$K ext{-Medians},$ Facilities Location, and the

Chernoff-Wald Bound

Neal Young

Dartmouth College

Results

- 1. Improved performance guarantees for two NP-hard problems: facilities location and k-medians (no triangle inequality).
- 2. Fast Lagrangian-relaxation algorithms for *fractional* variants.
- 3. A new probabilistic inequality: Chernoff-Wald bound.

facilities location and weighted k-medians

Both generalize set cover.

No Δ -inequality assumed.

Facilities location: Minimize site cost + total distance.

Wtd k-medians: Minimize total distance s.t. site cost $\leq k$.

Improved performance guarantees

Let k = site cost of opt, d = total distance of opt.

Facilities location:

site cost + total distance
$$\leq H_{\Delta}(k+d)$$
. [Hochbaum '82] site cost + total distance $\leq H_{\Delta} \cdot k + d$.

K-medians:

site cost
$$\leq \ln(n) k/\epsilon$$
, total distance $\leq (1+\epsilon) d$. [Lin,Vitter '92] site cost $\leq \ln(n/\epsilon) k$, total distance $\leq (1+\epsilon) d$.

Faster algorithm for fractional k-medians

site cost $\leq (1 + \epsilon)k$, total distance $\leq (1 + \epsilon)d$.

Algorithm: Lagrangian relaxation (via randomized rounding).

Time: $O(k \ln(n)/\epsilon^2)$ linear-time passes.

Chernoff-Wald bound.

Previous: [Garg, 1998, unpublished]

Lagrangian-relaxation algorithm for fractional set cover.

New:

- 1. Recast Garg's result in randomized rounding framework.
- 2. Abstract the analysis to get a new probabilistic bound.

randomized rounding scheme (facilities location)

- 1. Each site and edge gets probability proportional to wt. in fractional sol'n x.
- 2. Repeat until all customers assigned:
- 3. choose one site s randomly w/pr. Pr(s)
- 4. assign each cust. c to s w/pr. Pr(s,c)
- 5. Return chosen sites, assignment.

Analysis:

- 1. site cost bound E[#iterations].
- 2. distance $\Pr[s \text{ gets } c] = x(s,c)$.

Other problems use same inner loop.

Chernoff-Wald bound:

Let T = # rows, a random stopping time.

Let $M = \min$. column sum.

 x_{ij} 's are independent random 0-1 variables, $E[x_{ij}] \ge \mu$.

Then

$$E[M] \ge \mu E[T] - \sqrt{2\mu E[T] \ln(m)}.$$

proof: Combines proofs of Wald's equation and Chernoff bound.

Analogous bound for $E[\max_i S_i]$.

Throw balls randomly in 100 bins until some condition is met.

Let N = #balls thrown.

Let $B_i = \#$ balls in *i*th bin. $E[B_i] = \frac{1}{100}E[N]$.

Let $lo = min_i B_i$.

Chernoff-Wald:

$$E[lo] > \frac{1}{100}E[N] - \sqrt{\frac{2\ln(100)}{100}E[N]}$$

$$\approx \frac{1}{100}E[N] - \frac{1}{3.3}\sqrt{E[N]}$$

Stop when 10000 balls are thrown.

N = 10000.

Chernoff-Wald:

$$E[1o] > \frac{1}{100}E[N] - \frac{1}{3.3}\sqrt{E[N]}$$

$$\approx 100 - 30 = 70$$

Chernoff: Pr[lo > 70] < 1.

Stop when bin 1 gets two balls in a row.

 $E[N] \approx 10000.$

Chernoff-Wald:

$$E[1o] > \frac{1}{100}E[N] - \frac{1}{3.3}\sqrt{E[N]}$$

$$\approx 100 - 30 = 70$$

Chernoff: doesn't apply.

Stop when 10 = 70 (every bin has at least 70 balls).

Know 10, what is E[N]?

Chernoff-Wald:

$$E[1o] > \frac{1}{100}E[N] - \frac{1}{3.3}\sqrt{E[N]}$$

70 >
$$\frac{1}{100}E[N] - \frac{1}{3.3}\sqrt{E[N]}$$

implies

Chernoff: doesn't apply.

Summary

1. Improved performance guarantees for two NP-hard problems:

Facilities location: site cost + total distance $\leq H_{\Delta} \cdot k + d$.

K-medians: site cost $\leq \ln(n/\epsilon) k$, total distance $\leq (1+\epsilon) d$.

- 2. Fast Lagrangian-relaxation algorithms for fractional variants.
- 3. New Chernoff-Wald bound:

Bounds E[max] or E[min] of a collection of sums of r.v.'s.

Applies even when number of trials is a random variables.