1}^m x_i$$
 subject to
 $(\forall e \in U) \qquad \sum_{s_i \ni e} x_i \geq 1$
 $(\forall i) \qquad x_i \in \{0,1\}$

 Value of optimal fractional solution x* is a lower bound on optimal integer solution.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

a fractional set cover x^*

standard randomized rounding

```
Let x^* be an optimal fractional set cover.
Let \lambda = \ln 2n.
For each set s_i \in S independently do:
```

choose s_i with probability $p_i \doteq \min\{\lambda x_i^*, 1\}$.

Theorem

With positive probability, chosen sets form a cover of size at most $2\ln(2n)\sum_i x_i^*$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

coverage

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For each set $s_i \in S$ independently do: choose s_i with probability $p_i \doteq \min\{\lambda x_i^*, 1\}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Probability element *e* not covered:

$$\prod_{s_i \ni e} 1 - p_i < \prod_{s_i \ni e} \exp(-\lambda x_i^*)$$
$$= \exp\left(-\lambda \sum_{s_i \ni e} x_i^*\right)$$
$$\leq \exp(-\lambda)$$
$$= 1/2n$$

 $\Pr[$ exists uncovered element] < 1/2

cost

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For each set $s_i \in S$ independently do: choose s_i with probability $p_i \doteq \min\{\lambda x_i^*, 1\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Expected number of sets chosen is

$$\sum_i p_i \leq \ln(2n) \sum_i x_i^*.$$

Pr[more than $2\ln(2n)\sum_i x_i^*$ sets chosen] $\leq 1/2$

proof of theorem

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For each set $s_i \in S$ independently do: choose s_i with probability $p_i \doteq \min\{\lambda x_i^*, 1\}$.

Theorem

With positive probability, chosen sets form a cover of size at most $2\ln(2n)\sum_i x_i^*$.

Proof.

Pr[exists uncovered element] < 1/2 Pr[more than $2\ln(2n)\sum_i x_i^*$ sets chosen] $\leq 1/2$

Pr[chosen sets form cover of size $\leq 2 \ln(2n) \sum_{i} x_{i}^{*}$] > 0

method of conditional probabilities

converts existence proof into an efficient algorithm

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For each set $s_i \in S$ independently do: choose s_i with probability $p_i \doteq \min\{\lambda x_i^*, 1\}$.

・ロト ・ 理 ト ・ ヨト ・ ヨー

▲□▶ ▲圖▶ ★園▶ ★園▶ ― 題 … のへぐ

conditional probability of failure — coverage

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For $i = 1, 2, \dots$, m sequentially do: *include* or *exclude* $s_i - m$ whichever keeps conditional probability of failure below 1.

Given first t choices, probability that elt e won't be covered is zero if e is already covered, and otherwise

$$\prod_{s_i \ni e, i > t} 1 - p_i.$$

Conditional probability that chosen sets will fail to cover is at most

$$\sum_{\substack{e \text{ not yet} \\ \text{covered}}} \prod_{s_i \ni e, i \ge t} 1 - p_i.$$

conditional probability of failure $-\cos t$

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For i = 1, 2, ..., m sequentially do: *include or exclude s_i* — whichever keeps conditional probability of failure below 1.

Given first t choices, expected number of chosen sets is

first t sets chosen
$$+\sum_{i>t} p_i$$
.

Given first t choices, probability that too many sets will be chosen is at most

$$\frac{\# \text{ first } t \text{ sets chosen} + \sum_{i > t} p_i}{2 \ln 2n \sum_i x_i^*}.$$

pessimistic estimator Φ_t

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For $i = 1, 2, \ldots, m$ sequentially do: *include or exclude s_i* — whichever keeps conditional probability of failure below 1.

٠

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Given first t choices, probability of failure is at most

$$\Phi_t \doteq \sum_{\substack{e \text{ not yet} \\ covered}} \prod_{s_i \ni e, i \ge t} 1 - p_i \\ + \frac{\# \text{ first } t \text{ sets chosen} + \sum_{i > t} p_i}{2 \ln 2n \sum_i x_i^*}$$

pessimistic estimator Φ_t

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For $i = 1, 2, \dots$, m sequentially do: *include* or *exclude* s_i — whichever keeps conditional probability of failure below 1.

Given first t choices, probability of failure is at most

$$\Phi_t \doteq \sum_{\substack{e \text{ not yet} \\ covered}} \prod_{s_i \ni e, i \ge t} 1 - p_i \\ + \frac{\# \text{ first } t \text{ sets chosen} + \sum_{i > t} p_i}{2 \ln 2n \sum_i x_i^*}.$$

▶ Φ₀ < 1</p>

- $\blacktriangleright E[\Phi_{t+1} \,|\, \Phi_t] \leq \Phi_t$
- If $\Phi_m < 1$, then outcome is successful.

algorithm

Let x^* be an optimal fractional set cover. Let $\lambda = \ln 2n$. For i = 1, 2, ..., m sequentially do: *include* or *exclude* s_i — whichever makes $\Phi_i < 1$.

$$\Phi_t \doteq \left(\sum_{\substack{e \text{ not yet}\\covered}} \prod_{s_i \ni e, i \ge t} 1 - p_i\right) + \frac{\# \text{ first } t \text{ sets chosen} + \sum_{i > t} p_i}{2 \ln 2n \sum_i x_i^*}.$$

Corollary

Algorithm returns a cover of size at most $2\ln(2n) \times OPT$.

sample and increment randomized rounding via iterated sampling

Let $x^* \ge 0$ be a fractional solution.

Let $|x^*|$ denote $\sum_i x_i^*$.

Define distribution p by $p_i \doteq x_i^* / \sum_{i'} x_{i'}^*$.

Let $\hat{x} \leftarrow \mathbf{0}$.

For
$$t = 1, 2, 3, ...$$
 do:
Sample random index *i* according to *p*.
Increment \hat{x}_i .

Let $\hat{x}^{(t)}$ denote \hat{x} after t samples.

... like weighted balls in bins.

illustration of sampling distribution

fractional set cover x*:

probability distribution p on sets:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

sample and increment — for set cover

Let $x^* \ge 0$ be a fractional solution. Let $|x^*|$ denote $\sum_i x_i^*$.

Define distribution p by $p_i \doteq x_i^*/|x^*|$.

Let $\hat{x} \leftarrow \mathbf{0}$.

```
For t = 1, 2, 3, ... do:
Sample random index i according to p.
Increment \hat{x}_i — add s_i to the cover.
```

Let $\hat{x}^{(t)}$ denote \hat{x} after t samples.

sample and increment — for set cover

Let $x^* \ge 0$ be a fractional solution. Let $|x^*|$ denote $\sum_i x_i^*$. Define distribution p by $p_i \doteq x_i^*/|x^*|$. Let $\hat{x} \leftarrow \mathbf{0}$. For $t = 1, 2, 3, \dots$ do: Sample random index i according to p. Increment $\hat{x}_i - \text{add } s_i$ to the cover.

Let $\hat{x}^{(t)}$ denote \hat{x} after t samples.

▶ For any element *e*, with each sample, $\Pr[e \text{ is covered}] = \sum_{s_i \ni e} x_i^* / |x^*| \ge 1 / |x^*|.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

existence proof for set cover

Theorem With positive probability, after $T = \lceil \ln(n) |x^*| \rceil$ samples, $\hat{x}^{(T)}$ is a set cover.

Proof.

For any element e:

- ▶ With each sample, $\Pr[e \text{ is covered}] = \sum_{s_i \ni e} x_i^* / |x^*| \ge 1 / |x^*|.$
- After T samples,

 $\mathsf{Pr}[e \text{ is not covered}] \leq \big(1 - 1/|x^*|\big)^{\mathcal{T}} < 1/n.$

So, expected number of uncovered elements is less than 1.

Corollary

There exists a set cover of size at most $\lceil \ln(n) | x^* | \rceil$.

method of conditional probabilities

Let $x^* \ge 0$ be a fractional solution.

Let $\hat{x} \leftarrow \mathbf{0}$.

For
$$t = 1, 2, 3, ..., T$$
 do:

Increment \hat{x}_i , where *i* is chosen to keep expected number of not-covered elements below 1. Return $\hat{x}^{(T)}$.

Given first t samples, expected number of not-covered elements is at most

$$\Phi_t \doteq \sum_{e \text{ not yet}} (1 - 1/|x^*|)^{T-t}$$

covered

algorithm the greedy set-cover algorithm

Let $\hat{x} \leftarrow \mathbf{0}$. For t = 1, 2, 3, ..., T do: Increment \hat{x}_i , where *i* is chosen to minimize the number of not-yet-covered elements.

Return $\hat{x}^{(T)}$.

x⁴ 7 8 9 4 5 6 1 1

Corollary

The greedy algorithm returns a cover of size at most $\lceil \ln(n) \min_{x^*} |x^*| \rceil$.

algorithm the greedy set-cover algorithm

Let $\hat{x} \leftarrow \mathbf{0}$. For $t = 1, 2, 3, \dots, T$ do: Increment \hat{x}_i , where *i* is chosen to minimize the number of not-yet-covered elements.

Return $\hat{x}^{(T)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary

The greedy algorithm returns a cover of size at most $\lceil \ln(n) \min_{x^*} |x^*| \rceil$.

Can also derive Chvatal's weighted set cover algorithm and show $H(\max_{s} |s|)$ -approximation.

vertex cover attack via its dual — maximum matching

> vertex cover: minimize $\sum_{v} y_{v}$ s.t. $(\forall e \in E)$ $\sum_{v \in e} y_{v} \ge 1$ matching: maximize $\sum_{e} x_{e}$ s.t. $(\forall v \in V)$ $\sum_{e \in v} x_{e} \le 1$

Let x^* be a fractional matching.

Define probability distribution p on edges by $p_e \doteq x_e^*/|x^*|$.

Let $\hat{x} \leftarrow \mathbf{0}$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_e = 1$.

Repeat until each edge has a matched vertex:

Sample an edge *e* from distribution *p*. If *e* has no matched vertex, then increment \hat{x}_e .

Return \hat{x} .

matching existence proof

Theorem

Let x^* be a fractional matching. Define probability distribution p on edges by $p_e \doteq x_e^* / |x^*|$. Let $\hat{x} \leftarrow 0$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_e = 1$. Repeat until each edge has a matched vertex: Sample an edge e from distribution p. If e has no matched vertex, then increment \hat{x}_e . Return \hat{x} .

The expected size of the matching returned by sample-and-increment is at least $|x^*|/2$.

Proof.

For any edge e,

Theorem follows by linearity of expectation.

matching method of conditional probabilities

Let x^* be a fractional matching. Define probability distribution p on edges by $p_e \doteq x_e^* / |x^*|$. Let $\hat{x} \leftarrow 0$. Say vertex v is *matched* when $\sum_{e \ni v} \hat{x}_e = 1$. Repeat until each edge has a matched vertex: Sample an edge e from distribution p. If e has no matched vertex, then increment \hat{x}_e . Return \hat{x} .

Given the solution $\hat{x}^{(t)}$ after t samples, the expected size $|\hat{x}^{(T)}|$ of the final matching is at least

Choosing an unblocked edge (u, v) and incrementing $\hat{x}_{(u,v)}$ increases Φ by at least

$$1 - \sum_{e \ni u} x_e^*/2 - \sum_{e \ni v} x_e^*/2$$

$$\geq 1 - 1/2 - 1/2 = 0.$$

algorithm

Let $\hat{x} \leftarrow \mathbf{0}$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_e = 1$.

Repeat until each edge has a matched vertex:

Choose an edge e with no matched vertex. Increment \hat{x}_e . Return \hat{x} .

Corollary

The algorithm returns a matching of size at least $(1/2) \max_{x^*} |x^*|$.

duality

primal:
$$\max c \cdot x : Ax \leq b$$

dual: min $b \cdot y : A^t y \ge c$

weak duality: x, y feasible $\Rightarrow c \cdot x \leq b \cdot y$, because

$$c^t x \leq (y^t A) x = y^t (Ax) \leq y^t b.$$

strong duality: Every linear inequality that is valid for all feasible primal solutions x can be expressed via weak duality.

duality

► Analysis of algorithm shows |x̂| ≥ |x*|/2 for any feasible solution x*.

Analysis must be expressible via weak duality.

weak duality relation for matching x / vertex cover y:

$$|x| = \sum_e x_e \leq \sum_e x_e \sum_{\mathbf{v} \in \mathbf{e}} y_{\mathbf{v}} = \sum_v y_v \sum_{e \ni v} x_e \leq \sum_v y_v = |y|.$$

 Find implicit dual solution by looking for coefficients of x^{*}_e in the inequalities in the analysis.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

dual solution implicit in analysis look for coefficients of x_e^* in inequalities used in proof

$$\phi_t \doteq |\hat{x}^{(t)}| + \sum_{\substack{e \text{ not yet}}} x_e^*/2$$

blocked

Analysis showed
$$|x^*|/2 = \Phi_0 \le \Phi_T = |\hat{x}|$$
.

Want to recast as weak duality relation for some \hat{y} :

$$|x^*| = \sum_{e} x^*_{e} \le \sum_{e} x^*_{e} \sum_{v \in e} \hat{y}_{v} = \sum_{v} \hat{y}_{v} \sum_{e \ni v} x^*_{e} \le \sum_{v} \hat{y}_{v} = |y|.$$

Let $e_t = (u_t, v_t)$ be the edge chosen in the *t*th iteration. Recall $\Phi_T \ge \Phi_0$ proved via $\sum_{t=0}^{T-1} \Phi_{t+1} - \Phi_t \ge 0$, via

$$\sum_{t} \left(1 - \sum_{e \ni u_t} x_e^* / 2 - \sum_{e \ni v_t} x_e^* / 2 \right) \geq 0.$$

Rewrite to isolate coefficients of each x_e^* :

$$|\hat{x}| \geq \frac{1}{2} \sum_{e} x_e^* \sum_{v \in e} \sum_{t} [v \in e_t]$$

Suggests taking $\hat{y}_{\nu} \doteq \sum_{t} [v \in e_{t}]$, i.e. $\hat{y}_{\nu} = 1$ for matched vertices.

implicit primal-dual algorithm

Let $\hat{x} \leftarrow \mathbf{0}$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_e = 1$. Let $\hat{y} \leftarrow \mathbf{0}$.

Repeat until each edge has a matched vertex:

Choose an edge e with no matched vertex. Increment \hat{x}_e . For each $v \in e$, increment \hat{y}_v .

Return \hat{x} .

Corollary

The algorithm returns a feasible vertex cover \hat{y} , with $|\hat{y}| \leq 2|\hat{x}|$. Thus, the algorithm is a 2-approximation algorithm for VERTEX COVER.

maximum multicommodity flow input: directed graph G = (V, E), collection P of paths

$$\mbox{maximize} \quad \sum_{p \in P} x_p \ \ \mbox{s.t.} \ \ (\forall e \in E) \ \ \sum_{p \ni e} x_p \leq C$$

Let x^* be a fractional solution.

Define distribution q on paths by $q_p \doteq x_p^* / |x^*|$.

Let $\hat{x} \leftarrow \mathbf{0}$.

For t = 1, 2, 3, ... do:

Sample random path p from distribution q; increment \hat{x}_p .

existence proof

Theorem

Let x^* be a fractional solution. Define distribution q on paths by $q_p \doteq x_p^* / |x^*|$. Let $\hat{x} \leftarrow \mathbf{0}$. For $t = 1, 2, 3, \ldots$ do: Sample random path p from distribution q; increment \hat{x}_p .

For $T = \lfloor |x^*| \rfloor$ and any $\varepsilon \in [0, 1]$, the expected number of edges on which $\hat{x}^{(T)}$ induces flow greater than $(1 + \varepsilon)C$ is at most

$$m\exp(-\varepsilon^2 C/3).$$

Proof.

Note expected flow on any edge is at most $TC/|x^*| \leq C$. Apply Chernoff.

Corollary

For $\varepsilon \doteq \sqrt{3\ln(m)/C}$, if $\varepsilon \le 1$, there exists an integer flow of size at least $\lfloor |x^*| \rfloor$ that induces flow at most $(1 + \varepsilon)C$ on each edge.

algorithm for integer multicommodity flow after applying the method of conditional probabilities

Let
$$\hat{x} \leftarrow \mathbf{0}$$
. Let $\varepsilon \leftarrow \sqrt{3\ln(m)/C}$.

Repeat until \hat{x} induces flow of $(1 + \varepsilon)C$ on some edge:

Let $\hat{x}(e)$ denote $\sum_{p \ni e} \hat{x}_p$, the flow on edge e. Choose path p to minimize $\sum_{e \in p} (1 + \varepsilon)^{\hat{x}(e)}$. Increment \hat{x}_p .

Return \hat{x} .

Corollary

For $\varepsilon \doteq \sqrt{3 \ln(m)/C}$, if $\varepsilon \le 1$, the algorithm returns an integer flow of size at least $\lfloor \max_{x^*} |x^*| \rfloor$ that induces flow at most $(1 + \varepsilon)C$ on each edge.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

algorithm for fractional multicommodity flow Additional input: ε . Idea: round to units of size $O(\varepsilon^2/\ln(m))$.

Let $\hat{x} \leftarrow \mathbf{0}$.

Choose λ so $\lambda C = 3 \ln(m) / \varepsilon^2$.

Repeat until \hat{x} induces flow of $(1 + \varepsilon)\lambda C$ on some edge:

Let $\hat{x}(e)$ denote $\sum_{p \ni e} \hat{x}_p$, the flow on edge e. Choose path p to minimize $\sum_{e \in p} (1 + \varepsilon)^{\hat{x}(e)}$. Increment \hat{x}_p .

Return \hat{x}/λ .

Corollary

Given $\varepsilon \in [0, 1]$, the algorithm returns a flow of size at least $\max_{x^*} |x^*|$ that induces flow at most $(1 + O(\varepsilon))C$ on each edge.

General alg. requires $3m \ln(m)/\varepsilon^2$ shortest-path computations.

くして、 「「 (山) (山) (山) (山)

a lower bound on number of iterations critical dependence on $1/\varepsilon^2$ is inherent?

Define
$$V(A) \doteq \max\{|x| : Ax \le \mathbf{1}\}.$$

Theorem

Let $n \in \mathbb{N}$, $m = n^2$, and $\varepsilon > 0$ such that $\varepsilon^{-2} \le n^{1-\Omega(1)}$.

Choose $A \in \{0,1\}^{m \times n}$ uniformly at random.

With probability 1 - o(1), for $s \le \ln(m)/\varepsilon^2$, every $m \times s$ submatrix B of A satisfies

$$V(B) < (1 - \Omega(\varepsilon))V(A).$$

Proof.

Discrepancy argument based on "tightness" of Chernoff bound.

a lower bound on number of iterations $\Omega(\log(m)/\varepsilon^2)$ iterations are necessary

Corollary

Let $n \in \mathbb{N}$, $m = n^2$, and $\varepsilon > 0$ such that $\varepsilon^{-2} \le n^{1-\Omega(1)}$.

Choose $A \in \{0,1\}^{m \times n}$ uniformly at random.

Then with probability 1 - o(1), for the fractional packing problem of computing V(A), any $(1 - \varepsilon)$ -approximate solution \hat{x} has $\Omega(\log(m)/\varepsilon^2)$ non-zero entries \hat{x}_i . fast algorithm for explicitly given problems reducing significance of $1/\varepsilon^2$

Theorem

A $(1 \pm \varepsilon)$ -approximate primal-dual pair for the linear program max $\{c \cdot x : Ax \ge b, x \ge \mathbf{0}\}$ can be computed in expected time

$$O(\#$$
non-zeroes + $n \log(n) / \varepsilon^2)$

where
$$n = (\#constraints) + (\#variables)$$
.

Proof.

Clever use of duality, randomization, algorithmic engineering. (Strengthens and generalizes result by Grigoriadis and Khachiyan.)

two open questions

▶ SET COVER with *demands and multiplicity constraints* is

```
\min\{c \cdot x : Ax \ge b, x \le \mathbf{1}\}
```

```
where A is \{0,1\}.
```

The greedy algorithm is an ln(n)-approximation algorithm.

Is there a corresponding rounding scheme?

For FACILITY LOCATION, the sample-and-increment rounding scheme gives a solution of expected cost at most

assignment-cost(OPT) + $\ln(n) \times \text{facility-cost}(\text{OPT})$.

Is there a corresponding greedy algorithm?

set cover

standard randomized rounding

existence proof method of conditional probabilities algorithm

iterated sampling

existence proof method of conditional probabilities algorithm

vertex cover (duality)

existence proof method of conditional probabilities algorithm implicit primal-dual algorithm

multicommodity flow

existence proof algorithm for integer solution algorithm for fractional solution

lower bound on iterations

fast algorithm for explicitly given problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

two open questions