Competitive Data-Structure Dynamization

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Neal E. Young

University of California Riverside

Claire Mathieu
CNRS, Paris

Northeastern University

Rajmohan Rajaraman Arman Yousefi

Northeastern University Google

— research funded by NSF and Google

Welcome to the 25-minute talk for the SODA 2021 paper, Competitive Data-Structure Dynamization, by Claire Mathieu, Rajmohan Rajaraman,
Neal Young, and Arman Yousefi. I’'m Neal Young.

Competitive Data-Structure Dynamization

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Neal E. Young

University of California Riverside

Claire Mathieu
CNRS, Paris

Northeastern University

Rajmohan Rajaraman Arman Yousefi

Northeastern University Google

— research funded by NSF and Google

BACKGROUND

DATA-STRUCTURE DYNAMIZATION
MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

The paper studies compaction policies for LSM (log-structured merge) systems through the lens of competitive analysis. The talk has two goals:
to convey the mathematical flavor of the problem and to give at least some sense for the practical context in which it arises. We’ll start with two
slides reviewing some background, formally define the two problems that we study, state our main results, give a brief taste of how we prove
those results, and conclude with a brief addendum with one more piece of context.

BACKGROUND

DATA-STRUCTURE DYNAMIZATION
MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

STATIC DATA STRUCTURE (build once, then query)
BUILD(x;, Xy, ..., X,,), QUERY(y,), QUERY(y), ..., QUERY(y,)

for container data structures, e.g. nearest neighbor, dictionary, ...
|

dynamization algorithm

v

DYNAMIC DATA STRUCTURE (mixed insertions and queries)
INSERT(x,), INSERT(x,), QUERY(y,), INSERT(x3), QUERY(y,), ..., QUERY(y,)

introduced 1979 by Bentley, continued by Bentley, Saxe, Mehlhorn, ...

1. maintain items {x,, X, ..., x;} inserted so far in a collection of static data structures (components)
2. implement INSERT by building new components from scratch and destroying others

3. implement QUERY by querying all components (and combining results appropriately)

How to destroy and build components? Tradeoff cost for building vs. cost for querying.

one way to i rt X,

1. destroy | x;, x5

2. build |

Data-structure dynamization was introduced around 1979 by Jon Bentley and others,

as a generic approach for making static data structures dynamic.

A static data structure is built once to hold a fixed set of items, and then queried any number of times.
In contrast, a dynamic data structure supports mixed insertions and queries.

In some settings, static data structures are easier to design.

Bentley observed that any static data structure can be used to build a dynamic variant as follows.

Maintain the items inserted so far in a collection of immutable static data structures, called components.

Implement each insertion by building new components (at least one of which includes the inserted item), and possibly destroying others.
(This is illustrated in the example at the bottom of the slide.)

Implement each query by querying all current components and combining the results appropriately for the underlying data type.

The key design question is how to manage the components, specifically, how to keep the number of components from growing too large without spending too much time building new
components. This is the problem that a dynamization algorithm must solve.

STATIC DATA STRUCTURE (build once, then query)
BUILD(x;, Xy, ..., X,,), QUERY(y,), QUERY(y,), ..., QUERY(y,)

for container data structures, e.g. nearest neighbor, dictionary, ...
|

dynamization algorithm

v

DYNAMIC DATA STRUCTURE (mixed insertions and queries)
INSERT(x,), INSERT(x,), QUERY(y,), INSERT(x3), QUERY(y,), ..., QUERY(y,)

introduced 1979 by Bentley, continued by Bentley, Saxe, Mehlhorn, ...
1. maintain items {x,, X, ..., x;} inserted so far in a collection of static data structures (components)
2. implement INSERT by building new components from scratch and destroying others

3. implement QUERY by querying all components (and combining results appropriately)

How to destroy and build components? Tradeoff cost for building vs. cost for querying.

one way to insert x,

1. destroy | Xy, Xs

2. build | x5 %

cache flush

X1 X9y X3, .x4

LSM = "log-structured merge" [O’Neil et al 1996, and others] for external-memory dictionaries

1. INSERTs are cached in RAM

2. periodically flush RAM cache to disk in a single batch

3. maintain on-disk items in immutable sorted files (called components)

4. each QUERY checks the cache, then (if necessary) all on-disk components
5

. the components (on disk) are managed using a data-structure-dynamization algorithm

note:
a. each INSERT is to RAM, requires no disk access
b. component builds use high-throughput sequential disk access, not random access
3. checking one given component (during a query) takes just one disk access (using in-RAM index)
4. academic work assumed uniform batch sizes and uniform INSERT/QUERY rates,

but these assumptions don't hold in industrial systems, e.g. Google Bigtable

Dynamization is also employed the context of external-memory dictionary data structures. External-memory data structures are used when the data to be stored is much larger than can fit in RAM (fast
memory), so that most of the data must be held on disk. Around 1996 O’Neil et al proposed the so-called "log-structured merge" approach. Each inserted item is simply cached in RAM, without
accessing the disk at all. Every once in a while, the items cached in RAM are flushed in a batch write to the disk, as a single immutable file. These on-disk files, called components, are managed using
a dynamization algorithm. That is, the dynamization algorithm (in this context called a "compaction” or "merge" policy) periodically destroys some components and builds new ones from scratch.
Crucially, components are only built and destroyed, never altered, and builds use sequential, not random, disk access.

Each query is implemented by checking the cache, and if the desired item is not found, querying each on-disk component. Note that (for reasons explained in the final slide of this talk) checking a
given component for a given item requires just one random disk access.

For insert-heavy workloads (or when queries exhibit enough locality of reference to make them amenable to caching), LSM systems substantially outperform classical data structures such as B-trees.
LSM systems are used by many big-data companies, such as Google, for data-storage backends. Most academic work on LSM systems has assumed batch sizes (as if the cache was flushed only when
full) and uniform insert/query rates. But these assumptions don’t hold in production systems.

cache flush

X1 X9y X3, .x4

LSM = "log-structured merge" [O’Neil et al 1996, and others] for external-memory dictionaries
1. INSERTs are cached in RAM
2. periodically flush RAM cache to disk in a single batch
3. maintain on-disk items in immutable sorted files (called components)
4. each QUERY checks the cache, then (if necessary) all on-disk components
5

. the components (on disk) are managed using a data-structure-dynamization algorithm

note:
a. each INSERT is to RAM, requires no disk access
b. component builds use high-throughput sequential disk access, not random access
3. checking one given component (during a query) takes just one disk access (using in-RAM index)
4. academic work assumed uniform batch sizes and uniform INSERT/QUERY rates,

but these assumptions don't hold in industrial systems, e.g. Google Bigtable

INTRO

PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

Next we formally define two optimization problems that model the task that a dynamization algorithm must perform. Each problem models a
particular tradeoff between query cost and build cost. We study these problems through the lens of competitive analysis.

BACKGROUND

DATA-STRUCTURE DYNAMIZATION
MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., [

. — a sequence of batches (sets of weighted items)

OUTPUT: @}, 6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add‘mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost

We call the first problem min-sum dynamization. The input is a sequence of n batches, given one at a time. In response to each batch, the algorithm must
produce a set cover such that the union of the sets in the cover is the set of all items inserted so far. At each time t, the algorithm incurs two costs: a query cost
equal to the size of the current cover, and a build cost, which is best understood as follows: the current cover is obtained from the previous cover by adding
some new sets and destroying others. For each new set, the algorithm pays a build cost equal to the weight of the items in the set. The goal is to minimize the
sum of all the build costs and query costs.

Here’s an example....

[BUILD IN]

At time 1, the input batch is a set containing two elements A and B.

[BUILD IN]

THe algorithm might respond with a cover containing two sets, one containing A, and the other containing B.

If it does this, the query cost will be 2, because there are two sets in the cover, and the build cost will be the weight of A plus the weight of B. Now you might be
thinking that it would have been better to use just one component containing both A and B, incurring query cost 1 and the same build cost, and you would be
right.

[BUILD IN]

At time 2, let’s say the input batch contains just a single new item C,

[BUILD IN]

and the algorithm responds by destroying the component containing A, and building a new component containing A and C.

[BUILD IN]

The query cost is 2, and the build cost is the wt of A plus the wt of C, because elements A and C are the ones in the new component.
[BUILD IN]

At time 3, let’s say the input batch contains two new items D and E.

[BUILD IN]

The algorithm responds by, say, adding the batch as a single new component.
If it does this, the query cost will be 3, and the build cost will be wt(d) + wt(e).

[BUILD IN]
At time 4, let’s say the input batch contains just item {F}, and the algorithm

responds with a cover containing just one set, containing all items.
This incurs query cost 1, and build cost equal to the sum of the weights of all of the items.

[BUILD IN]

This gives total cost as shown at the bottom of the slide, and of course the goal is to minimize
this total cost.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., [

. — a sequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE

input
time | batch cover query cost build cost

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., [

. — a sequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE

input
time | batch cover query cost build cost

1

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost

I {a, b}

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost

L Ha, b} | {a}.{b}

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost

1 {a, b} | {a},{b} 2

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost

L Ha, b} | {a}.{b} 2 wi(a) + wi(b)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)

2

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)

2 {c}

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)

2 {cy {b}Aac}

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)

2 {cy {b}Aac} 2

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)

2 {cy {b}Aac} 2 wit(a) + wit(c)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)

2 {cy {b}Aac} 2 wit(a) + wit(c)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)
2 {cy {b}.{ac} 2 wt(a) + wt(c)

3 {d, e}

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
U Aa, b} | {a}, {b} 2 wit(a) + wi(b)
2 {cy {b}.{ac} 2 wt(a) + wt(c)

3 {d, e} : {b},{a, c},{d, e} 3 wt(d) + wt(e)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

n

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
L A{a, b} | {a},{b} 2 wt(a) + wt(b)
2 {c} {b}.{ac} 2 wt(a) + wt(c)
3 {d,e} i {b},{a,c},{d e} 3 wt(d) + wt(e)
4 {f} {a,b,c,d, e, f} 1 wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

n

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1

=1 SEG\G,_, t
add’mg 3 vew Set § to the cover

ncurs build cost wi(S) = ers wit(x)

EXAMPLE
input
time | batch cover query cost build cost
L A{a, b} | {a},{b} 2 wt(a) + wt(b)
2 {c} {b}.{ac} 2 wt(a) + wt(c)
3 {d,e} i {b},{a,c},{d e} 3 wt(d) + wt(e)
4 {f} {a,b,c,d, e, f} 1 wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

total cost: 8 + 3 wt(a)+2wt(b)+2wt(c)+2wt(d)+2wt(e)+wt(f)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: @}, 6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
1=1

=1 SEG\G,_, ‘
on uniform input (wt(Z,) = 1)
pays query cost @(n?)
TRIVIAL ALGORITHM 1: minimize build cost pays build cost O(r) _ |
input
time | batch cover query cost build cost
1 {a b} {a b} 1 wt(a) + wt(b)
2 {c} {a, b}, {c} 2 wt(c)
3 {d,e} i {a,b},{c},{d, e} 3 wt(d) + wt(e)
4 i {a by, {c}.{d e}, {f} 4 wi(f)

total cost: 10 + wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

One trivial algorithm, which minimizes the build cost, is to respond to each batch by inserting the batch as a new set. Then each item is involved
in just one build, so the build cost is as small as possible. But the query cost at time t is t, so the total query cost is quadratic in n. For uniform
inputs, the total cost is quadratic in n.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
1=1

=1 SEG\G,_,
on uniform input (wt(Z,) = 1)
pays query cost @(n?)
TRIVIAL ALGORITHM 1: minimize build cost A letilel o)
input
time | batch cover query cost build cost
1 {a b} {a b} 1 wt(a) + wt(b)
2 {c} i {a, b} {c} 2 wt(c)
3 {d,e} i {a,b},{c},{d, e} 3 wt(d) + wt(e)
4 {f} {a, b},{c},{d, e}, {f} 4 wt(f)

total cost: 10 + wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., [

. — a sequence of batches (sets of weighted items)

OUTPUT: @}, 6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

n n
MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1 SEG\G,_, =1

on uniform input (wt(Z,) = 1)
pays query cost ©(n)
pays build cost On?)

TRIVIAL ALGORITHM 2: minimize query cost

time Lnal?clcj;cn cover query cost build cost
RPN B 1 wt(a)+wt(b)
o, {c} i {ab,c} 1 wt(a)+wt(b)+wt(c)
3 {de {abode 1 WH(@)+Wi(b)+ Wi} wWi(d)+wi(e)
...... ‘ {r Habcdef 1 wi(@)+wit(b)+wi(e)+wi(d)+wi(e)+wi(f)

total cost: 4 + 4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

Another trivial algorithm, which minimizes the query cost, is to respond to each batch with a cover that contains just one set, containing all the
items inserted so far. Then at each time the query cost is 1, so the total query cost is n. But the build cost is large. For uniform inputs, the build
cost is quadratic in n, so the total cost is quadratic in n.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., [

. — a sequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
1=1

=1 S€E€\E,_
: on uniform input (wt(Z,) = 1)

pays query cost ©(n)
pays build cost On?)

TRIVIAL ALGORITHM 2: minimize query cost

time bareh cover query cost build cost
1 {a, b} | {a, b} 1 wt(a)+wt(b)
2 ¥ | {ab,c} 1 wt(a)+wt(b)+wt(c)
3 {d,e} | {a,b,c,d, e} 1 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)
4 fr {abcdef 1 wt(@)+wt(h)+wi(e)+wit(d)+wi(e)+wi(f)

total cost: 4 + 4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., [

. — a sequence of batches (sets of weighted items)

OUTPUT: @}, 6, ..., €, — a sequence of set covers such that
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

n n
MINIMIZE COST: Z Z wt(S) + Z |€,] (build cost + query cost)
=1 SEG\G,_, =1

BINARY TRANSFORM [Bentley, 1979]

time g;‘;:; cover At each time 1, there is one set
1 I I for each 1 in the binary representation of ¢.
2 b LUD Each step emulates an increment in binary.
3 I3 LUDL Iz
4 L LULULU I — on uniform input:
5 Is LULULUIL Is pays build cost ®(nlogn)
6 Is LULULUIL, IsUls pays query cost ©(nlog n)
7 17 LULULUL, IsUls I7 » total cost ©(log 1)
8 Is LULULULULULUL ULy
’ I LULULULULUIUL UL To optimal for uniform input
10 To LULULULUIUIULUIs ToUlp
9

The Binary Transform is a dynamization algorithm, designed by Bentley in 1979 for uniform inputs. On uniform inputs, it incurs cost order n log
n, which is optimal for uniform inputs. It does this by maintaining at most log n sets at all times, and ensuring that each item is involved in at
most log n builds. The basic idea is that, at each time t, the cover has a set for each 1 in the binary representation of t, and each insertion
mimics a binary increment. This is the same idea underlying the well-known binomial-heap data structure.

Problem 1: MIN-SUM DYNAMIZATION

INPUT:

OUTPUT: 6,6, .

I, L, ..

n

., I, — a sequence of batches (sets of weighted items)

.., €, — a sequence of set covers such that

the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

MINIMIZE COST: zn: D ws) + Zn:|<€t|
t=1

=1 SEG\G,_,

BINARY TRANSFORM [Bentley, 1979]

(build cost + query cost)

time L’;F;z; cover At each time ¢, there is one set
| I I for each 1 in the binary representation of ¢.
5 b LU Each step emulates an increment in binary.
3 I3 LUDL I3
. L LULULUL — on uniform input:
5 Is LULULUL Is pays build cost ®(nlogn)
6 I LULULUIL IsUls pays query cost ®(n log n)
! I7 LULULUL, Ul Iy total cost @(n log n)
8 Is LULULULUIsUIUI;U Ig
9 Iy LULULBULUIUIUI; UL, 1o optimal for uniform input
10 IoU 110

Lo

LULULULUIsUIsUI;U I,

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: I, L, ..., 1

., — a sequence of batches (sets of weighted items)

OUTPUT: €, 6, ..., €, — a sequence of set covers such that same 3s beSove
the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

CONSTRAINT: |6,| <k — ateach time ¢, cover size is at most k

n
MINIMIZE BUILD COST: Z Z wit(S)
=1 S€EG\C,_,

K-BINOMIAL TRANSFORM [Bentley & Saxe, 1980]
At each time t:

i
1. Letiy, ..., i be the k integers such that 0 < i; < i, < i3 < --- < i, and ZJI;I (}’) =1

2. Use the cover consisting of k sets, where

- the first set contains the first (Z) batches, On uniform input,

. e : 1+1/k
- the second set contains the next (:_11) batches, pays build cost ©(kn L.

- and so on. Optimal for uniform input.

10

We call the second problem that we study k-component dynamization. The input and output are the same as for min-sum dynamization, except that each cover is
constrained to have size at most k, so that no query incurs cost more than k. The objective is to minimize the total build cost.

The k-binomial transform, a dynamization policy designed by Bentley and Saxe in 1980 for uniform inputs, meets the query-cost constraint, and guarantees that no item
is involved in more than O(k nA{1/k}) builds. In this way, for uniform inputs, it incurs build cost theta(k nA{1+1/k}), which is optimal for uniform inputs.

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: €, 6, ..., €, — a sequence of set covers such that

sawme 3s beSove

the sets in &, cover all items inserted up to time (Usew, S = Uiz 1)

CONSTRAINT: |6,| <k — ateach time ¢, cover size is at most k
n

MINIMIZE BUILD COST: Z Z wit(S)
=1 S€EG\C,_,

K-BINOMIAL TRANSFORM [Bentley & Saxe, 1980]
At each time t:

1. Leti, ..., i be the k integers such that 0 < i; < i, < i3 < -

2. Use the cover consisting of k sets, where

i
. < i, and Zjll (}) =1

- the first set contains the first (Z) batches,

- the second set contains the next <klk_"'1> batches,

- and so on.

On uniform input,

pays build cost @(kn !+,

Optimal for uniform input.

10

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6, 6,, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time ¢ (Uses. S = Ui=1 1)

Prior results are for uniform input, but in LSM systems inputs are online and non-uniform.
Non-uniform inputs can be easier (less costly) than uniform inputs.

COMPETITIVE ANALYSIS
DEFN: An algorithm is online if its cover at each time ¢ is independent of I, |, 1,5, ..., 1, .

DEFN: An algorithm is c-competitive if, for every input, its solution costs at most ¢ times the 2 Standavd

optimum for that input. The competitive ratio of the algorithm is the minimum such c.

QUESTION: What competitive ratios can online algorithms achieve?

11

As previously mentioned, most previous academic work on dynamization algorithms (and compaction policies in LSM systems) has assumed
uniform inputs.. that is, uniform batch sizes (as if the cache is flushed only when full), and uniform insert/query rates. But these assumptions
don’t hold for production systems. Non-uniform inputs can be _easier_ (that is, less costly),

Compaction policies in current LSM systems such as Bigtable do adapt to non-uniformity, but in a somewhat adhoc way. Our goal is to explicitly
design policies through the lens of competitive analysis, so that the policies adapt in a provably robust way. From a theoretical point of view, our
goal is to design optimally competitive online algorithms.

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INpUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6, 6,, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time ¢ (Uses. S = Ui=1 1)

Prior results are for uniform input, but in LSM systems inputs are online and non-uniform.

Non-uniform inputs can be easier (less costly) than uniform inputs.

COMPETITIVE ANALYSIS
DEFN: An algorithm is online if its cover at each time ¢ is independent of I, |, 1,5, ..., 1, .
DEFN: An algorithm is c-competitive if, for every input, its solution costs at most ¢ times the

optimum for that input. The competitive ratio of the algorithm is the minimum such c.

QUESTION: What competitive ratios can online algorithms achieve?

standard

11

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

12

Next we state our results and try to give a taste of the underlying mathematics.

BACKGROUND

DATA-STRUCTURE DYNAMIZATION
MERGE POLICIES IN LSM SYSTEMS

INTRO
PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

12

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INpUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6, 6,, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time ¢ (Uses. S = Ui=1 1)

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ©(log n).

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ®(kn
MAIN RESULTS

® THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ©(log* n).

® THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for

deterministic online algorithms is k.

® EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper).

I/k)

13

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INpUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6, 6,, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time ¢ (Uses. S = Ui=1 1)

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ©(log n).

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ®(kn
MAIN RESULTS

® THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ©(log* n).

® THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for

deterministic online algorithms is k.

® EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper).

I/k)

13

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INpUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6, 6,, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time ¢ (Uses. S = Ui=1 1)

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ©(log n).

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio O(kn'’.

MAIN RESULTS

® THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ©(log* n).

OPEN: constant competitive ratio?

® THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for
deterministic online algorithms is k.

OPEN: randomized algorithms?

® EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper).

OPEN: same extensions for Min-Sum Dynamization?

The paper Suggests many move open problems.

14

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INpUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6, 6,, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time ¢ (Uses. S = Ui=1 1)

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ©(log n).

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio O(kn'’.

MAIN RESULTS

® THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ©(log* n).

OPEN: constant competitive ratio?

® THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for
deterministic online algorithms is k.

OPEN: randomized algorithms?

® EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper).

OPEN: same extensions for Min-Sum Dynamization?

The paper Suggests many move open problems.

14

Problem 1: MIN-SUM DYNAMIZATION

INPUT: I, L, ..., 1

. — a sequence of batches (sets of weighted items)

OUTPUT: €}, 6, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time # (Useg, S = Ui 1)

n n
MINIMIZE COST: Z Z wt(S) + Z |€,| (build cost + query cost)
t=1 SEG\GC,_, t=1

THM 2.1. The online algorithm below has competitive ratio ®(log* n).

at each timet « 1,2,...,n do:
1. add current batch I, to the current cover as a single new set
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into one new set

16 L L L L L L L L L L L L L L L | L

8| -

2,

'L WHW WHW WHW WHW 1]
9
t

Roughly, every 2/ time Steps
it wevges together 3ll sets
of weight 2J ov less.

T T T T T T T T 1
123 456738 10 11 12 13 14 15 16 17

15

... note that a set of a given weight W will last at most about 2W time units before being merged with other sets... this ensures that the set’s
contribution to the query cost is bounded by twice its contribution to the build cost.
... on uniform inputs, this algorithm gives the same (optimal) solution as the binary transform.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: I, L, ..., 1

. — a sequence of batches (sets of weighted items)

OUTPUT: €}, 6, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time # (Useg, S = Ui 1)

n n
MINIMIZE COST: Z Z wt(S) + Z |€,| (build cost + query cost)
t=1 SEG\GC,_, t=1

THM 2.1. The online algorithm below has competitive ratio ®(log* n).

at each timet « 1,2,...,n do:
1. add current batch I, to the current cover as a single new set
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into one new set

16 L L L L L L L L L L L L L L L | L

Roughly, every 2/ time Steps
it wevges together 3ll sets
of weight 2/ or less.

2,

'L WHW WHW WHW WHW 0
9
t

T T T T T T T T 1
123 456738 10 11 12 13 14 15 16 17

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION:

09 L. 99 H10 . o100 LIl 11 12,120 13,

5 3

9 13 14~ 14 14 "~ ,14

2 2 2 2

26 times 2 94 2 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

16

[describe example]
... hote that this input is particularly simple in that merges before the last non-empty insertion. in the general case, of course, merges and
insertions will be intermixed.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION:

09 L. 99 H10 . o100 LIl 11 12,120 13,

5 3

9 13 14~ 14

2 2

26 times 2 94 2 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

2

14

2

P

16

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: the cover at time
r=22-1
00 . 99 10 . G100 LIl o1l 12,12 13 . L1314 14 14 14
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

17

the lightest batch has weight 2A9, so the algorithm does no merges until time t=2A9. before that, it just creates one set for each batch. so, at
time 2A9-1, the cover consists of one set for each inserted batch, as shown.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: the cover at time
r=22-1
00 . 99 10 . G100 LIl o1l 12,12 13 . L1314 14 14 14
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

at time 2A9. ..

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION:

|
| cvedted 3t tiwme f = 29 ‘

e AN - N
207 L g0 G0 L. L0 L1111 12,12 13 . L1314 14 14 CLl4
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION:

|
| cvedted 3t tiwme f = 29 ‘

e AN - N
207 L g0 G0 L. L0 L1111 12,12 13 . L1314 14 14 CLl4
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

at time 2A10..

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: created 3t time { = 21
/215\ NEI
W97 Ty 107 L1000 L1 11 12 12 413,13 o147 14 14,14 |
26 times 2° 2 23 23
INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.
Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.
19

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: 1

cveadted 3t tiwme f = 210‘

515 515
e AN - N
007 L g0 G107 L TLI00 L1 1L 12 12 13,13 147 ol 14 14 |
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

at time 2A11

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: oveated 36 twee p = 11
_ 515 - 515 * 15
W97 Ty 107 T, 11T oI 12 12,13 L3 o147 14 14,14 ;
26 times 2° 2 23 23
INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.
Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.
20

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION:

created 3t time ¢ = 211

A
515 515 H15
7 N - N \
207 L g9 G107 L0 o100 11T T 12,12 513 13 L1414 14 214i
26 times 25 ot 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

at time 2A12...

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: ereated 35 tiwe 7 = 212

515 515 415 - 15
7 AN - N \
59 L, L1070 T, T T 12 512 | 513 S8 l47 14 14 14i
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

21

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: | oo 5
515 515 415 s 15
RN - \
59 ST L0 117 T 12 512 | 513 S8 l47 14 14 14i
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

21

at time 2A13,

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: ereated 35 bime 1 — 213

515 515 415 ,15 > 16

97 Do .10 10 .11 11 .12 12 .13 13 [147 14 14 14

2 .29 o cee 2 2 cee 2 2 212 o 2 2 2 2 2
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

EXAMPLE EXECUTION: | _o2os s vne ; — o3
515 515 415 ,15 > 16
97 Do .10 10 .11 11 .12 12 .13 13 [147 14 14 14
2 .29 o 2 2 cee 2 2 212 o 2 2 2 2
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

the cover 3t

- 14
time f = 2
EXAMPLE EXECUTION:
;
515 515 515 H15 516 516
097 g9 G107 L T10 L1170 T, 12T 12 o137 0 13 147 14 14,14
26 times 25 ot 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.
Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

At times t € {213,214}, the leaves of weight t merge into one set of weight 2!6, and so on.

23

at time 2A14.. at this point the cover consists of the nodes of weight 2A15 and 2A16, highlighted in pink in the slide.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set
the cover 3t

- 14
time f = 2
EXAMPLE EXECUTION:
;
515 515 ,15 H15 516 516
097 g9 G107 L T10 L1170 T, 12T 12 o137 0 13 147 14 14,14
26 times 25 ot 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

At times t € {213,214}, the leaves of weight t merge into one set of weight 2!6, and so on.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set the cover at

time = 216
EXAMPLE EXECUTION:

2
PN PN PN PN PN T O~
59 9 10 L0 117 T 12 L1213 13 147 14 14 14
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.
Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

At times t € {213,214}, the leaves of weight t merge into one set of weight 2!6, and so on.

24

at times 2A15 and then 2A16 more merges occur, leaving two sets each of weight 2A17.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set the cover at

time = 216
EXAMPLE EXECUTION:

‘ .
// 217 217
15 15 15 15 16 ™~ _16

2 2 2 2

2
PN PN PN PN PN T O~
07 g9 ,107 o Ty LT T 12T o2 13T L1314 g1 14 L1
26 times 25 94 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.
Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.

At times t € {213,214}, the leaves of weight t merge into one set of weight 2!6, and so on.

24

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each timet < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

the §inal cover,

EXAMPLE EXECUTION: 18 | Y| 36 4ime t =27

/2 ~— /217\
215 215 215 215 216 216
e AN e ~ e ~ e ~ pe ~ T NS
N R T RS T RS S I § R T RS | ST RS F: S F G VS P 1
— _ _ _
6 4
2° times 99 24 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.
At times t € {213,214}, the leaves of weight t merge into one set of weight 2!6, and so on.

Finally at time ¢ = 2!7, the two remaining sets, of weight 2!7 merge into one set of weight 218,

finally at time 2A17 a single set remains, of total weight 2A18.
the total build cost is the sum, over the leaves of the merge tree (as shown in the slide), of the weight of the leaf times the depth of the leaf. in
this case all leaves are at depth 4, so the total build cost is 2A18 times 4. one can show that the query cost is about the same.

a cheaper solution would have been to merge all batches in to one set at time 2A14.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

the §1nal cover,

/& o] At time £ = 21T
H17 \217
15% m 15 216/ T~ 16

2 2 2 2 2
PN PN 7N 7N PN PN
N R T RS T\ S & R T RN S RS S PR PR P!
6 4
2° times 25 24 23 23

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.
At time t = 2°, the 2% leaves of weight 2° merge into one set of weight 2.

Likewise at each time ¢ € {2!0,211,212} the leaves of weight t merge into one set of weight 21°.
At times t € {213,214}, the leaves of weight t merge into one set of weight 2!6, and so on.

Finally at time ¢ = 2!7, the two remaining sets, of weight 2!7 merge into one set of weight 218,

214

for Problem 1: MIN-SUM DYNAMIZATION

. LOWER BOUND
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each timet < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

(generalizes example from previous slide)

1. define the desired merge tree greedily, in reverse (breadth-first from the root):
start by creating the root, with weight 2" (an arbitrarily large power of 2)

2. repeat: choose the next node to split, and the next "unused" threshold 2/,

then split the leaf into children all of weight 2/

26

we show this algorithm has competitive ratio theta(log*n). first we show that the algorithm’s ratio is at least logA* n. this ratio is achieved on a
family of inputs that generalize the example just shown. the general method for generating the input is as follows. first we define the desired

merge tree, by starting at the root and working down the tree BFS order. at each step, to define the children of a given node, we "split" the node
into equal-weight children, where the weight is the "next available" power of 2. a quick example will give the idea.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

LOWER BOUND

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

(generalizes example from previous slide)

1. define the desired merge tree greedily, in reverse (breadth-first from the root):

start by creating the root, with weight 2" (an arbitrarily large power of 2)

2. repeat: choose the next node to split, and the next "unused" threshold 2/,

then split the leaf into children all of weight 2/

26

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

518

27

we start with the root, giving it weight equal to some large power of 2.

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

518

27

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

28

we split the root into children each having weight the next smaller power of two.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

28

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

29

then we split the rightmost child into children having weight 2A16, the next smaller power of 2.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each timet < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

30

proceeding in breadth-first order, we split the next node of weight 2A17 into children of weight 2A15. we use 2A15 because it is the next
"unused" power of two. because the children have weight 2A15, and their total weight must equal the parent’s weight, there must be four
children.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

30

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

31

we continue in this way, node by node, as shown.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

31

[no audio]

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

32

[no audio]

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

33

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each timet < 1,2,...,n do:
1. add [, to the current cover

2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

2 2
15 15 15 15 16 16
2 /2 ~ /2 ~ /2 ~ /2 ~ //2 NI
e AN
997 L. o9 G100 o 100 11 11 120 12 G130 0,13 G147 o140 14 14
26 leaves 2° 2% 23 23

34

we stop when the leaf weights are sufficiently small. the leaves give us the input. running the algorithm on this input will create this merge tree,
as desired. the build cost will be the tree depth times the total leaf weight. to complete the proof we show that the tree depth is logA* n, and
that there is an optimal solution whose cost is proportional to the leaf weight.

for Problem 1: MIN-SUM DYNAMIZATION
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):

2 217
15/15/ m 15 216/ T~ 16

2

P N e ~ e ~ e ~ e ~ NS
997 L. TR0 S0 100 L1 ol 120 12 130,130 147 o140 14 14
28 leaves 2P 94 23 23

[no audio]

PROBLEM 1

for Problem 1: MIN-SUM DYNAMIZATION ALGORITHM

. LOWER BOUND
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR LOWER BOUND Q(log* n):
(generalizes example from previous slide)

1. build the desired merge tree greedily, in reverse (breadth-first from the root):

start by creating the root, with weight 2 (an arbitrarily large power of 2)

2. repeat: choose the next node to split, and the next "unused" threshold 2/,

then split the leaf into children all of weight 2/

4
4 Ya
3. show that the number of nodes at depth d is at most 4 } (tower of height d)

35

for Problem 1: MIN-SUM DYNAMIZATION

. UPPER BOUND
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR UPPER BOUND O(log* n):

1. charge algorithm’s query cost to its build cost

2. charge the cost of building each set, via the items in it, to the OPT sets containing those items

3. show that each OPT set is charged O(log* n) times its contribution to the OPT cost

Step 3 1S the havd part. The ntuition is that, n the ‘werge tree’ formed
by tracking how the algorithw wevrges the elements in the OPT Set, each
important wevrge wmust be associdted with 3 unique threshold .

This forces the werge tree to have weighted average lea§ depth O(log* n).

36

Next we show that the competitive ratio is at most log* n on any input. We do this in three steps. First we observe that the algorithms’ query cost
is proportional to its build cost, so it suffices to bound the build cost. To do that, for each set that the algorithm builds, we charge the cost of
building the set, via the set’s items, to the OPT sets containing those items at that time. finally, we show that each set in the optimal solution is
charged at most log* n times its contribution to the optimal cost. This is the hard part. Very roughly, we consider each OPT set. We show that
the merge tree that the algorithm induces on the elements in the OPT set has weighted average depth log* n. Intuitively, the reason for this is
that the nodes (merges) in the tree must have distinct powers 2Aj associated with them. As in the lower-bound example, this forces the node
degrees to increase exponentially level by level as we descend from the root in the merge tree, which allows us to show that the depth cannot be

too large.

for Problem 1: MIN-SUM DYNAMIZATION

. UPPER BOUND
THM 2.1. The online algorithm below has competitive ratio ®(log™* n).

for each time ¢t < 1,2,...,n do:
1. add [, to the current cover
2. letj be the largest integer such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into a single set

PROOF OUTLINE FOR UPPER BOUND O(log* n):
1. charge algorithm’s query cost to its build cost
2. charge the cost of building each set, via the items in it, to the OPT sets containing those items

3. show that each OPT set is charged O(log* n) times its contribution to the OPT cost

Step 3 1S the havd pavt. The tntuition 1S that, in the "wxerge tree" Sormed
by tracking how the algorithw wevrges the elements in the OPT Set, each
important wevrge wmust be associdted with 3 unique threshold .

This forces the werge tree to have weighted average lea§ depth O(log* n).

36

RESULTS

PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

37

next we consider problem 2 (k-component dynamization). we start with the lower bound of k for dete4rministic algorithms, then discuss some
algorithms that achieve it.

BACKGROUND

DATA-STRUCTURE DYNAMIZATION
MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

37

Problem 2: K-COMPONENT DYNAMIZATION jlitelsia e
LOWER BOUND
INPUT: I}, L, ..., I, — asequence of batches (sets of weighted items)
OuTPUT: €|, 6>, ..., €, — a sequence of set covers such that THM 3.1. Any deterministic
the sets in %, cover all items inserted up to time # (Usew S = Ui=1 1) online algorithm has
CONSTRAINT: |%,| <k — at each time ¢, cover size is at most k competitive ratio at least k.
n
MINIMIZE BUILD COST: Z Z wit(S) Heve we Sketch a Proo§ $ov k=2.
t=1 SEG\G,_,
. i input
time weight alg cover alg cost OPT cost?
1 1 5 1 1 1
2 e {1},{¢} e l1+¢ £
3 {1}, {e,0} 3 0 £
4 {1},{¢,0,0} e 0 €
m-1 0 {1},{¢,0,0,...,0} £ 0 €
m 0 {1,¢,0,0,...,0,0} 1+¢ 0 €
total: 2 + (m-1)e |min(2+e, 1+(m-1)¢)
Alg chooses m ~ 1/¢, so i
dgcost 41 1§ theve weve wo "Setup cost”
= ~—— =3/2 A A
OPT cost 2 of [at time [, vatio would be
alg cost - 1+1 _
oPTcost 1 2
38

rent or buy.

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: 1, I,

ey Iy

I, — asequence of batches (sets of weighted items)

OuTPUT: €|, 6>, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time # (Usew S = Ui=1 1) online algorithm has

CONSTRAINT: |€,| <k — ateach time ¢, cover size is at most k

n
MINIMIZE BUILD COST: Z Z wit(S)

PROBLEM 2
LOWER BOUND

THM 3.1. Any deterministic

competitive ratio at least k.

Heve we Sketch 3 proof fov k=2,

t=1 SEG\G,_,
i input
time weight alg cover alg cost OPT cost?
1 1 1y 1 1 1
2 e {1},{¢} e l1+¢ £
3 {1},{e,0} e 0 P
4 {1},{¢,0,0} € 0 €
m-1 0 {1},{¢,0,0,...,0} £ 0 €
m 0 {1,¢,0,0,...,0,0} 1+¢ 0 €
total: 2+ (m-1)e |min(2+e, 1+(m-1)e)

Alg chooses m ~ 1/¢, so

alg cost - 2+1 _ 3/2

OPT cost 2

“ la
\§ theve weve wo Setup cost

of [at time [, vatio would be

alg cost
9 ~ 1+1 =2
OPT cost 1

38

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: I}, L, ..., I, — asequence of batches (sets of weighted items)

OuTPUT: €|, 6>, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time # (Usew S = Ui=1 1)

CONSTRAINT: |€,| <k — ateach time ¢, cover size is at most k

n
MINIMIZE BUILD COST: Z Z wit(S)
t=1 SEG\G,_,

input

PROBLEM 2
LOWER BOUND

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.

Heve we Sketch 3 proof fov k=2,

time! weight | alg cover alg cost OPT cost?

Fov this second
vound the vatio 18
2-0(/e).
Repedting drives
the total vatio
arbitvarily near 2.

mel | Ve {1,6,0,,0}, {y/e} Ve L+yete Wete
m+2i 0 {1,£,0, ...,0}, {/e,0} Ve 0 Ve+e
0 {1,6,0, ...,0}, {Ve,0,...,00 Ve Ve+e
0 (1,6,0,0,Ve,0,..,00 1+ye+e Ve+e

39

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: I}, L, ..., I, — asequence of batches (sets of weighted items)

OuTPUT: €|, 6>, ..., €, — a sequence of set covers such that
the sets in %, cover all items inserted up to time # (Usew S = Ui=1 1)

CONSTRAINT: |€,| <k — ateach time ¢, cover size is at most k

n
MINIMIZE BUILD COST: Z Z wit(S)
t=1 SEG\G,_,

input

PROBLEM 2
LOWER BOUND

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.

Heve we Sketch 3 proof fov k=2,

time! weight | alg cover alg cost OPT cost?

Fov this second
vound the vatio 18
2-0(/e).
Repedting drives
the total vatio
arbitvarily near 2.

mel | Ve {1,6,0,,0}, {y/e} Ve L+yete Wete
m+2i 0 {1,£,0, ...,0}, {/e,0} Ve 0 Ve+e
0 {1,6,0, ...,0}, {Ve,0,...,00 Ve Ve+e
0 (1,6,0,0,Ve,0,..,00 1+ye+e Ve+e

39

RESULTS

PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

40

next we discuss a k-competitive algorithm for k—-component dynamization.

BACKGROUND

DATA-STRUCTURE DYNAMIZATION
MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

40

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio k.

we associdte 3 ‘cvedit’ with

P edch set W the cuvvent coveyr

1. if there are k sets in the cover: .

v

a. increase all sets’ credits continuously until a set S has credit[S] > wt(S)
b. let S, be the oldest such set
c. merge I, , S,, and all sets newer than S, into one new set with credit O

2. else: add [, as a new set, with credit O

The papev also gives 3@ second “recursive vent-ov bu\," algorithwm with 3 very different analysis.

41

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio k.

we associdte 3 ‘cvedit’ with

P edch set W the cuvvent coveyr

1. if there are k sets in the cover: .

v

a. increase all sets’ credits continuously until a set S has credit[S] > wt(S)
b. let S, be the oldest such set
c. merge I, , S,, and all sets newer than S, into one new set with credit O

2. else: add [, as a new set, with credit O

The papev also gives 3@ second “recursive vent-ov bu\," algorithwm with 3 very different analysis.

41

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio k.

at each time ¢t < 1,2,...,n, in response to batch 7, do:
1. if there are k sets in the cover:
a. increase all sets’ credits continuously until a set S has credit[S] > wt(S)
b. let S, be the oldest such set
c. merge I,, S,, and all sets newer than S, into one new set with credit 0

2. else: add I, as a new set, with credit O

PROOF OUTLINE:

1. let 6, be the decrease in credit in iteration ¢

total credit given to sets is k). &,

sets S, contribute at most k 3’ 3, to algorithm’s cost (as credit[S,] > wt(S,) when merged)
remaining sets contribute at most kzt wt(/,) to algorithm'’s cost (as items decrease in "rank")

so algorithm'’s cost is at most k 3 wt(l,) + 5,

S T

charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least Y wt(l,) + 3,

42

The proof that the algorithm is k-competitive can be viewed as showing that the algorithm is a primal-dual algorithm, that is, that in addition to
generating a solution for the given problem, it implicitly generates a solution to the dual of the linear-program relaxation of the problem. We
show that the algorithm’s cost is at most k times the cost of the dual solution, which is a lower bound on the optimal cost. In particular, if we let
delta-t be the increase in credit in iteration t, these delta-t’s somehow define a dual solution, the cost of which is sum_t wt(..) + delta_t. It is not
hard to bound the algorithm’s cost by k times this amount. See the paper for more details.

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio k.

at each time ¢t < 1,2,...,n, in response to batch 7, do:

1. if there are k sets in the cover:

2. else: add I, as a new set, with credit O

a. increase all sets’ credits continuously until a set S has credit[S] > wt(S)
b. let S, be the oldest such set

c. merge I,, S,, and all sets newer than S, into one new set with credit 0

PROOF OUTLINE:

1.

S T

let 5, be the decrease in credit in iteration ¢

total credit given to sets is k). &,

sets S, contribute at most k 3’ 3, to algorithm’s cost (as credit[S,] > wt(S,) when merged)
remaining sets contribute at most kzt wt(/,) to algorithm'’s cost (as items decrease in "rank")
so algorithm'’s cost is at most k 3 wt(l,) + 5,

charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least Y wt(l,) + 3,

42

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

43

the remaining slide is for those who are interested in better understanding how LSM systems relate to classical structures such as b-trees. we
start with some observations about how Moore’s law has qualitatively changed how we should think about b-trees over recent decades.

BACKGROUND

DATA-STRUCTURE DYNAMIZATION
MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1
PROBLEM 2
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS

ADDENDUM
B-TREES SUCCUMB TO MOORE'S LAW

TABLE OF CONTENTS

43

ADDENDUM

Since 2000 ov S0, B-tvrees are not oPtimal for wmany big-data wovrkloads:--

T.root

1 node,]V‘—RAM

1000 keys d:ctiovxa»/\;
1001 nodes,

1,001,000 keys \

1,002,001 nodes,
1,002,001,000 keys

1,000,000

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x Contract the non-leaf nodes into a single mega-root, held in RAM

is x.n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

and implemented as a RAM-based ordered dictionary.

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS But doing it THIS way achieves about 1 disk access per read.

Observation 1. For on-disk storage in 2020 and beyond, B-tree node degree should be over 1000.

Why?

a. node degree = number of keys that can be fetched disk in the twice the disk-access time

b. disks in 2020: access time & milliseconds; throughput & gigabytes per second
—> can fetch megabytes from disk in twice the disk-access time

c. (assuming 1K keys, say) we can fetch thousands of keys in twice the disk access time

tldv: 1dedl degree grows
vapidly, following Moove's
law, over the years.

Observation 2. — The non-leaf nodes will make up less than 0.1% of the total bytes used by the B-tree.

Observation 3. Database servers are typically configured so that RAM size is 1-3% of disk size [31, p. 227] I!!

Observation 4. — Can easily hold all non-leaf nodes in (10% of) RAM. Then each read/write requires about 1 disk access.

Observation 5. Contract all non-leaf nodes into one single mega-root, store in (RAM-based) ordered dictionary.

‘ B-TREES SUCCUMB
TO MOORE'S LAW

44

ADDENDUM

Since 2000 ov S0, B-tvrees are not oPtimal for wmany big-data wovrkloads:--

T.root

1 node,]V‘—RAM

1000 keys d:ctiovxa»/\;
1001 nodes,

1,001,000 keys \

1,002,001 nodes,
1,002,001,000 keys

1,000,000

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x Contract the non-leaf nodes into a single mega-root, held in RAM

is x.n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

and implemented as a RAM-based ordered dictionary.

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS But doing it THIS way achieves about 1 disk access per read.

Observation 1. For on-disk storage in 2020 and beyond, B-tree node degree should be over 1000.

Why?

a. node degree = number of keys that can be fetched disk in the twice the disk-access time

b. disks in 2020: access time & milliseconds; throughput & gigabytes per second
—> can fetch megabytes from disk in twice the disk-access time

c. (assuming 1K keys, say) we can fetch thousands of keys in twice the disk access time

tldv: 1dedl degree grows
vapidly, following Moove's
law, over the years.

Observation 2. — The non-leaf nodes will make up less than 0.1% of the total bytes used by the B-tree.

Observation 3. Database servers are typically configured so that RAM size is 1-3% of disk size [31, p. 227] I!!

Observation 4. — Can easily hold all non-leaf nodes in (10% of) RAM. Then each read/write requires about 1 disk access.

Observation 5. Contract all non-leaf nodes into one single mega-root, store in (RAM-based) ordered dictionary.

‘ B-TREES SUCCUMB
TO MOORE'S LAW

44

Competitive Data-Structure Dynamization

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Claire Mathieu Neal E. Young
CNRS, Paris University of California Riverside
Northeastern University N
Rajmohan Rajaraman Arman Yousefi
Northeastern University Google

— research funded by NSF and Google

45

This is the end of the talk. Thank you for your attention.

Competitive Data-Structure Dynamization

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Neal E. Young

University of California Riverside

Claire Mathieu
CNRS, Paris

Northeastern University

Rajmohan Rajaraman Arman Yousefi

Northeastern University Google

— research funded by NSF and Google
45

