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set cover
input: collection s1, s2, . . . , sm of sets over universe U

minimize
m∑

i=1

xi subject to

(∀e ∈ U)
∑
si3e

xi ≥ 1

(∀i) xi ∈ {0, 1}

I Value of optimal fractional solution x∗

is a lower bound on optimal integer solution.



a fractional set cover x∗
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standard randomized rounding

Let x∗ be an optimal fractional set cover.

Let λ = ln 2n.

For each set si ∈ S independently do:

choose si with probability pi
.
= min{λx∗i , 1}.

Theorem
With positive probability, chosen sets form a cover of size at most
2 ln(2n)

∑
i x
∗
i .



coverage

Probability element e not covered:∏
si3e

1− pi <
∏
si3e

exp(−λx∗i )

= exp
(
−λ

∑
si3e

x∗i

)
≤ exp(−λ)

= 1/2n

Pr[ exists uncovered element ] < 1/2

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For each set si ∈ S independently do:

choose si with probability pi
.
= min{λx∗i , 1}.



cost

Expected number of sets chosen is∑
i

pi ≤ ln(2n)
∑

i

x∗i .

Pr[ more than 2 ln(2n)
∑

i x
∗
i sets chosen ] ≤ 1/2

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For each set si ∈ S independently do:

choose si with probability pi
.
= min{λx∗i , 1}.



proof of theorem

Theorem
With positive probability, chosen sets form a cover of size at most
2 ln(2n)

∑
i x
∗
i .

Proof.

Pr[ exists uncovered element ] < 1/2

Pr[ more than 2 ln(2n)
∑

i x
∗
i sets chosen ] ≤ 1/2

Pr[ chosen sets form cover of size ≤ 2 ln(2n)
∑

i x
∗
i ] > 0

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For each set si ∈ S independently do:

choose si with probability pi
.
= min{λx∗i , 1}.



method of conditional probabilities
converts existence proof into an efficient algorithm
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Random experiment is
random walk starting here.

Each node labeled with
expected number of bad events

if random walk was to start there.

Leaf label is number of
bad events in that outcome.

Method of conditional
probabilities chooses
next node so labels 

don't increase...

... thus guarantees an outcome
with no bad events.

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For each set si ∈ S independently do:

choose si with probability pi
.
= min{λx∗i , 1}.



algorithm (incomplete)

‖
method of conditional probabilities

⇓

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For i = 1, 2, . . . ,m sequentially do:

include or exclude si — whichever keeps
conditional probability of failure below 1.

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For each set si ∈ S independently do:

choose si with probability pi
.
= min{λx∗i , 1}.



conditional probability of failure
— coverage

Given first t choices, probability that elt e won’t be covered is zero
if e is already covered, and otherwise∏

si3e,i>t

1− pi .

Conditional probability that chosen sets will fail to cover is at most∑
e not yet

covered

∏
si3e,i≥t

1− pi .

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For i = 1, 2, . . . , m sequentially do:

include or exclude si — whichever keeps
conditional probability of failure below 1.



conditional probability of failure
— cost

Given first t choices, expected number of chosen sets is

# first t sets chosen +
∑
i>t

pi .

Given first t choices, probability that too many sets will be chosen
is at most

# first t sets chosen +
∑

i>t pi

2 ln 2n
∑

i x
∗
i

.

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For i = 1, 2, . . . , m sequentially do:

include or exclude si — whichever keeps
conditional probability of failure below 1.



pessimistic estimator Φt

Given first t choices, probability of failure is at most

Φt
.
=

∑
e not yet

covered

∏
si3e,i≥t

1− pi

+
# first t sets chosen +

∑
i>t pi

2 ln 2n
∑

i x
∗
i

.

I Φ0 < 1

I E [Φt+1 |Φt ] ≤ Φt

I If Φm < 1, then outcome is successful.

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For i = 1, 2, . . . , m sequentially do:

include or exclude si — whichever keeps
conditional probability of failure below 1.



pessimistic estimator Φt

Given first t choices, probability of failure is at most

Φt
.
=

∑
e not yet

covered

∏
si3e,i≥t

1− pi

+
# first t sets chosen +

∑
i>t pi

2 ln 2n
∑

i x
∗
i

.

I Φ0 < 1

I E [Φt+1 |Φt ] ≤ Φt

I If Φm < 1, then outcome is successful.

Let x∗ be an optimal fractional set cover.
Let λ = ln 2n.
For i = 1, 2, . . . , m sequentially do:

include or exclude si — whichever keeps
conditional probability of failure below 1.



algorithm

Let x∗ be an optimal fractional set cover.

Let λ = ln 2n.

For i = 1, 2, . . . ,m sequentially do:

include or exclude si — whichever makes Φi < 1.

Φt
.
=

( ∑
e not yet

covered

∏
si3e,i≥t

1− pi

)
+

# first t sets chosen +
∑

i>t pi

2 ln 2n
∑

i x
∗
i

.

Corollary

Algorithm returns a cover of size at most 2 ln(2n)× opt.



sample and increment
randomized rounding via iterated sampling

Let x∗ ≥ 0 be a fractional solution.

Let |x∗| denote
∑

i x
∗
i .

Define distribution p by pi
.
= x∗i /

∑
i ′ x

∗
i ′ .

Let x̂ ← 0.

For t = 1, 2, 3, . . . do:
Sample random index i according to p.
Increment x̂i .

Let x̂ (t) denote x̂ after t samples.

... like weighted balls in bins.

ˆ

1

x*

x

t = 0

 7

6543

2

 8  9



illustration of sampling distribution
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probability distribution p on sets:
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elements



sample and increment
— for set cover

Let x∗ ≥ 0 be a fractional solution.

Let |x∗| denote
∑

i x
∗
i .

Define distribution p by pi
.
= x∗i /|x∗|.

Let x̂ ← 0.

For t = 1, 2, 3, . . . do:
Sample random index i according to p.
Increment x̂i — add si to the cover.

Let x̂ (t) denote x̂ after t samples.

I For any element e, with each sample,
Pr[e is covered] =

∑
si3e x∗i /|x∗| ≥ 1/|x∗|.

ˆ

1

x*

x

t = 0

 7

6543
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 8  9



sample and increment
— for set cover

Let x∗ ≥ 0 be a fractional solution.

Let |x∗| denote
∑

i x
∗
i .

Define distribution p by pi
.
= x∗i /|x∗|.

Let x̂ ← 0.

For t = 1, 2, 3, . . . do:
Sample random index i according to p.
Increment x̂i — add si to the cover.

Let x̂ (t) denote x̂ after t samples.

I For any element e, with each sample,
Pr[e is covered] =

∑
si3e x∗i /|x∗| ≥ 1/|x∗|.

ˆ

1

x*

x

t = 0

 7

6543

2

 8  9



existence proof for set cover

Theorem
With positive probability,
after T = dln(n)|x∗|e samples,
x̂ (T ) is a set cover.

Proof.
For any element e:

I With each sample,
Pr[e is covered] =

∑
si3e x∗i /|x∗| ≥ 1/|x∗|.

I After T samples,
Pr[e is not covered] ≤ (1− 1/|x∗|)T < 1/n.

So, expected number of uncovered elements is less than 1.

Corollary

There exists a set cover of size at most dln(n)|x∗|e.

ˆ

1

x*

x

t = 0

 7

6543

2

 8  9



method of conditional probabilities

Let x∗ ≥ 0 be a fractional solution.

Let x̂ ← 0.

For t = 1, 2, 3, . . . ,T do:
Increment x̂i , where i is chosen to keep
expected number of not-covered elements below 1.

Return x̂ (T ).

Given first t samples, expected number of not-covered elements is
at most

Φt
.
=

∑
e not yet

covered

(1− 1/|x∗|)T−t .

ˆ

1

x*

x

t = 0

 7

6543

2

 8  9



algorithm
the greedy set-cover algorithm

Let x̂ ← 0.

For t = 1, 2, 3, . . . ,T do:
Increment x̂i , where i is chosen to minimize
the number of not-yet-covered elements.

Return x̂ (T ).

Corollary

The greedy algorithm returns a cover of size at most
dln(n) minx∗ |x∗|e.

Can also derive Chvatal’s weighted set cover algorithm and show
H(maxs |s|)-approximation.

ˆ

1

x*

x

t = 0

 7

6543

2

 8  9



algorithm
the greedy set-cover algorithm

Let x̂ ← 0.

For t = 1, 2, 3, . . . ,T do:
Increment x̂i , where i is chosen to minimize
the number of not-yet-covered elements.

Return x̂ (T ).

Corollary

The greedy algorithm returns a cover of size at most
dln(n) minx∗ |x∗|e.

Can also derive Chvatal’s weighted set cover algorithm and show
H(maxs |s|)-approximation.

ˆ

1

x*

x

t = 0

 7

6543

2
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vertex cover
attack via its dual — maximum matching

vertex cover: minimize
∑

v yv s.t. (∀e ∈ E )
∑

v∈e yv ≥ 1

matching: maximize
∑

e xe s.t. (∀v ∈ V )
∑

e∈v xe ≤ 1

Let x∗ be a fractional matching.

Define probability distribution p on edges by pe
.
= x∗e /|x∗|.

Let x̂ ← 0. Say vertex v is matched when
∑

e3v x̂e = 1.

Repeat until each edge has a matched vertex:

Sample an edge e from distribution p.
If e has no matched vertex, then increment x̂e .

Return x̂ .



matching
existence proof

Theorem
The expected size of the matching returned by
sample-and-increment is at least |x∗|/2.

Proof.

.3

.3
.4

.2

.2

.2

For any edge e,

Pr[e chosen] =
pe∑

e′:e∩e′ 6=∅

pe′

=
x∗e∑

e′:e∩e′ 6=∅

x∗e′
≥ x∗e

2
.

Theorem follows by linearity of expectation.

Let x∗ be a fractional matching.
Define probability distribution p on edges by pe

.
= x∗e /|x∗|.

Let x̂ ← 0. Say vertex v is matched when
P

e3v x̂e = 1.
Repeat until each edge has a matched vertex:

Sample an edge e from distribution p.
If e has no matched vertex, then increment x̂e .

Return x̂ .



matching
method of conditional probabilities

Given the solution x̂ (t) after t samples,
the expected size |x̂ (T )| of the final matching is at least

Φt
.
= |x̂ (t)| +

∑
e not yet

blocked

x∗e /2.

Choosing an unblocked edge (u, v) and incrementing x̂(u,v)

increases Φ by at least

1 −
∑
e3u

x∗e /2 −
∑
e3v

x∗e /2

≥ 1 − 1/2 − 1/2 = 0.

Let x∗ be a fractional matching.
Define probability distribution p on edges by pe

.
= x∗e /|x∗|.

Let x̂ ← 0. Say vertex v is matched when
P

e3v x̂e = 1.
Repeat until each edge has a matched vertex:

Sample an edge e from distribution p.
If e has no matched vertex, then increment x̂e .

Return x̂ .



algorithm

Let x̂ ← 0. Say vertex v is matched when
∑

e3v x̂e = 1.

Repeat until each edge has a matched vertex:

Choose an edge e with no matched vertex. Increment x̂e .

Return x̂ .

Corollary

The algorithm returns a matching of size at least (1/2) maxx∗ |x∗|.



duality

primal: max c · x : Ax ≤ b

dual: min b · y : Aty ≥ c

weak duality: x , y feasible ⇒ c · x ≤ b · y , because

ctx ≤ (y tA)x = y t(Ax) ≤ y tb.

strong duality: Every linear inequality
that is valid for all feasible primal solutions x
can be expressed via weak duality.



duality

I Analysis of algorithm shows |x̂ | ≥ |x∗|/2

for any feasible solution x∗.

I Analysis must be expressible via weak duality.

weak duality relation for matching x / vertex cover y :

|x | =
∑

e

xe ≤
∑

e

xe

∑
v∈e

yv =
∑
v

yv

∑
e3v

xe ≤
∑
v

yv = |y |.

I Find implicit dual solution by looking for coefficients of x∗e
in the inequalities in the analysis.



dual solution implicit in analysis
look for coefficients of x∗e in inequalities used in proof

Analysis showed |x∗|/2 = Φ0 ≤ ΦT = |x̂ |.
Want to recast as weak duality relation for some ŷ :

|x∗| =
∑

e

x∗e ≤
∑

e

x∗e
∑
v∈e

ŷv =
∑

v

ŷv

∑
e3v

x∗e ≤
∑

v

ŷv = |y |.

Let et = (ut , vt) be the edge chosen in the tth iteration.

Recall ΦT ≥ Φ0 proved via
∑T−1

t=0 Φt+1 − Φt ≥ 0, via∑
t

(
1−

∑
e3ut

x∗e /2−
∑
e3vt

x∗e /2
)
≥ 0.

Rewrite to isolate coefficients of each x∗e :

|x̂ | ≥ 1

2

∑
e

x∗e
∑
v∈e

∑
t

[v ∈ et ].

Suggests taking ŷv
.
=

∑
t [v ∈ et ], i.e. ŷv = 1 for matched vertices.

φt
.
= |x̂(t)| +

X
e not yet

blocked

x∗e /2



implicit primal-dual algorithm

Let x̂ ← 0. Say vertex v is matched when
∑

e3v x̂e = 1.

Let ŷ ← 0.

Repeat until each edge has a matched vertex:

Choose an edge e with no matched vertex. Increment x̂e .
For each v ∈ e, increment ŷv .

Return x̂ .

Corollary

The algorithm returns a feasible vertex cover ŷ , with |ŷ | ≤ 2|x̂ |.
Thus, the algorithm is a 2-approximation algorithm for vertex
cover.



maximum multicommodity flow
input: directed graph G = (V , E), collection P of paths

maximize
∑
p∈P

xp s.t. (∀e ∈ E )
∑
p3e

xp ≤ C

Let x∗ be a fractional solution.

Define distribution q on paths by qp
.
= x∗p/|x∗|.

Let x̂ ← 0.

For t = 1, 2, 3, . . . do:

Sample random path p from distribution q; increment x̂p.



existence proof

Theorem
For T = b|x∗|c and any ε ∈ [0, 1], the expected number of edges
on which x̂ (T ) induces flow greater than (1 + ε)C is at most

m exp(−ε2C/3).

Proof.
Note expected flow on any edge is at most TC/|x∗| ≤ C .
Apply Chernoff.

Corollary

For ε
.
=

√
3 ln(m)/C, if ε ≤ 1, there exists an integer flow of size

at least b|x∗|c that induces flow at most (1 + ε)C on each edge.

Let x∗ be a fractional solution.
Define distribution q on paths by qp

.
= x∗p /|x∗|.

Let x̂ ← 0.
For t = 1, 2, 3, . . . do:

Sample random path p from distribution q; increment x̂p .



algorithm for integer multicommodity flow
after applying the method of conditional probabilities

Let x̂ ← 0. Let ε←
√

3 ln(m)/C .

Repeat until x̂ induces flow of (1 + ε)C on some edge:

Let x̂(e) denote
∑

p3e x̂p, the flow on edge e.

Choose path p to minimize
∑

e∈p(1 + ε)x̂(e).
Increment x̂p.

Return x̂ .

Corollary

For ε
.
=

√
3 ln(m)/C, if ε ≤ 1, the algorithm returns an integer

flow of size at least bmaxx∗ |x∗|c that induces flow at most
(1 + ε)C on each edge.



algorithm for fractional multicommodity flow
Additional input: ε. Idea: round to units of size O(ε2/ ln(m)).

Let x̂ ← 0.

Choose λ so λC = 3 ln(m)/ε2.

Repeat until x̂ induces flow of (1 + ε)λC on some edge:

Let x̂(e) denote
∑

p3e x̂p, the flow on edge e.

Choose path p to minimize
∑

e∈p(1 + ε)x̂(e).
Increment x̂p.

Return x̂/λ.

Corollary

Given ε ∈ [0, 1], the algorithm returns a flow of size at least
maxx∗ |x∗| that induces flow at most (1 + O(ε))C on each edge.

General alg. requires 3m ln(m)/ε2 shortest-path computations.



a lower bound on number of iterations
critical dependence on 1/ε2 is inherent?

Define V (A)
.
= max{|x | : Ax ≤ 1}.

Theorem
Let n ∈ IN, m = n2, and ε > 0 such that ε−2 ≤ n1−Ω(1).

Choose A ∈ {0, 1}m×n uniformly at random.

With probability 1− o(1), for s ≤ ln(m)/ε2,
every m × s submatrix B of A satisfies

V (B) < (1− Ω(ε))V (A).

Proof.
Discrepancy argument based on “tightness” of Chernoff bound.

m A B

n s



a lower bound on number of iterations
Ω(log(m)/ε2) iterations are necessary

Corollary

Let n ∈ IN, m = n2, and ε > 0 such that ε−2 ≤ n1−Ω(1).

Choose A ∈ {0, 1}m×n uniformly at random.

Then with probability 1− o(1), for the fractional packing problem
of computing V (A), any (1− ε)-approximate solution x̂ has
Ω(log(m)/ε2) non-zero entries x̂i .

m A B

n s



fast algorithm for explicitly given problems
reducing significance of 1/ε2

Theorem
A (1± ε)-approximate primal-dual pair
for the linear program max{c · x : Ax ≥ b, x ≥ 0}
can be computed in expected time

O(#non-zeroes + n log(n)/ε2)

where n =(#constraints) + (#variables).

Proof.
Clever use of duality, randomization, algorithmic engineering.

(Strengthens and generalizes result by Grigoriadis and Khachiyan.)



two open questions

I Set Cover with demands and multiplicity constraints is

min{c · x : Ax ≥ b, x ≤ 1}

where A is {0, 1}.

The greedy algorithm is an ln(n)-approximation algorithm.

Is there a corresponding rounding scheme?

I For Facility Location, the sample-and-increment rounding
scheme gives a solution of expected cost at most

assignment-cost(opt) + ln(n)× facility-cost(opt).

Is there a corresponding greedy algorithm?
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