Deriving greedy algorithms and Lagrangian-relaxation algorithms

Neal E. Young

February 16, 2007
standard randomized rounding
existence proof
method of conditional probabilities algorithm
iterated sampling
existence proof
method of conditional probabilities
algorithm
vertex cover (duality)
existence proof
method of conditional probabilities
algorithm
implicit primal-dual algorithm
multicommodity flow
existence proof
algorithm for integer solution
algorithm for fractional solution
lower bound on iterations
fast algorithm for explicitly given problems

set cover

input: collection $s_{1}, s_{2}, \ldots, s_{m}$ of sets over universe U
minimize $\sum_{i=1}^{m} x_{i}$ subject to

$$
(\forall e \in U) \quad \sum_{s_{i} \ni e} x_{i} \geq 1
$$

$$
(\forall i) \quad x_{i} \in\{0,1\}
$$

- Value of optimal fractional solution x^{*} is a lower bound on optimal integer solution.
a fractional set cover x^{*}

standard randomized rounding

Let x^{*} be an optimal fractional set cover.
Let $\lambda=\ln 2 n$.
For each set $s_{i} \in S$ independently do: choose s_{i} with probability $p_{i} \doteq \min \left\{\lambda x_{i}^{*}, 1\right\}$.

Theorem
With positive probability, chosen sets form a cover of size at most $2 \ln (2 n) \sum_{i} x_{i}^{*}$.

coverage

Let x^{*} be an optimal fractional set cover.
Let $\lambda=\ln 2 n$.
For each set $s_{i} \in S$ independently do:
choose s_{i} with probability $p_{i} \doteq \min \left\{\lambda x_{i}^{*}, 1\right\}$.
Probability element e not covered:

$$
\begin{aligned}
\prod_{s_{i} \ni e} 1-p_{i} & <\prod_{s_{i} \ni e} \exp \left(-\lambda x_{i}^{*}\right) \\
& =\exp \left(-\lambda \sum_{s_{i} \ni e} x_{i}^{*}\right) \\
& \leq \exp (-\lambda) \\
& =1 / 2 n
\end{aligned}
$$

$\operatorname{Pr}[$ exists uncovered element $]<1 / 2$

cost

Let x^{*} be an optimal fractional set cover. Let $\lambda=\ln 2 n$.
For each set $s_{i} \in S$ independently do:
choose s_{i} with probability $p_{i} \doteq \min \left\{\lambda x_{i}^{*}, 1\right\}$.
Expected number of sets chosen is

$$
\sum_{i} p_{i} \leq \ln (2 n) \sum_{i} x_{i}^{*}
$$

$\operatorname{Pr}\left[\right.$ more than $2 \ln (2 n) \sum_{i} x_{i}^{*}$ sets chosen $] \leq 1 / 2$

proof of theorem

```
Let }\mp@subsup{x}{}{*}\mathrm{ be an optimal fractional set cover.
Let \lambda=\operatorname{ln}2n.
For each set si}\mp@subsup{s}{S}{}\mathrm{ independently do:
    choose s}\mp@subsup{s}{i}{}\mathrm{ with probability }\mp@subsup{p}{i}{}\doteq=\operatorname{min}{\lambda\mp@subsup{x}{i}{*},1}\mathrm{ .
```


Theorem

With positive probability, chosen sets form a cover of size at most $2 \ln (2 n) \sum_{i} x_{i}^{*}$.

Proof.
$\operatorname{Pr}[$ exists uncovered element] $<1 / 2$
$\operatorname{Pr}\left[\right.$ more than $2 \ln (2 n) \sum_{i} x_{i}^{*}$ sets chosen $] \leq 1 / 2$
$\operatorname{Pr}\left[\right.$ chosen sets form cover of size $\left.\leq 2 \ln (2 n) \sum_{i} x_{i}^{*}\right]>0$

method of conditional probabilities

 converts existence proof into an efficient algorithmLet x^{*} be an optimal fractional set cover.

Let $\lambda=\ln 2 n$.

For each set $s_{i} \in S$ independently do:
choose s_{i} with probability $p_{i} \doteq \min \left\{\lambda x_{i}^{*}, 1\right\}$.

algorithm (incomplete)

Let x^{*} be an optimal fractional set cover. Let $\lambda=\ln 2 n$.
For each set $s_{i} \in S$ independently do:

$$
\text { choose } s_{i} \text { with probability } p_{i} \doteq \min \left\{\lambda x_{i}^{*}, 1\right\} .
$$

Let x^{*} be an optimal fractional set cover.
Let $\lambda=\ln 2 n$.
For $i=1,2, \ldots, m$ sequentially do: include or exclude s_{i} - whichever keeps conditional probability of failure below 1 .

conditional probability of failure

\author{

- coverage
}

```
Let }\mp@subsup{x}{}{*}\mathrm{ be an optimal fractional set cover.
```

Let $\lambda=\ln 2 n$.
For $i=1,2, \ldots, m$ sequentially do:
include or exclude s_{i} - whichever keeps
conditional probability of failure below 1.

Given first t choices, probability that elt e won't be covered is zero if e is already covered, and otherwise

$$
\prod_{s_{i} \ni e, i>t} 1-p_{i}
$$

Conditional probability that chosen sets will fail to cover is at most

conditional probability of failure

```
Let }\mp@subsup{x}{}{*}\mathrm{ be an optimal fractional set cover.
Let }\lambda=\operatorname{ln}2n\mathrm{ .
For i=1,2,\ldots,m sequentially do:
    include or exclude si
    conditional probability of failure below 1.
```

Given first t choices, expected number of chosen sets is

$$
\# \text { first } t \text { sets chosen }+\sum_{i>t} p_{i}
$$

Given first t choices, probability that too many sets will be chosen is at most

pessimistic estimator Φ_{t}

```
Let }\mp@subsup{x}{}{*}\mathrm{ be an optimal fractional set cover.
Let \lambda=\operatorname{ln}2n}\mathrm{ .
For i=1,2,\ldots,m sequentially do:
    include or exclude si
    conditional probability of failure below 1.
```

Given first t choices, probability of failure is at most

$$
\begin{aligned}
& \Phi_{t} \doteq \sum_{\substack{e \text { not yet } \\
\text { covered }}} \prod_{\substack{s_{i} \ni e, i \geq t}} 1-p_{i} \\
&+\frac{\# \text { first } t \text { sets chosen }+\sum_{i>t} p_{i}}{2 \ln 2 n \sum_{i} x_{i}^{*}}
\end{aligned}
$$

pessimistic estimator Φ_{t}

```
Let }\mp@subsup{x}{}{*}\mathrm{ be an optimal fractional set cover.
Let \lambda=\operatorname{ln}2n}\mathrm{ .
For i=1,2,\ldots,m sequentially do:
    include or exclude si
    conditional probability of failure below 1.
```

Given first t choices, probability of failure is at most

$$
\begin{aligned}
\Phi_{t} \doteq & \sum_{\substack{e \text { not yet } \\
\text { covered }}} \prod_{s_{i} \ni e, i \geq t} 1-p_{i} \\
& +\frac{\# \text { first } t \text { sets chosen }+\sum_{i>t} p_{i}}{2 \ln 2 n \sum_{i} x_{i}^{*}}
\end{aligned}
$$

- $\Phi_{0}<1$
- $E\left[\Phi_{t+1} \mid \Phi_{t}\right] \leq \Phi_{t}$
- If $\Phi_{m}<1$, then outcome is successful.

algorithm

Let x^{*} be an optimal fractional set cover.
Let $\lambda=\ln 2 n$.
For $i=1,2, \ldots, m$ sequentially do:
include or exclude s_{i} - whichever makes $\Phi_{i}<1$.

$$
\Phi_{t} \doteq\left(\sum_{\substack{e \text { not yet } \\ \text { covered }}} \prod_{\substack{s_{i} \ni e, i \geq t}} 1-p_{i}\right)+\frac{\# \text { first } t \text { sets chosen }+\sum_{i>t} p_{i}}{2 \ln 2 n \sum_{i} x_{i}^{*}}
$$

Corollary
Algorithm returns a cover of size at most $2 \ln (2 n) \times$ OPT.

sample and increment

 randomized rounding via iterated samplingLet $x^{*} \geq 0$ be a fractional solution.
Let $\left|x^{*}\right|$ denote $\sum_{i} x_{i}^{*}$.

Define distribution p by $p_{i} \doteq x_{i}^{*} / \sum_{i^{\prime}} x_{i^{\prime}}^{*}$.
Let $\hat{x} \leftarrow \mathbf{0}$.
For $t=1,2,3, \ldots$ do:
Sample random index i according to p. Increment \hat{x}_{i}.

Let $\hat{x}^{(t)}$ denote \hat{x} after t samples.
... like weighted balls in bins.

illustration of sampling distribution

fractional set cover x^{*} :

probability distribution p on sets:

sample and increment

- for set cover

Let $x^{*} \geq 0$ be a fractional solution.
Let $\left|x^{*}\right|$ denote $\sum_{i} x_{i}^{*}$.
Define distribution p by $p_{i} \doteq x_{i}^{*} /\left|x^{*}\right|$.
Let $\hat{x} \leftarrow \mathbf{0}$.
For $t=1,2,3, \ldots$ do:
Sample random index i according to p. Increment $\hat{x}_{i}-$ add s_{i} to the cover.

Let $\hat{x}^{(t)}$ denote \hat{x} after t samples.

sample and increment

- for set cover

Let $x^{*} \geq 0$ be a fractional solution.
Let $\left|x^{*}\right|$ denote $\sum_{i} x_{i}^{*}$.

Define distribution p by $p_{i} \doteq x_{i}^{*} /\left|x^{*}\right|$.
Let $\hat{x} \leftarrow \mathbf{0}$.
For $t=1,2,3, \ldots$ do:
Sample random index i according to p. Increment $\hat{x}_{i}-$ add s_{i} to the cover.

Let $\hat{x}^{(t)}$ denote \hat{x} after t samples.

- For any element e, with each sample, $\operatorname{Pr}[e$ is covered $]=\sum_{s_{i} \ni e} x_{i}^{*} /\left|x^{*}\right| \geq 1 /\left|x^{*}\right|$.

existence proof for set cover

Theorem
With positive probability, after $T=\left\lceil\ln (n)\left|x^{*}\right|\right\rceil$ samples, $\hat{x}^{(T)}$ is a set cover.

Proof.

For any element e :

- With each sample, $\operatorname{Pr}[e$ is covered $]=\sum_{s_{i} \ni e} x_{i}^{*} /\left|x^{*}\right| \geq 1 /\left|x^{*}\right|$.
- After T samples, $\operatorname{Pr}[e$ is not covered $] \leq\left(1-1 /\left|x^{*}\right|\right)^{T}<1 / n$.
So, expected number of uncovered elements is less than 1.
Corollary
There exists a set cover of size at most $\left\lceil\ln (n)\left|x^{*}\right|\right\rceil$.

method of conditional probabilities

Let $x^{*} \geq 0$ be a fractional solution.
Let $\hat{x} \leftarrow \mathbf{0}$.
For $t=1,2,3, \ldots, T$ do:

Increment \hat{x}_{i}, where i is chosen to keep
expected number of not-covered elements below 1 .
Return $\hat{x}^{(T)}$.

Given first t samples, expected number of not-covered elements is at most

$$
\Phi_{t} \doteq \sum_{\substack{e \text { not yet } \\ \text { covered }}}\left(1-1 /\left|x^{*}\right|\right)^{T-t}
$$

algorithm

the greedy set-cover algorithm

Let $\hat{x} \leftarrow \mathbf{0}$.
For $t=1,2,3, \ldots, T$ do:
Increment \hat{x}_{i}, where i is chosen to minimize the number of not-yet-covered elements.

Return $\hat{x}^{(T)}$.

Corollary
The greedy algorithm returns a cover of size at most $\left\lceil\ln (n) \min _{x^{*}}\left|x^{*}\right|\right\rceil$.

algorithm

the greedy set-cover algorithm

Let $\hat{x} \leftarrow \mathbf{0}$.
For $t=1,2,3, \ldots, T$ do:
Increment \hat{x}_{i}, where i is chosen to minimize the number of not-yet-covered elements.

Return $\hat{x}^{(T)}$.

Corollary

The greedy algorithm returns a cover of size at most $\left\lceil\ln (n) \min _{x^{*}}\left|x^{*}\right|\right\rceil$.

Can also derive Chvatal's weighted set cover algorithm and show $H\left(\right.$ max $\left._{s}|s|\right)$-approximation.

vertex cover

vertex cover: minimize $\sum_{v} y_{v}$ s.t. $(\forall e \in E) \quad \sum_{v \in e} y_{v} \geq 1$ matching: maximize $\sum_{e} x_{e}$ s.t. $(\forall v \in V) \quad \sum_{e \in v} x_{e} \leq 1$

Let x^{*} be a fractional matching.
Define probability distribution p on edges by $p_{e} \doteq x_{e}^{*} /\left|x^{*}\right|$.
Let $\hat{x} \leftarrow \mathbf{0}$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_{e}=1$.
Repeat until each edge has a matched vertex:
Sample an edge e from distribution p.
If e has no matched vertex, then increment \hat{x}_{e}.
Return \hat{x}.

matching

existence proof

Theorem

Let x^{*} be a fractional matching.
Define probability distribution p on edges by $p_{e} \doteq x_{e}^{*} /\left|x^{*}\right|$.
Let $\hat{x} \leftarrow \mathbf{0}$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_{e}=1$.
Repeat until each edge has a matched vertex:
Sample an edge e from distribution p.
If e has no matched vertex, then increment \hat{x}_{e}.
Return \hat{x}.

The expected size of the matching returned by
sample-and-increment is at least $\left|x^{*}\right| / 2$.
Proof.

For any edge e,

$$
\operatorname{Pr}[e \text { chosen }]=\frac{p_{e}}{\sum_{e^{\prime}: e \cap e^{\prime} \neq \emptyset} p_{e^{\prime}}}=\frac{x_{e}^{*}}{\sum_{e^{\prime}: e \cap e^{\prime} \neq \emptyset} x_{e^{\prime}}^{*}} \geq \frac{x_{e}^{*}}{2} .
$$

Theorem follows by linearity of expectation.

matching

method of conditional probabilities

Given the solution $\hat{x}^{(t)}$ after t samples, the expected size $\left|\hat{x}^{(T)}\right|$ of the final matching is at least

$$
\Phi_{t} \doteq\left|\hat{x}^{(t)}\right|+\sum_{\substack{e \text { not yet } \\ \text { blocked }}} x_{e}^{*} / 2
$$

Choosing an unblocked edge (u, v) and incrementing $\hat{x}_{(u, v)}$ increases Φ by at least

$$
\begin{aligned}
& 1-\sum_{e \ni u} x_{e}^{*} / 2-\sum_{e \ni v} x_{e}^{*} / 2 \\
& \geq 1-1 / 2-1 / 2=0 .
\end{aligned}
$$

algorithm

Let $\hat{x} \leftarrow \mathbf{0}$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_{e}=1$.
Repeat until each edge has a matched vertex:
Choose an edge e with no matched vertex. Increment \hat{x}_{e}.
Return \hat{x}.

Corollary
The algorithm returns a matching of size at least (1/2) $\max _{x^{*}}\left|x^{*}\right|$.

duality

primal: $\max c \cdot x: A x \leq b$

$$
\text { dual: } \min b \cdot y: A^{t} y \geq c
$$

weak duality: x, y feasible $\Rightarrow c \cdot x \leq b \cdot y$, because

$$
c^{t} x \leq\left(y^{t} A\right) x=y^{t}(A x) \leq y^{t} b
$$

strong duality: Every linear inequality that is valid for all feasible primal solutions x can be expressed via weak duality.

duality

- Analysis of algorithm shows $|\hat{x}| \geq\left|x^{*}\right| / 2$ for any feasible solution x^{*}.
- Analysis must be expressible via weak duality.
weak duality relation for matching $x /$ vertex cover y :

$$
|x|=\sum_{e} x_{e} \leq \sum_{e} x_{e} \sum_{v \in e} y_{v}=\sum_{v} y_{v} \sum_{e \ni v} x_{e} \leq \sum_{v} y_{v}=|y|
$$

- Find implicit dual solution by looking for coefficients of x_{e}^{*} in the inequalities in the analysis.

Analysis showed $\left|x^{*}\right| / 2=\Phi_{0} \leq \Phi_{T}=|\hat{x}|$.
Want to recast as weak duality relation for some \hat{y} :

$$
\left|x^{*}\right|=\sum_{e} x_{e}^{*} \leq \sum_{e} x_{e}^{*} \sum_{v \in e} \hat{y}_{v}=\sum_{v} \hat{y}_{v} \sum_{e \ni v} x_{e}^{*} \leq \sum_{v} \hat{y}_{v}=|y| .
$$

Let $e_{t}=\left(u_{t}, v_{t}\right)$ be the edge chosen in the t th iteration.
Recall $\Phi_{T} \geq \Phi_{0}$ proved via $\sum_{t=0}^{T-1} \Phi_{t+1}-\Phi_{t} \geq 0$, via

$$
\sum_{t}\left(1-\sum_{e \ni u_{t}} x_{e}^{*} / 2-\sum_{e \ni v_{t}} x_{e}^{*} / 2\right) \geq 0 .
$$

Rewrite to isolate coefficients of each x_{e}^{*} :

$$
|\hat{x}| \geq \frac{1}{2} \sum_{e} x_{e}^{*} \sum_{v \in e} \sum_{t}\left[v \in e_{t}\right] .
$$

Suggests taking $\hat{y}_{v} \doteq \sum_{t}\left[v \in e_{t}\right]$, i.e. $\hat{y}_{v}=1$ for matched vertices.

implicit primal-dual algorithm

Let $\hat{x} \leftarrow \mathbf{0}$. Say vertex v is matched when $\sum_{e \ni v} \hat{x}_{e}=1$.
Let $\hat{y} \leftarrow \mathbf{0}$.
Repeat until each edge has a matched vertex:
Choose an edge e with no matched vertex. Increment \hat{x}_{e}. For each $v \in e$, increment \hat{y}_{v}.

Return \hat{x}.

Corollary

The algorithm returns a feasible vertex cover \hat{y}, with $|\hat{y}| \leq 2|\hat{x}|$. Thus, the algorithm is a 2-approximation algorithm for VERTEX COVER.

maximum multicommodity flow

 input: directed graph $G=(V, E)$, collection P of pathsmaximize $\sum_{p \in P} x_{p}$ s.t. $(\forall e \in E) \quad \sum_{p \ni e} x_{p} \leq C$

Let x^{*} be a fractional solution.
Define distribution q on paths by $q_{p} \doteq x_{p}^{*} /\left|x^{*}\right|$.
Let $\hat{x} \leftarrow \mathbf{0}$.
For $t=1,2,3, \ldots$ do:
Sample random path p from distribution q; increment \hat{x}_{p}.

existence proof

Theorem

```
Let }\mp@subsup{x}{}{*}\mathrm{ be a fractional solution.
Define distribution q}\mathrm{ on paths by }\mp@subsup{q}{p}{}\doteq\mp@subsup{\sum}{p}{*}/|\mp@subsup{x}{}{*}|\mathrm{ .
Let \hat{x}}\leftarrow\mathbf{0
For t=1,2,3,\ldots. do:
Sample random path \(p\) from distribution \(q\); increment \(\hat{x}_{p}\).
```

For $T=\left\lfloor\left|x^{*}\right|\right\rfloor$ and any $\varepsilon \in[0,1]$, the expected number of edges on which $\hat{x}^{(T)}$ induces flow greater than $(1+\varepsilon) C$ is at most

$$
m \exp \left(-\varepsilon^{2} C / 3\right)
$$

Proof.

Note expected flow on any edge is at most $T C /\left|x^{*}\right| \leq C$. Apply Chernoff.

Corollary
For $\varepsilon \doteq \sqrt{3 \ln (m) / C}$, if $\varepsilon \leq 1$, there exists an integer flow of size at least $\left\lfloor\left|x^{*}\right|\right\rfloor$ that induces flow at most $(1+\varepsilon) C$ on each edge.
algorithm for integer multicommodity flow after applying the method of conditional probabilities

Let $\hat{x} \leftarrow \mathbf{0}$. Let $\varepsilon \leftarrow \sqrt{3 \ln (m) / C}$.
Repeat until \hat{x} induces flow of $(1+\varepsilon) C$ on some edge:
Let $\hat{x}(e)$ denote $\sum_{p \ni e} \hat{x}_{p}$, the flow on edge e.
Choose path p to minimize $\sum_{e \in p}(1+\varepsilon)^{\hat{x}(e)}$. Increment \hat{x}_{p}.
Return \hat{x}.

Corollary
For $\varepsilon \doteq \sqrt{3 \ln (m) / C}$, if $\varepsilon \leq 1$, the algorithm returns an integer flow of size at least $\left\lfloor\max _{x^{*}}\left|x^{*}\right|\right\rfloor$ that induces flow at most $(1+\varepsilon) C$ on each edge.
algorithm for fractional multicommodity flow Additional input: ε. Idea: round to units of size $O\left(\varepsilon^{2} / \ln (m)\right)$.

Let $\hat{x} \leftarrow \mathbf{0}$.
Choose λ so $\lambda C=3 \ln (m) / \varepsilon^{2}$.
Repeat until \hat{x} induces flow of $(1+\varepsilon) \lambda C$ on some edge:
Let $\hat{x}(e)$ denote $\sum_{p \ni e} \hat{x}_{p}$, the flow on edge e.
Choose path p to minimize $\sum_{e \in p}(1+\varepsilon)^{\hat{x}(e)}$. Increment \hat{x}_{p}.
Return \hat{x} / λ.

Corollary

Given $\varepsilon \in[0,1]$, the algorithm returns a flow of size at least $\max _{x^{*}}\left|x^{*}\right|$ that induces flow at most $(1+O(\varepsilon)) C$ on each edge.

General alg. requires $3 m \ln (m) / \varepsilon^{2}$ shortest-path computations.
a lower bound on number of iterations critical dependence on $1 / \varepsilon^{2}$ is inherent?

Define $V(A) \doteq \max \{|x|: A x \leq \mathbf{1}\}$.
Theorem

Let $n \in \mathbb{N}, m=n^{2}$, and $\varepsilon>0$ such that $\varepsilon^{-2} \leq n^{1-\Omega(1)}$.
Choose $A \in\{0,1\}^{m \times n}$ uniformly at random.
With probability $1-o(1)$, for $s \leq \ln (m) / \varepsilon^{2}$, every $m \times s$ submatrix B of A satisfies

$$
V(B)<(1-\Omega(\varepsilon)) V(A)
$$

Proof.
Discrepancy argument based on "tightness" of Chernoff bound.
a lower bound on number of iterations $\Omega\left(\log (m) / \varepsilon^{2}\right)$ iterations are necessary

Corollary
Let $n \in \mathbb{N}, m=n^{2}$, and $\varepsilon>0$ such that $\varepsilon^{-2} \leq n^{1-\Omega(1)}$.
Choose $A \in\{0,1\}^{m \times n}$ uniformly at random.
Then with probability $1-o(1)$, for the fractional packing problem of computing $V(A)$, any $(1-\varepsilon)$-approximate solution \hat{x} has $\Omega\left(\log (m) / \varepsilon^{2}\right)$ non-zero entries \hat{x}_{i}.
fast algorithm for explicitly given problems reducing significance of $1 / \varepsilon^{2}$

Theorem
A ($1 \pm \varepsilon$)-approximate primal-dual pair for the linear program $\max \{c \cdot x: A x \geq b, x \geq \mathbf{0}\}$
can be computed in expected time

$$
O\left(\# \text { non-zeroes }+n \log (n) / \varepsilon^{2}\right)
$$

where $n=(\#$ constraints $)+(\#$ variables $)$.
Proof.
Clever use of duality, randomization, algorithmic engineering.
(Strengthens and generalizes result by Grigoriadis and Khachiyan.)

two open questions

- Set Cover with demands and multiplicity constraints is

$$
\min \{c \cdot x: A x \geq b, x \leq \mathbf{1}\}
$$

where A is $\{0,1\}$.
The greedy algorithm is an $\ln (n)$-approximation algorithm.
Is there a corresponding rounding scheme?

- For Facility Location, the sample-and-increment rounding scheme gives a solution of expected cost at most

$$
\text { assignment-cost }(\mathrm{OPT})+\ln (n) \times \text { facility-cost }(\mathrm{OPT}) .
$$

Is there a corresponding greedy algorithm?
standard randomized rounding
existence proof
method of conditional probabilities algorithm
iterated sampling
existence proof
method of conditional probabilities
algorithm
vertex cover (duality)
existence proof
method of conditional probabilities
algorithm
implicit primal-dual algorithm
multicommodity flow
existence proof
algorithm for integer solution
algorithm for fractional solution
lower bound on iterations
fast algorithm for explicitly given problems

