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Results

1. Improved performance guarantees for two NP-hard problems:
facilities location and k-medians (no triangle inequality).

2. Fast Lagrangian-relaxation algorithms for fractional variants.

3. A new probabilistic inequality: Chernoff~-Wald bound.



facilities location and weighted k-medians

potential customers

sites .
$2( ) o1

. Both generalize set cover.

No A-inequality assumed.

Facilities location: Minimize site cost 4+ total distance.

Wtd k-medians: Minimize total distance s.t. site cost < k.
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Improved performance guarantees

Let k = site cost of opt, d = total distance of opt.

Facilities location:
site cost + total distance < Ha(k + d). [Hochbaum '82]

Ha -k +d. MEW

VAN VAN

site cost -+ total distance

K-medians:
site cost < In(n) k/€, total distance < (1 +4¢€)d.  [Lin,Vitter '92]
site cost < In(n/e) k, total distance < (1 4+ ¢€)d. MEW



Faster algorithm for fractional k-medians

site cost < (1 4 €)k, total distance < (1 4+ ¢)d.

Algorithm: Lagrangian relaxation (via randomized rounding).

Time: O(kIn(n)/e?) linear-time passes.



Chernoff-Wald bound.

Previous: [Garg, 1998, unpublished]
LLagrangian-relaxation algorithm for fractional set cover.

New:
1. Recast Garg’s result in randomized rounding framework.
2. Abstract the analysis to get a new probabilistic bound.



randomized rounding scheme (facilities location)

potential customers

sites ‘
1. Each site and edge gets probability
proportional to wt. in fractional sol’'n .

. Repeat until all customers assigned:

2
‘ 3. choose one site s randomly w/pr. Pr(s)
4. assign each cust. ¢ to s w/pr. Pr(s,c)
5

1/4 . Return chosen sites, assignment.
1

Analysis:
1. site cost — bound E[#titerations].
2. distance — Pr[s gets ¢] = z(s,¢).

Other problems use same inner loop.



Chernoff-Wald bound:

oo | o1 | | TOm
10 |11 | " | T1m
20 | £21 | ' | T2m
Tro | TT1 | " | TTm

Let T"= # rows, a random stopping time.
Let M = min. column sum.
r;;'s are independent random 0O-1 variables, E[z;;] > p.

Then

E[M] > pE[T] — \/2uE[T]In(m).

proof: Combines proofs of Wald's equation and Chernoff bound.

Analogous bound for E[max; S;].



Chernoff-Wald bound, example

Throw balls randomly in 100 bins until some condition is met.
Let N = #Dballs thrown.

Let B; = #balls in ith bin. E[B;] = & E[N].
Let 1o = min; B;.

Chernoff-Wald:

Elto] > 100 EIN ]_\/anl(()l(g)O)E[N]

&

E[N ]—— E[N]

100



Chernoff-Wald bound, example 1

Stop when 10000 balls are thrown.
N = 10000.

Chernoff-Wald:
1 1 /

~ 100 — 30 = 70

Chernoff: Pr[lo > 70] < 1.



Chernoff-Wald bound, example 2

Stop when bin 1 gets two balls in a row.
FE[N] ~ 10000.
Chernoff-Wald:

E[lo] > ——E[N] — —\/E[N]

100 3.3

~ 100 — 30 = 70

Chernoff: doesn’t apply.
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Chernoff-Wald bound, example 3

Stop when 1o = 70 (every bin has at least 70 balls).

Know lo, what is E[N]7?

Chernoff-Wald:

implies

Chernoff: doesn’t apply.

E[10]

—E[N] - -~ \/E[N]
ﬁE[N] — %\/E[N]
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Summary

1. Improved performance guarantees for two NP-hard problems:
Facilities location: site cost + total distance < HAa -k 4+ d.

K-medians: site cost < In(n/e) k, total distance < (1 + €)d.

2. Fast Lagrangian-relaxation algorithms for fractional variants.

3. New Chernoff~Wald bound:

Bounds E[max] or E[min] of a collection of sums of r.v.’s.

Applies even when number of trials is a random variables.
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