
Competitive Data-Structure Dynamization 

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Claire Mathieu

CNRS, Paris

Neal E. Young

University of California Riverside 

Northeastern University

Arman Yousefi

Google

Rajmohan Rajaraman

Northeastern University

— research funded by NSF and Google
￼1

Welcome to the 25-minute talk for the SODA 2021 paper, Competitive Data-Structure Dynamization, by Claire Mathieu, Rajmohan Rajaraman,
Neal Young, and Arman Yousefi. I’m Neal Young.

Competitive Data-Structure Dynamization 

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Claire Mathieu

CNRS, Paris

Neal E. Young

University of California Riverside 

Northeastern University

Arman Yousefi

Google

Rajmohan Rajaraman

Northeastern University

— research funded by NSF and Google
￼1

￼2

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

The paper studies compaction policies for LSM (log-structured merge) systems through the lens of competitive analysis. The talk has two goals:
to convey the mathematical flavor of the problem and to give at least some sense for the practical context in which it arises. We’ll start with two
slides reviewing some background, formally define the two problems that we study, state our main results, give a brief taste of how we prove
those results, and conclude with a brief addendum with one more piece of context.

￼2

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

￼3

BACKGROUND

DATA-STRUCTURE

DYNAMIZATION

dynamization algorithm

STATIC DATA STRUCTURE (build once, then query)

BUILD￼ , QUERY(￼), QUERY(￼), …, QUERY(￼)

for container data structures, e.g. nearest neighbor, dictionary, …

(x1, x2, …, xm) y1 y2 yn

DYNAMIC DATA STRUCTURE (mixed insertions and queries)

INSERT￼ , INSERT(￼), QUERY(￼), INSERT(￼), QUERY(￼), …, QUERY(￼)(x1) x2 y1 x3 y2 yn

introduced 1979 by Bentley, continued by Bentley, Saxe, Mehlhorn, …

1. maintain items ￼ inserted so far in a collection of static data structures (components)

2. implement INSERT by building new components from scratch and destroying others

3. implement QUERY by querying all components (and combining results appropriately)

How to destroy and build components? Tradeoff cost for building vs. cost for querying.

{x1, x2, …, xt}

￼x1, x2, x3

￼x4, x5
INSERT(￼)x6

￼x1, x2, x3

￼x4, x5, x6

￼x1, x2, x3

￼x4, x5

one way to insert ￼

1. destroy

2. build

x6

￼x4, x5

￼x4, x5, x6

Data-structure dynamization was introduced around 1979 by Jon Bentley and others,

as a generic approach for making static data structures dynamic.

A static data structure is built once to hold a fixed set of items, and then queried any number of times.

In contrast, a dynamic data structure supports mixed insertions and queries.

In some settings, static data structures are easier to design.

Bentley observed that any static data structure can be used to build a dynamic variant as follows.

Maintain the items inserted so far in a collection of immutable static data structures, called components.

Implement each insertion by building new components (at least one of which includes the inserted item), and possibly destroying others.

(This is illustrated in the example at the bottom of the slide.)

Implement each query by querying all current components and combining the results appropriately for the underlying data type.

The key design question is how to manage the components, specifically, how to keep the number of components from growing too large without spending too much time building new
components. This is the problem that a dynamization algorithm must solve.

￼3

BACKGROUND

DATA-STRUCTURE

DYNAMIZATION

dynamization algorithm

STATIC DATA STRUCTURE (build once, then query)

BUILD￼ , QUERY(￼), QUERY(￼), …, QUERY(￼)

for container data structures, e.g. nearest neighbor, dictionary, …

(x1, x2, …, xm) y1 y2 yn

DYNAMIC DATA STRUCTURE (mixed insertions and queries)

INSERT￼ , INSERT(￼), QUERY(￼), INSERT(￼), QUERY(￼), …, QUERY(￼)(x1) x2 y1 x3 y2 yn

introduced 1979 by Bentley, continued by Bentley, Saxe, Mehlhorn, …

1. maintain items ￼ inserted so far in a collection of static data structures (components)

2. implement INSERT by building new components from scratch and destroying others

3. implement QUERY by querying all components (and combining results appropriately)

How to destroy and build components? Tradeoff cost for building vs. cost for querying.

{x1, x2, …, xt}

￼x1, x2, x3

￼x4, x5
INSERT(￼)x6

￼x1, x2, x3

￼x4, x5, x6

￼x1, x2, x3

￼x4, x5

one way to insert ￼

1. destroy

2. build

x6

￼x4, x5

￼x4, x5, x6

disk

￼4

BACKGROUND

LSM SYSTEMS 

COMPACTION POLICIES

LSM = "log-structured merge" [O’Neil et al 1996, and others] for external-memory dictionaries

1. INSERTs are cached in RAM

2. periodically flush RAM cache to disk in a single batch

3. maintain on-disk items in immutable sorted files (called components)

4. each QUERY checks the cache, then (if necessary) all on-disk components

5. the components (on disk) are managed using a data-structure-dynamization algorithm

note:

a. each INSERT is to RAM, requires no disk access

b. component builds use high-throughput sequential disk access, not random access

3. checking one given component (during a query) takes just one disk access (using in-RAM index)

4. academic work assumed uniform batch sizes and uniform INSERT/QUERY rates, 

but these assumptions don’t hold in industrial systems, e.g. Google Bigtable

￼x1, x2, x3, x4

￼x4, x5, x6

cache flush

￼x7, x8RAM

￼x1, x2, x3, x4

￼x4, x5, x6

disk ￼x7, x8

RAM

Dynamization is also employed the context of external-memory dictionary data structures. External-memory data structures are used when the data to be stored is much larger than can fit in RAM (fast
memory), so that most of the data must be held on disk. Around 1996 O’Neil et al proposed the so-called "log-structured merge" approach. Each inserted item is simply cached in RAM, without
accessing the disk at all. Every once in a while, the items cached in RAM are flushed in a batch write to the disk, as a single immutable file. These on-disk files, called components, are managed using
a dynamization algorithm. That is, the dynamization algorithm (in this context called a "compaction" or "merge" policy) periodically destroys some components and builds new ones from scratch.
Crucially, components are only built and destroyed, never altered, and builds use sequential, not random, disk access.  
 
Each query is implemented by checking the cache, and if the desired item is not found, querying each on-disk component. Note that (for reasons explained in the final slide of this talk) checking a
given component for a given item requires just one random disk access.  
 
For insert-heavy workloads (or when queries exhibit enough locality of reference to make them amenable to caching), LSM systems substantially outperform classical data structures such as B-trees.
LSM systems are used by many big-data companies, such as Google, for data-storage backends. Most academic work on LSM systems has assumed batch sizes (as if the cache was flushed only when
full) and uniform insert/query rates. But these assumptions don’t hold in production systems.

disk

￼4

BACKGROUND

LSM SYSTEMS 

COMPACTION POLICIES

LSM = "log-structured merge" [O’Neil et al 1996, and others] for external-memory dictionaries

1. INSERTs are cached in RAM

2. periodically flush RAM cache to disk in a single batch

3. maintain on-disk items in immutable sorted files (called components)

4. each QUERY checks the cache, then (if necessary) all on-disk components

5. the components (on disk) are managed using a data-structure-dynamization algorithm

note:

a. each INSERT is to RAM, requires no disk access

b. component builds use high-throughput sequential disk access, not random access

3. checking one given component (during a query) takes just one disk access (using in-RAM index)

4. academic work assumed uniform batch sizes and uniform INSERT/QUERY rates, 

but these assumptions don’t hold in industrial systems, e.g. Google Bigtable

￼x1, x2, x3, x4

￼x4, x5, x6

cache flush

￼x7, x8RAM

￼x1, x2, x3, x4

￼x4, x5, x6

disk ￼x7, x8

RAM

￼5

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

Next we formally define two optimization problems that model the task that a dynamization algorithm must perform. Each problem models a
particular tradeoff between query cost and build cost. We study these problems through the lens of competitive analysis.

￼5

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

EXAMPLE

time
input 
batch cover query cost build cost

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

We call the first problem min-sum dynamization. The input is a sequence of n batches, given one at a time. In response to each batch, the algorithm must
produce a set cover such that the union of the sets in the cover is the set of all items inserted so far. At each time t, the algorithm incurs two costs: a query cost
equal to the size of the current cover, and a build cost, which is best understood as follows: the current cover is obtained from the previous cover by adding
some new sets and destroying others. For each new set, the algorithm pays a build cost equal to the weight of the items in the set. The goal is to minimize the
sum of all the build costs and query costs.

Here’s an example….

[BUILD IN]  
 
At time 1, the input batch is a set containing two elements A and B.

[BUILD IN]

THe algorithm might respond with a cover containing two sets, one containing A, and the other containing B.

If it does this, the query cost will be 2, because there are two sets in the cover, and the build cost will be the weight of A plus the weight of B. Now you might be
thinking that it would have been better to use just one component containing both A and B, incurring query cost 1 and the same build cost, and you would be
right.

[BUILD IN]

At time 2, let’s say the input batch contains just a single new item C,

[BUILD IN]

and the algorithm responds by destroying the component containing A, and building a new component containing A and C.

[BUILD IN]

The query cost is 2, and the build cost is the wt of A plus the wt of C, because elements A and C are the ones in the new component.

[BUILD IN]

At time 3, let’s say the input batch contains two new items D and E.

[BUILD IN]

The algorithm responds by, say, adding the batch as a single new component.

If it does this, the query cost will be 3, and the build cost will be wt(d) + wt(e).

[BUILD IN]

At time 4, let’s say the input batch contains just item {F}, and the algorithm

responds with a cover containing just one set, containing all items.

This incurs query cost 1, and build cost equal to the sum of the weights of all of the items.

[BUILD IN]

This gives total cost as shown at the bottom of the slide, and of course the goal is to minimize

this total cost.

EXAMPLE

time
input 
batch cover query cost build cost

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b}

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b}

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c}

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c}

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3 {d, e}

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3 {d, e} {b}, {a, c}, {d, e} 3 wt(d) + wt(e)

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3 {d, e} {b}, {a, c}, {d, e} 3 wt(d) + wt(e)

4 {f} {a, b, c, d, e, f} 1 wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

EXAMPLE

time
input 
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3 {d, e} {b}, {a, c}, {d, e} 3 wt(d) + wt(e)

4 {f} {a, b, c, d, e, f} 1 wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

total cost: 8 + 3 wt(a)+2wt(b)+2wt(c)+2wt(d)+2wt(e)+wt(f)

￼6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO

PROBLEM 1

EXAMPLE 1

adding�a�new�set�￼ �to�the�cover��
incurs�build�cost ￼

S
wt(S) = ∑x∈S wt(x)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼7

TRIVIAL ALGORITHM 1: minimize build cost

time
input 
batch cover query cost build cost

1 {a, b} {a, b} 1 wt(a) + wt(b)

2 {c} {a, b}, {c} 2 wt(c)

3 {d, e} {a, b}, {c}, {d, e} 3 wt(d) + wt(e)

4 {f} {a, b}, {c}, {d, e}, {f} 4 wt(f)

total cost: 10 + wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

on uniform input (￼) 
 pays query cost ￼

pays build cost ￼

wt(It) = 1
Θ(n2)
Θ(n)

INTRO

PROBLEM 1

EXAMPLE 2

One trivial algorithm, which minimizes the build cost, is to respond to each batch by inserting the batch as a new set. Then each item is involved
in just one build, so the build cost is as small as possible. But the query cost at time t is t, so the total query cost is quadratic in n. For uniform
inputs, the total cost is quadratic in n.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼7

TRIVIAL ALGORITHM 1: minimize build cost

time
input 
batch cover query cost build cost

1 {a, b} {a, b} 1 wt(a) + wt(b)

2 {c} {a, b}, {c} 2 wt(c)

3 {d, e} {a, b}, {c}, {d, e} 3 wt(d) + wt(e)

4 {f} {a, b}, {c}, {d, e}, {f} 4 wt(f)

total cost: 10 + wt(a) + wt(b) + wt(c) + wt(d) + wt(e) + wt(f)

on uniform input (￼) 
 pays query cost ￼

pays build cost ￼

wt(It) = 1
Θ(n2)
Θ(n)

INTRO

PROBLEM 1

EXAMPLE 2

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼8

TRIVIAL ALGORITHM 2: minimize query cost

time
input 
batch cover query cost build cost

1 {a, b} {a, b} 1 wt(a)+wt(b)

2 {c} {a, b, c} 1 wt(a)+wt(b)+wt(c)

3 {d, e} {a, b, c, d, e} 1 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)

4 {f} {a, b, c, d, e, f} 1 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)+wt(f)

total cost: 4 + 4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

on uniform input (￼) 
 pays query cost ￼

pays build cost ￼

wt(It) = 1
Θ(n)

Θ(n2)

INTRO

PROBLEM 1

EXAMPLE 3

Another trivial algorithm, which minimizes the query cost, is to respond to each batch with a cover that contains just one set, containing all the
items inserted so far. Then at each time the query cost is 1, so the total query cost is n. But the build cost is large. For uniform inputs, the build
cost is quadratic in n, so the total cost is quadratic in n.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼8

TRIVIAL ALGORITHM 2: minimize query cost

time
input 
batch cover query cost build cost

1 {a, b} {a, b} 1 wt(a)+wt(b)

2 {c} {a, b, c} 1 wt(a)+wt(b)+wt(c)

3 {d, e} {a, b, c, d, e} 1 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)

4 {f} {a, b, c, d, e, f} 1 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)+wt(f)

total cost: 4 + 4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

on uniform input (￼) 
 pays query cost ￼

pays build cost ￼

wt(It) = 1
Θ(n)

Θ(n2)

INTRO

PROBLEM 1

EXAMPLE 3

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼9

BINARY TRANSFORM [Bentley, 1979]

time
input 
batch cover

1 I1 I1

2 I2 I1 ∪ I2

3 I3 I1 ∪ I2, I3

4 I4 I1 ∪ I2 ∪ I3 ∪ I4

5 I5 I1 ∪ I2 ∪ I3 ∪ I4, I5

6 I6 I1 ∪ I2 ∪ I3 ∪ I4, I5 ∪ I6

7 I7 I1 ∪ I2 ∪ I3 ∪ I4, I5 ∪ I6, I7

8 I8 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8

9 I9 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8, I9

10 I10 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8, I9 ∪ I10

⠇ ⠇ ⠇

At each time ￼, there is one set

for each 1 in the binary representation of ￼. 

Each step emulates an increment in binary.

 ￼ on uniform input: 

 pays build cost ￼

 pays query cost ￼

 total cost ￼

optimal for uniform input

t
t

⟶
Θ(n log n)
Θ(n log n)

Θ(n log n)

INTRO

PROBLEM 1

BACKGROUND

The Binary Transform is a dynamization algorithm, designed by Bentley in 1979 for uniform inputs. On uniform inputs, it incurs cost order n log
n, which is optimal for uniform inputs. It does this by maintaining at most log n sets at all times, and ensuring that each item is involved in at
most log n builds. The basic idea is that, at each time t, the cover has a set for each 1 in the binary representation of t, and each insertion
mimics a binary increment. This is the same idea underlying the well-known binomial-heap data structure.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼9

BINARY TRANSFORM [Bentley, 1979]

time
input 
batch cover

1 I1 I1

2 I2 I1 ∪ I2

3 I3 I1 ∪ I2, I3

4 I4 I1 ∪ I2 ∪ I3 ∪ I4

5 I5 I1 ∪ I2 ∪ I3 ∪ I4, I5

6 I6 I1 ∪ I2 ∪ I3 ∪ I4, I5 ∪ I6

7 I7 I1 ∪ I2 ∪ I3 ∪ I4, I5 ∪ I6, I7

8 I8 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8

9 I9 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8, I9

10 I10 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8, I9 ∪ I10

⠇ ⠇ ⠇

At each time ￼, there is one set

for each 1 in the binary representation of ￼. 

Each step emulates an increment in binary.

 ￼ on uniform input: 

 pays build cost ￼

 pays query cost ￼

 total cost ￼

optimal for uniform input

t
t

⟶
Θ(n log n)
Θ(n log n)

Θ(n log n)

INTRO

PROBLEM 1

BACKGROUND

￼10

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

CONSTRAINT: ￼ — at each time ￼, cover size is at most ￼

MINIMIZE BUILD COST: ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

}same�as�before

K-BINOMIAL TRANSFORM [Bentley & Saxe, 1980]

At each time ￼:

1. Let ￼ be the ￼ integers such that ￼ and ￼ .

2. Use the cover consisting of ￼ sets, where  

- the first set contains the first ￼ batches,  

- the second set contains the next ￼ batches,  

- and so on.

t

i1, …, ik k 0 ≤ i1 < i2 < i3 < ⋯ < ik ∑k
j=1 (ij

j) = t

k

(ik
k)

(ik−1

k − 1)
On uniform input,

 pays build cost ￼ .

Optimal for uniform input.

Θ(kn1+1/k)

INTRO

PROBLEM 2

DEFN & BACKGROUND

We call the second problem that we study k-component dynamization. The input and output are the same as for min-sum dynamization, except that each cover is
constrained to have size at most k, so that no query incurs cost more than k. The objective is to minimize the total build cost.

The k-binomial transform, a dynamization policy designed by Bentley and Saxe in 1980 for uniform inputs, meets the query-cost constraint, and guarantees that no item
is involved in more than O(k n^{1/k}) builds. In this way, for uniform inputs, it incurs build cost theta(k n^{1+1/k}), which is optimal for uniform inputs.

￼10

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

CONSTRAINT: ￼ — at each time ￼, cover size is at most ￼

MINIMIZE BUILD COST: ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

}same�as�before

K-BINOMIAL TRANSFORM [Bentley & Saxe, 1980]

At each time ￼:

1. Let ￼ be the ￼ integers such that ￼ and ￼ .

2. Use the cover consisting of ￼ sets, where  

- the first set contains the first ￼ batches,  

- the second set contains the next ￼ batches,  

- and so on.

t

i1, …, ik k 0 ≤ i1 < i2 < i3 < ⋯ < ik ∑k
j=1 (ij

j) = t

k

(ik
k)

(ik−1

k − 1)
On uniform input,

 pays build cost ￼ .

Optimal for uniform input.

Θ(kn1+1/k)

INTRO

PROBLEM 2

DEFN & BACKGROUND

￼11

Prior results are for uniform input, but in LSM systems inputs are online and non-uniform.

Non-uniform inputs can be easier (less costly) than uniform inputs.

COMPETITIVE ANALYSIS

DEFN: An algorithm is online if its cover at each time ￼ is independent of ￼ .

DEFN: An algorithm is ￼ -competitive if, for every input, its solution costs at most ￼ times the

optimum for that input. The competitive ratio of the algorithm is the minimum such ￼ .

QUESTION: What competitive ratios can online algorithms achieve?

t It+1, It+2, …, In

c c
c }standard

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

INTRO

MODEL

As previously mentioned, most previous academic work on dynamization algorithms (and compaction policies in LSM systems) has assumed
uniform inputs.. that is, uniform batch sizes (as if the cache is flushed only when full), and uniform insert/query rates. But these assumptions
don’t hold for production systems. Non-uniform inputs can be _easier_ (that is, less costly),

Compaction policies in current LSM systems such as Bigtable do adapt to non-uniformity, but in a somewhat adhoc way. Our goal is to explicitly
design policies through the lens of competitive analysis, so that the policies adapt in a provably robust way. From a theoretical point of view, our
goal is to design optimally competitive online algorithms.

￼11

Prior results are for uniform input, but in LSM systems inputs are online and non-uniform.

Non-uniform inputs can be easier (less costly) than uniform inputs.

COMPETITIVE ANALYSIS

DEFN: An algorithm is online if its cover at each time ￼ is independent of ￼ .

DEFN: An algorithm is ￼ -competitive if, for every input, its solution costs at most ￼ times the

optimum for that input. The competitive ratio of the algorithm is the minimum such ￼ .

QUESTION: What competitive ratios can online algorithms achieve?

t It+1, It+2, …, In

c c
c }standard

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

INTRO

MODEL

￼12

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

Next we state our results and try to give a taste of the underlying mathematics.

￼12

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

￼13

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ￼ .

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ￼ .

MAIN RESULTS

• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ￼ . 

OPEN: constant competitive ratio?

• THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for

deterministic online algorithms is k. 

OPEN: randomized algorithms?

• EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper). 

OPEN: same extensions for Min-Sum Dynamization?

Θ(log n)

Θ(kn1/k)

Θ(log* n)

MAIN RESULTSMIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

….

￼13

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ￼ .

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ￼ .

MAIN RESULTS

• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ￼ . 

OPEN: constant competitive ratio?

• THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for

deterministic online algorithms is k. 

OPEN: randomized algorithms?

• EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper). 

OPEN: same extensions for Min-Sum Dynamization?

Θ(log n)

Θ(kn1/k)

Θ(log* n)

MAIN RESULTSMIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

￼14

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ￼ .

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ￼ .

MAIN RESULTS

• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ￼ . 

OPEN: constant competitive ratio?

• THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for

deterministic online algorithms is k. 

OPEN: randomized algorithms?

• EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper). 

OPEN: same extensions for Min-Sum Dynamization?

Θ(log n)

Θ(kn1/k)

Θ(log* n)

MAIN RESULTS

The�paper�suggests�many�more�open�problems.

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

…

￼14

For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ￼ .

For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ￼ .

MAIN RESULTS

• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ￼ . 

OPEN: constant competitive ratio?

• THMS 3.1—3.4. For k-Component Dynamization, the optimal competitive ratio for

deterministic online algorithms is k. 

OPEN: randomized algorithms?

• EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper). 

OPEN: same extensions for Min-Sum Dynamization?

Θ(log n)

Θ(kn1/k)

Θ(log* n)

MAIN RESULTS

The�paper�suggests�many�more�open�problems.

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼15

THM 2.1. The online algorithm below has competitive ratio ￼ . 

 

Θ(log* n)

at each time ￼ do:

1. add current batch ￼ to the current cover as a single new set

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into one new set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

4

8

16

t

µ
(t
)

Figure 7: The capacities µ(t) as a function of t.

Fix any such S
⇤. Let [t1, t2] be the interval of S⇤ in

C⇤. That is, C⇤ adds S⇤ to its cover at time t1, where it
remains through time t2, so its contribution to OPT is
t2 � t1 + 1 + wt(S⇤). At each (integer) time t 2 [t1, t2],
component S⇤ is charged wt(S⇤\St). To finish, we showPt2

t=t1
wt(S⇤ \ St) = O(t2 � t1 + log⇤(�)wt(S⇤)).

By Observation 2.2, there can be at most one time
t
0 2 [t1, t2] with capacity µ(t0) > t2 � t1 + 1. If there is
such a time t0, the charge received then, i.e. wt(S⇤\St0),
is at most wt(S⇤). To finish, we bound the charges at
the times t 2 [t1, t2] \ {t0}, with µ(t)  t2 � t1 + 1.

Definition 2.1. (dominant) Classify each such time

t and C’s component St as dominant if the capacity µ(t)
strictly exceeds the capacity µ(i) of every earlier time

i 2 [t1, t � 1] (µ(t) > maxt�1
i=t1

µ(i)) in S
⇤
’s interval

[t1, t2]. Otherwise t and St are non-dominant.

Lemma 2.3. (non-dominant times) The net charge

to S
⇤
at non-dominant times is at most t2 � t1.

Proof. Let ⌧1 be any dominant time. Let ⌧2 > ⌧1 be
the next larger dominant time step, if any, else t2 + 1.
Consider the charge to S

⇤ during the open interval
(⌧1, ⌧2). We show that this charge is at most ⌧2� ⌧1�1.

Component S⇤ is built at time t1  ⌧1, so S
⇤ ✓ I

⇤
⌧1 .

At time ⌧1, every item x that can charge S
⇤ (that

is, x 2 S
⇤) is in some component S in C⌧1 . By the

definition of dominant, each time in t 2 (⌧1, ⌧2) has
capacity µ(t)  µ(⌧1), so the components S in C⌧1
that have weight wt(S) > µ(⌧1) remain unchanged in C
throughout (⌧1, ⌧2), and the items in them do not charge
S
⇤ during (⌧1, ⌧2). So we need only consider items in

components S in C⌧1 with wt(S)  µ(⌧1). Assume there
are such components. By inspection of the algorithm,
there can only be one: the component S⌧1 built at time
⌧1. All charges in (⌧1, ⌧2) come from items x 2 S⌧1 \S

⇤.
Let ⌧1 = t

0
1 < t

0
2 < · · · < t

0
` be the times in [⌧1, ⌧2)

when these items are put in a new component. These

are the times in (⌧1, ⌧2) when S
⇤ is charged, and, at

each, the charge is wt(S⇤ \ S⌧1)  wt(S⌧1), so the total
charge to S

⇤ during (⌧1, ⌧2) is at most (`� 1)wt(S⌧1).
At each time t

0
i with i � 2 the previous component

St0i�1
, of weight at least wt(S⌧1), is merged. So each time

t
0
i has capacity µ(t0i) � wt(S⌧1). By Observation 2.2, the
di↵erence between each time t

0
i and the next t

0
i+1 is at

least wt(S⌧1). So (`� 1)wt(S⌧1)  t
0
` � t

0
1  ⌧2 � ⌧1 � 1.

By the two previous paragraphs the charge to S
⇤

during (⌧1, ⌧2) is at most ⌧2� ⌧1� 1. Summing over the
dominant times ⌧1 in [t1, t2] proves the lemma.

Let D be the set of dominant times. For the rest of
the proof the only times we consider are those in D.

Definition 2.2. (congestion) For any time t 2 D

and component St, define the congestion of t and St to

be wt(St \ S
⇤)/µ(t), the amount St charges S

⇤
, divided

by the capacity µ(t). Call t and St congested if this

congestion exceeds 64, and uncongested otherwise.

Lemma 2.4. (dominant uncongested times) The

total charge to S
⇤
at uncongested times is O(t2 � t1).

Proof. The charge to S
⇤ at any uncongested time t is at

most 64µ(t), so the total charge to C⇤ during such times
is at most 64

P
t2D µ(t). By definition of dominant,

the capacity µ(t) for each t 2 D is a distinct power
of 2 no larger than t2 � t1 + 1. So

P
t2D µ(t) is at

most 2(t2 � t1 + 1), and the total charge to C⇤ during
uncongested times is O(t2 � t1).

Lemma 2.5. (dominant congested times) The to-

tal charge to S
⇤
at congested times is O(wt(S⇤) log⇤ �).

Proof. Let Z denote the set of congested times. For each
item x 2 S

⇤, let W (x) be the collection of congested
components that contain x and charge S

⇤. The total
charge to S

⇤ at congested times is
P

x2S⇤ |W (x)|wt(x).
To bound this, we use a random experiment that

starts by choosing a random item X in S
⇤, where each

item x has probability proportional to wt(x) of being
chosen: Pr[X = x] = wt(x)/wt(S⇤).

We will show that EX [|W (X)|] is O(log⇤ �). Since
EX [|W (X)|] =

P
x2S⇤ |W (x)|wt(x)/wt(S⇤), this will

imply that the total charge is O(log⇤ �)wt(S⇤), proving
the lemma.

The merge forest for S⇤. Define the followingmerge

forest. There is a leaf {x} for each item x 2 S
⇤. There

is a non-leaf node St for each congested component
St. The parent of each leaf {x} is the first congested
component St that contains x (that is, t = min{i 2 Z :
x 2 Si), if any. The parent of each node St is the next
congested component St0 that contains all items in St

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2j

Roughly,�every�￼ �time�steps� 
it�merges�together�all�sets 

of�weight�￼ �or�less.

2j

2j

… note that a set of a given weight W will last at most about 2W time units before being merged with other sets… this ensures that the set’s
contribution to the query cost is bounded by twice its contribution to the build cost.

… on uniform inputs, this algorithm gives the same (optimal) solution as the binary transform.

Problem 1: MIN-SUM DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

MINIMIZE COST: ￼ (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼15

THM 2.1. The online algorithm below has competitive ratio ￼ . 

 

Θ(log* n)

at each time ￼ do:

1. add current batch ￼ to the current cover as a single new set

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into one new set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

4

8

16

t

µ
(t
)

Figure 7: The capacities µ(t) as a function of t.

Fix any such S
⇤. Let [t1, t2] be the interval of S⇤ in

C⇤. That is, C⇤ adds S⇤ to its cover at time t1, where it
remains through time t2, so its contribution to OPT is
t2 � t1 + 1 + wt(S⇤). At each (integer) time t 2 [t1, t2],
component S⇤ is charged wt(S⇤\St). To finish, we showPt2

t=t1
wt(S⇤ \ St) = O(t2 � t1 + log⇤(�)wt(S⇤)).

By Observation 2.2, there can be at most one time
t
0 2 [t1, t2] with capacity µ(t0) > t2 � t1 + 1. If there is
such a time t0, the charge received then, i.e. wt(S⇤\St0),
is at most wt(S⇤). To finish, we bound the charges at
the times t 2 [t1, t2] \ {t0}, with µ(t)  t2 � t1 + 1.

Definition 2.1. (dominant) Classify each such time

t and C’s component St as dominant if the capacity µ(t)
strictly exceeds the capacity µ(i) of every earlier time

i 2 [t1, t � 1] (µ(t) > maxt�1
i=t1

µ(i)) in S
⇤
’s interval

[t1, t2]. Otherwise t and St are non-dominant.

Lemma 2.3. (non-dominant times) The net charge

to S
⇤
at non-dominant times is at most t2 � t1.

Proof. Let ⌧1 be any dominant time. Let ⌧2 > ⌧1 be
the next larger dominant time step, if any, else t2 + 1.
Consider the charge to S

⇤ during the open interval
(⌧1, ⌧2). We show that this charge is at most ⌧2� ⌧1�1.

Component S⇤ is built at time t1  ⌧1, so S
⇤ ✓ I

⇤
⌧1 .

At time ⌧1, every item x that can charge S
⇤ (that

is, x 2 S
⇤) is in some component S in C⌧1 . By the

definition of dominant, each time in t 2 (⌧1, ⌧2) has
capacity µ(t)  µ(⌧1), so the components S in C⌧1
that have weight wt(S) > µ(⌧1) remain unchanged in C
throughout (⌧1, ⌧2), and the items in them do not charge
S
⇤ during (⌧1, ⌧2). So we need only consider items in

components S in C⌧1 with wt(S)  µ(⌧1). Assume there
are such components. By inspection of the algorithm,
there can only be one: the component S⌧1 built at time
⌧1. All charges in (⌧1, ⌧2) come from items x 2 S⌧1 \S

⇤.
Let ⌧1 = t

0
1 < t

0
2 < · · · < t

0
` be the times in [⌧1, ⌧2)

when these items are put in a new component. These

are the times in (⌧1, ⌧2) when S
⇤ is charged, and, at

each, the charge is wt(S⇤ \ S⌧1)  wt(S⌧1), so the total
charge to S

⇤ during (⌧1, ⌧2) is at most (`� 1)wt(S⌧1).
At each time t

0
i with i � 2 the previous component

St0i�1
, of weight at least wt(S⌧1), is merged. So each time

t
0
i has capacity µ(t0i) � wt(S⌧1). By Observation 2.2, the
di↵erence between each time t

0
i and the next t

0
i+1 is at

least wt(S⌧1). So (`� 1)wt(S⌧1)  t
0
` � t

0
1  ⌧2 � ⌧1 � 1.

By the two previous paragraphs the charge to S
⇤

during (⌧1, ⌧2) is at most ⌧2� ⌧1� 1. Summing over the
dominant times ⌧1 in [t1, t2] proves the lemma.

Let D be the set of dominant times. For the rest of
the proof the only times we consider are those in D.

Definition 2.2. (congestion) For any time t 2 D

and component St, define the congestion of t and St to

be wt(St \ S
⇤)/µ(t), the amount St charges S

⇤
, divided

by the capacity µ(t). Call t and St congested if this

congestion exceeds 64, and uncongested otherwise.

Lemma 2.4. (dominant uncongested times) The

total charge to S
⇤
at uncongested times is O(t2 � t1).

Proof. The charge to S
⇤ at any uncongested time t is at

most 64µ(t), so the total charge to C⇤ during such times
is at most 64

P
t2D µ(t). By definition of dominant,

the capacity µ(t) for each t 2 D is a distinct power
of 2 no larger than t2 � t1 + 1. So

P
t2D µ(t) is at

most 2(t2 � t1 + 1), and the total charge to C⇤ during
uncongested times is O(t2 � t1).

Lemma 2.5. (dominant congested times) The to-

tal charge to S
⇤
at congested times is O(wt(S⇤) log⇤ �).

Proof. Let Z denote the set of congested times. For each
item x 2 S

⇤, let W (x) be the collection of congested
components that contain x and charge S

⇤. The total
charge to S

⇤ at congested times is
P

x2S⇤ |W (x)|wt(x).
To bound this, we use a random experiment that

starts by choosing a random item X in S
⇤, where each

item x has probability proportional to wt(x) of being
chosen: Pr[X = x] = wt(x)/wt(S⇤).

We will show that EX [|W (X)|] is O(log⇤ �). Since
EX [|W (X)|] =

P
x2S⇤ |W (x)|wt(x)/wt(S⇤), this will

imply that the total charge is O(log⇤ �)wt(S⇤), proving
the lemma.

The merge forest for S⇤. Define the followingmerge

forest. There is a leaf {x} for each item x 2 S
⇤. There

is a non-leaf node St for each congested component
St. The parent of each leaf {x} is the first congested
component St that contains x (that is, t = min{i 2 Z :
x 2 Si), if any. The parent of each node St is the next
congested component St0 that contains all items in St

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2j

Roughly,�every�￼ �time�steps� 
it�merges�together�all�sets 

of�weight�￼ �or�less.

2j

2j

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼16

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

￼ times26

PROBLEM 1

ALGORITHM

[describe example]  
… note that this input is particularly simple in that merges before the last non-empty insertion. in the general case, of course, merges and
insertions will be intermixed.

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼16

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

￼ times26

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼17

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

￼ times26

the�cover�at�time�
￼t = 29 − 1

PROBLEM 1

ALGORITHM

the lightest batch has weight 2^9, so the algorithm does no merges until time t=2^9. before that, it just creates one set for each batch. so, at
time 2^9-1, the cover consists of one set for each inserted batch, as shown.

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼17

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

￼ times26

the�cover�at�time�
￼t = 29 − 1

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .
t = 29 26 29 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼18

￼ times26

�created�at�time�￼t = 29

PROBLEM 1

ALGORITHM

at time 2^9…

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .
t = 29 26 29 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼18

￼ times26

�created�at�time�￼t = 29

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼19

￼ times26

�created�at�time�￼t = 210

PROBLEM 1

ALGORITHM

at time 2^10..

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼19

￼ times26

�created�at�time�￼t = 210

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼20

￼ times26

�created�at�time�￼t = 211

PROBLEM 1

ALGORITHM

at time 2^11

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼20

￼ times26

�created�at�time�￼t = 211

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼21

￼ times26

�created�at�time�￼t = 212

PROBLEM 1

ALGORITHM

at time 2^12…

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼21

￼ times26

�created�at�time�￼t = 212

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼22

￼ times26

�created�at�time�￼t = 213

PROBLEM 1

ALGORITHM

at time 2^13,

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼22

￼ times26

�created�at�time�￼t = 213

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

At times ￼ , the leaves of weight ￼ merge into one set of weight ￼ , and so on.

t = 29 26 29 215

t ∈ {210,211,212} t 215

t ∈ {213,214} t 216

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼23

￼ times26

the�cover�at� 
time�￼t = 214

PROBLEM 1

ALGORITHM

at time 2^14.. at this point the cover consists of the nodes of weight 2^15 and 2^16, highlighted in pink in the slide.

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

At times ￼ , the leaves of weight ￼ merge into one set of weight ￼ , and so on.

t = 29 26 29 215

t ∈ {210,211,212} t 215

t ∈ {213,214} t 216

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼23

￼ times26

the�cover�at� 
time�￼t = 214

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

At times ￼ , the leaves of weight ￼ merge into one set of weight ￼ , and so on.

t = 29 26 29 215

t ∈ {210,211,212} t 215

t ∈ {213,214} t 216

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼24

￼ times26

the�cover�at� 
time�￼t = 216

PROBLEM 1

ALGORITHM

at times 2^15 and then 2^16 more merges occur, leaving two sets each of weight 2^17.

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

At times ￼ , the leaves of weight ￼ merge into one set of weight ￼ , and so on.

t = 29 26 29 215

t ∈ {210,211,212} t 215

t ∈ {213,214} t 216

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼24

￼ times26

the�cover�at� 
time�￼t = 216

PROBLEM 1

ALGORITHM

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

At times ￼ , the leaves of weight ￼ merge into one set of weight ￼ , and so on.

Finally at time ￼ , the two remaining sets, of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

t ∈ {213,214} t 216

t = 217 217 218

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼25

￼ times26

the�final�cover,�
at�time�￼t = 217

PROBLEM 1

ALGORITHM

finally at time 2^17 a single set remains, of total weight 2^18.

the total build cost is the sum, over the leaves of the merge tree (as shown in the slide), of the weight of the leaf times the depth of the leaf. in
this case all leaves are at depth 4, so the total build cost is 2^18 times 4. one can show that the query cost is about the same.

a cheaper solution would have been to merge all batches in to one set at time 2^14.

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

EXAMPLE EXECUTION:

INPUT: Insert batches above, in left-to-right order, then repeatedly insert empty batches.

At time ￼ , the ￼ leaves of weight ￼ merge into one set of weight ￼ .

Likewise at each time ￼ , the leaves of weight ￼ merge into one set of weight ￼ .

At times ￼ , the leaves of weight ￼ merge into one set of weight ￼ , and so on.

Finally at time ￼ , the two remaining sets, of weight ￼ merge into one set of weight ￼ .

t = 29 26 29 215

t ∈ {210,211,212} t 215

t ∈ {213,214} t 216

t = 217 217 218

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

￼25

￼ times26

the�final�cover,�
at�time�￼t = 217

PROBLEM 1

ALGORITHM

 PROOF OUTLINE FOR LOWER BOUND ￼ :

(generalizes example from previous slide)

1. define the desired merge tree greedily, in reverse (breadth-first from the root): 

start by creating the root, with weight ￼ (an arbitrarily large power of 2)

2. repeat: choose the next node to split, and the next "unused" threshold ￼ , 

 then split the leaf into children all of weight ￼

3. show that the number of nodes at depth ￼ is at most ￼ (tower of height ￼)

Ω(log* n)

2N

2j

2j

d 4
4⋅⋅

⋅4}d
d

￼26

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

LOWER BOUND

we show this algorithm has competitive ratio theta(log*n). first we show that the algorithm’s ratio is at least log^* n. this ratio is achieved on a
family of inputs that generalize the example just shown. the general method for generating the input is as follows. first we define the desired
merge tree, by starting at the root and working down the tree BFS order. at each step, to define the children of a given node, we "split" the node
into equal-weight children, where the weight is the "next available" power of 2. a quick example will give the idea.

 PROOF OUTLINE FOR LOWER BOUND ￼ :

(generalizes example from previous slide)

1. define the desired merge tree greedily, in reverse (breadth-first from the root): 

start by creating the root, with weight ￼ (an arbitrarily large power of 2)

2. repeat: choose the next node to split, and the next "unused" threshold ￼ , 

 then split the leaf into children all of weight ￼

3. show that the number of nodes at depth ￼ is at most ￼ (tower of height ￼)

Ω(log* n)

2N

2j

2j

d 4
4⋅⋅

⋅4}d
d

￼26

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

LOWER BOUND

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼27

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

PROBLEM 1

ALGORITHM

LOWER BOUND

we start with the root, giving it weight equal to some large power of 2.

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼27

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

PROBLEM 1

ALGORITHM

LOWER BOUND

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼28

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

we split the root into children each having weight the next smaller power of two.

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼28

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼29

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

then we split the rightmost child into children having weight 2^16, the next smaller power of 2.

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼29

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼30

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

proceeding in breadth-first order, we split the next node of weight 2^17 into children of weight 2^15. we use 2^15 because it is the next
"unused" power of two. because the children have weight 2^15, and their total weight must equal the parent’s weight, there must be four
children.

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼30

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼31

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

we continue in this way, node by node, as shown.

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼31

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼32

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

[no audio]

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼33

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

[no audio]

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼34

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

we stop when the leaf weights are sufficiently small. the leaves give us the input. running the algorithm on this input will create this merge tree,
as desired. the build cost will be the tree depth times the total leaf weight. to complete the proof we show that the tree depth is log^* n, and
that there is an optimal solution whose cost is proportional to the leaf weight.

 PROOF OUTLINE FOR LOWER BOUND ￼ :
Ω(log* n)

￼34

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

218

217

215

29 · · · 29

215

210 · · · 210

215

211 · · · 211

215

212 · · · 212

217

216

213 · · · 213

216

214 214 214 214

2323242526 leaves

Figure 4: The “merge tree” for an execution of the Min-Sum Dynamization algorithm. The input sequence starts with
m = 132 inserts I1, I2, . . . , I132 — one for each leaf, of weight equal to leaf’s label. It continues with 216�132 empty inserts
(It = ;). At each time t = 29, 210, 211, . . . , 217 (during the empty inserts) the algorithm merges all components of weight t
to form a single new component, their parent. In this way, the algorithm builds a component for each node, with weight
equal to the node’s label. At time t = 217 the final component is built — the root, of weight 218, containing all items. The
algorithm merges each item four times, so pays build cost 4⇥ 218.

building a component S ✓ I
⇤
t at time t is redefined

as wtt(S) =
P

x2S wtt(x). This variant is useful for
technical reasons.

LSM. Each item is a timestamped key/value pair with
an expiration time. Given a subset S of items,
the set of non-redundant items in S, denoted
nonred(S), consists of those that have no newer
item in S with the same key. The cost of building a
component S at time t, denoted wtt(S), is redefined
as the sum, over all non-redundant items x in S,
of the item weight wt(x), or the weight of the
tombstone item for x if x has expired. The latter
weight must be at most wt(x). Items with the
same key may have di↵erent weights, and must have
distinct timestamps. For any two items x 2 It and
x
0 2 It0 with t < t

0, the timestamp of x must be
less than the timestamp of x0. This variant applies
to LSM systems.

General. Instead of weighting the items, build costs
are specified directly for sets. At each time t

a build-cost function wtt : 2I
⇤
t ! R+ is revealed

(along with It), directly specifying the build cost
wtt(S) for every possible component S ✓ I

⇤
t .

The build-cost function must have the following
properties. For all times i  t and sets S, S0 ✓ I

⇤
t ,

(P1) sub-additivity: wtt(S [S
0)  wtt(S) +wtt(S0)

(P2) su�x monotonicity: wtt(S \ I⇤i)  wtt(S)
(P3) temporal monotonicity: wti(S)  wtt(S)

Properties (P1)–(P3) do hold for the build costs implicit
in the other defined variants.3 They also hold, for
example, if each item has a weight and wtt(S) =
maxx2S wt(x).

3For LSM, (P1) holds because nonred(S [S
0) ✓ nonred(S) [

nonred(S)0, (P2) because nonred(S \ I
⇤
i) ✓ nonred(S), and (P3)

because the tombstone weight for each item x is at most wt(x).

Definition 1.3. (competitive ratio) An algorithm

is online if for every input I it outputs a solution C
such that at each time t its cover Ct is independent of

It+1, It+2, . . . , In, all build costs wtt0(S) at times t
0
> t,

and n. The competitive ratio is the supremum, over

all inputs with m non-empty insertions, of the cost of

the algorithm’s solution divided by the optimum cost

for the input. An algorithm is c(m)-competitive if its

competitive ratio is at most c(m).

Results

Theorem 3.1. (section 3.1) For k-Component Dy-

namization (and consequently for its generalizations) no

deterministic online algorithm has ratio less than k.

Theorem 3.2. (section 3.2) For k-Component Dy-

namization with decreasing weights (and plain k-

Component Dynamization) the deterministic online al-

gorithm in Figure 5 has competitive ratio k.

For comparison, consider the naive generalization
of Bentley and Saxe’s k-binomial transform to k-
Component Dynamization (treat each insertion It as
one size-1 item, then apply the transform). On inputs
with wt(It) = 1 for all t, the two algorithms produce
essentially the same optimal solution. But the compet-
itive ratio of the naive algorithm is ⌦(kn1/k) for any
k � 2. (Consider inserting a single item of weight 1,
then n � 1 single items of weight 0. The naive algo-
rithm pays ⌦(kn1/k). The optimum pays O(1), as do
the algorithms in Figures 5 and 6.)

Bigtable’s default algorithm (Section 1.1) solves k-
Component Dynamization, but its competitive ratio is
⌦(n). For example, with k = 2, given an instance with
wt(I1) = 3, wt(I2) = 1, and wt(It) = 0 for t � 3, it pays
n + 2, while the optimum is 4. (In fact, the algorithm
is memoryless — each Ct is determined by Ct�1 and It.
No deterministic memoryless algorithm has competitive

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

PROBLEM 1

ALGORITHM

LOWER BOUND

 PROOF OUTLINE FOR LOWER BOUND ￼ :

(generalizes example from previous slide)

1. build the desired merge tree greedily, in reverse (breadth-first from the root): 

start by creating the root, with weight ￼ (an arbitrarily large power of 2)

2. repeat: choose the next node to split, and the next "unused" threshold ￼ , 

 then split the leaf into children all of weight ￼

3. show that the number of nodes at depth ￼ is at most ￼ (tower of height ￼)

Ω(log* n)

2N

2j

2j

d 4
4⋅⋅

⋅4}d
d

￼35

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

LOWER BOUND

[no audio]

 PROOF OUTLINE FOR UPPER BOUND ￼ :

1. charge algorithm’s query cost to its build cost

2. charge the cost of building each set, via the items in it, to the OPT sets containing those items

3. show that each OPT set is charged ￼ times its contribution to the OPT cost

O(log* n)

O(log* n)

￼36

Step�3�is�the�hard�part.��The�intuition�is�that,�in�the�"merge�tree"�formed�
by�tracking�how�the�algorithm�merges�the�elements�in�the�OPT�set,�each�
important�merge�must�be�associated�with�a�unique�threshold�￼ .�� 
This�forces�the�merge�tree�to�have�weighted�average�leaf�depth�￼ .

2j

O(log* n)

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

UPPER BOUND

Next we show that the competitive ratio is at most log* n on any input. We do this in three steps. First we observe that the algorithms’ query cost
is proportional to its build cost, so it suffices to bound the build cost. To do that, for each set that the algorithm builds, we charge the cost of
building the set, via the set’s items, to the OPT sets containing those items at that time. finally, we show that each set in the optimal solution is
charged at most log* n times its contribution to the optimal cost. This is the hard part. Very roughly, we consider each OPT set. We show that
the merge tree that the algorithm induces on the elements in the OPT set has weighted average depth log* n. Intuitively, the reason for this is
that the nodes (merges) in the tree must have distinct powers 2^j associated with them. As in the lower-bound example, this forces the node
degrees to increase exponentially level by level as we descend from the root in the merge tree, which allows us to show that the depth cannot be
too large.

 PROOF OUTLINE FOR UPPER BOUND ￼ :

1. charge algorithm’s query cost to its build cost

2. charge the cost of building each set, via the items in it, to the OPT sets containing those items

3. show that each OPT set is charged ￼ times its contribution to the OPT cost

O(log* n)

O(log* n)

￼36

Step�3�is�the�hard�part.��The�intuition�is�that,�in�the�"merge�tree"�formed�
by�tracking�how�the�algorithm�merges�the�elements�in�the�OPT�set,�each�
important�merge�must�be�associated�with�a�unique�threshold�￼ .�� 
This�forces�the�merge�tree�to�have�weighted�average�leaf�depth�￼ .

2j

O(log* n)

for Problem 1: MIN-SUM DYNAMIZATION

THM 2.1. The online algorithm below has competitive ratio ￼ .
Θ(log* n)

for each time ￼ do:

1. add ￼ to the current cover

2. let ￼ be the largest integer such that ￼ is an integer multiple of ￼

3. merge all sets ￼ in the cover such that ￼ into a single set

t ← 1,2,…, n
It

j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

UPPER BOUND

￼37

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

next we consider problem 2 (k-component dynamization). we start with the lower bound of k for dete4rministic algorithms, then discuss some
algorithms that achieve it.

￼37

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

CONSTRAINT: ￼ — at each time ￼, cover size is at most ￼

MINIMIZE BUILD COST: ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

PROBLEM 2

LOWER BOUND

time
input 

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

total:	 2 + (m-1)ε min(2+ε, 1+(m-1)ε)

If�there�were�no�"setup�cost"�

of�1�at�time�1,�ratio�would�be�

￼
alg�cost

OPT�cost
≈ 1 + 1

1 = 2

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

￼38

Alg�chooses�￼ ,�so�

￼

m ≈ 1/ϵ
alg�cost

OPT�cost
≈ 2 + 1

2 = 3/2

rent or buy.

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

CONSTRAINT: ￼ — at each time ￼, cover size is at most ￼

MINIMIZE BUILD COST: ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

PROBLEM 2

LOWER BOUND

time
input 

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

total:	 2 + (m-1)ε min(2+ε, 1+(m-1)ε)

If�there�were�no�"setup�cost"�

of�1�at�time�1,�ratio�would�be�

￼
alg�cost

OPT�cost
≈ 1 + 1

1 = 2

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

￼38

Alg�chooses�￼ ,�so�

￼

m ≈ 1/ϵ
alg�cost

OPT�cost
≈ 2 + 1

2 = 3/2

}

time
input 

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

m+1 {1, ε, 0, …, 0}, { }

m+2 0 {1, ε, 0, …, 0}, { , 0} 0

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

0 {1, ε, 0, …, 0}, { , 0, …, 0} 0

0 {1, ε, 0, …, 0, , 0, …, 0} 0
⠇

ϵ ϵ ϵ

ϵ

ϵϵ

ϵ

ϵ
1 + ϵ + ϵ

1 + ϵ + ϵ ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

For�this�second�
round�the�ratio�is��

￼ .�

Repeating�drives�
the�total�ratio�
arbitrarily�near�￼ .

2 − O(ϵ)

2

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

CONSTRAINT: ￼ — at each time ￼, cover size is at most ￼

MINIMIZE BUILD COST: ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

PROBLEM 2

LOWER BOUND

￼39

}

time
input 

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

m+1 {1, ε, 0, …, 0}, { }

m+2 0 {1, ε, 0, …, 0}, { , 0} 0

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

0 {1, ε, 0, …, 0}, { , 0, …, 0} 0

0 {1, ε, 0, …, 0, , 0, …, 0} 0
⠇

ϵ ϵ ϵ

ϵ

ϵϵ

ϵ

ϵ
1 + ϵ + ϵ

1 + ϵ + ϵ ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

For�this�second�
round�the�ratio�is��

￼ .�

Repeating�drives�
the�total�ratio�
arbitrarily�near�￼ .

2 − O(ϵ)

2

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: ￼ — a sequence of batches (sets of weighted items)

OUTPUT: ￼ — a sequence of set covers such that 
 the sets in ￼ cover all items inserted up to time ￼ ￼

CONSTRAINT: ￼ — at each time ￼, cover size is at most ￼

MINIMIZE BUILD COST: ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

PROBLEM 2

LOWER BOUND

￼39

￼40

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

next we discuss a k-competitive algorithm for k-component dynamization.

￼40

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio ￼ .k

PROBLEM 2

ALGORITHM 1

￼41

at each time ￼ , in response to batch ￼ do:

1. if there are ￼ sets in the cover:

a. increase all sets’ credits continuously until a set ￼ has ￼

b. let ￼ be the oldest such set

c. merge ￼ , ￼ , and all sets newer than ￼ into one new set with credit 0

2. else: add ￼ as a new set, with credit 0

t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It

we�associate�a�"credit"�with�

each�set�in�the�current�cover

The�paper�also�gives�a�second�"recursive�rent-or�buy"�algorithm�with�a�very�different�analysis.

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio ￼ .k

PROBLEM 2

ALGORITHM 1

￼41

at each time ￼ , in response to batch ￼ do:

1. if there are ￼ sets in the cover:

a. increase all sets’ credits continuously until a set ￼ has ￼

b. let ￼ be the oldest such set

c. merge ￼ , ￼ , and all sets newer than ￼ into one new set with credit 0

2. else: add ￼ as a new set, with credit 0

t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It

we�associate�a�"credit"�with�

each�set�in�the�current�cover

The�paper�also�gives�a�second�"recursive�rent-or�buy"�algorithm�with�a�very�different�analysis.

PROBLEM 2

ALGORITHM 1

￼42

 PROOF OUTLINE:

1. let ￼ be the decrease in credit in iteration ￼

2. total credit given to sets is ￼

3. sets ￼ contribute at most ￼ to algorithm’s cost (as ￼ when merged)

4. remaining sets contribute at most ￼ to algorithm’s cost (as items decrease in "rank")

5. so algorithm’s cost is at most ￼

6. charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least ￼

δt t
k∑t δt

St k∑t δt credit[St] ≥ wt(St)
k∑t wt(It)

k∑t wt(It) + δt

∑t wt(It) + δt

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio ￼ .k

at each time ￼ , in response to batch ￼ do:

1. if there are ￼ sets in the cover:

a. increase all sets’ credits continuously until a set ￼ has ￼

b. let ￼ be the oldest such set

c. merge ￼ , ￼ , and all sets newer than ￼ into one new set with credit 0

2. else: add ￼ as a new set, with credit 0

t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It

The proof that the algorithm is k-competitive can be viewed as showing that the algorithm is a primal-dual algorithm, that is, that in addition to
generating a solution for the given problem, it implicitly generates a solution to the dual of the linear-program relaxation of the problem. We
show that the algorithm’s cost is at most k times the cost of the dual solution, which is a lower bound on the optimal cost. In particular, if we let
delta-t be the increase in credit in iteration t, these delta-t’s somehow define a dual solution, the cost of which is sum_t wt(..) + delta_t. It is not
hard to bound the algorithm’s cost by k times this amount. See the paper for more details.

PROBLEM 2

ALGORITHM 1

￼42

 PROOF OUTLINE:

1. let ￼ be the decrease in credit in iteration ￼

2. total credit given to sets is ￼

3. sets ￼ contribute at most ￼ to algorithm’s cost (as ￼ when merged)

4. remaining sets contribute at most ￼ to algorithm’s cost (as items decrease in "rank")

5. so algorithm’s cost is at most ￼

6. charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least ￼

δt t
k∑t δt

St k∑t δt credit[St] ≥ wt(St)
k∑t wt(It)

k∑t wt(It) + δt

∑t wt(It) + δt

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio ￼ .k

at each time ￼ , in response to batch ￼ do:

1. if there are ￼ sets in the cover:

a. increase all sets’ credits continuously until a set ￼ has ￼

b. let ￼ be the oldest such set

c. merge ￼ , ￼ , and all sets newer than ￼ into one new set with credit 0

2. else: add ￼ as a new set, with credit 0

t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It

￼43

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

the remaining slide is for those who are interested in better understanding how LSM systems relate to classical structures such as b-trees. we
start with some observations about how Moore’s law has qualitatively changed how we should think about b-trees over recent decades.

￼43

BACKGROUND

DATA-STRUCTURE DYNAMIZATION

MERGE POLICIES IN LSM SYSTEMS

INTRO

PROBLEM 1

PROBLEM 2

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS

ADDENDUM

B-TREES SUCCUMB TO MOORE’S LAW

TABLE OF CONTENTS

Observation 1. For on-disk storage in 2020 and beyond, B-tree node degree should be over 1000.

Observation 2. ￼ The non-leaf nodes will make up less than 0.1% of the total bytes used by the B-tree.

Observation 3. Database servers are typically configured so that RAM size is 1–3% of disk size [31, p. 227] !!!

Observation 4. ￼ Can easily hold all non-leaf nodes in (10% of) RAM. Then each read/write requires about 1 disk access.

Observation 5. Contract all non-leaf nodes into one single mega-root, store in (RAM-based) ordered dictionary.

→

→

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS

488 Chapter 18 B-Trees

1000
1001

1000
1001

1000
1001

1000
1001

100010001000

…
1 node,
 1000 keys
1001 nodes,
 1,001,000 keys

1,002,001 nodes,
 1,002,001,000 keys…

T:root

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x
is x:n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

18.1 Definition of B-trees

To keep things simple, we assume, as we have for binary search trees and red-black
trees, that any “satellite information” associated with a key resides in the same
node as the key. In practice, one might actually store with each key just a pointer to
another disk page containing the satellite information for that key. The pseudocode
in this chapter implicitly assumes that the satellite information associated with a
key, or the pointer to such satellite information, travels with the key whenever the
key is moved from node to node. A common variant on a B-tree, known as a
BC-tree, stores all the satellite information in the leaves and stores only keys and
child pointers in the internal nodes, thus maximizing the branching factor of the
internal nodes.

A B-tree T is a rooted tree (whose root is T:root) having the following proper-
ties:
1. Every node x has the following attributes:

a. x:n, the number of keys currently stored in node x,
b. the x:n keys themselves, x:key1; x:key2; : : : ; x:keyx: n, stored in nondecreas-

ing order, so that x:key1 ! x:key2 ! " " " ! x:keyx: n,
c. x: leaf , a boolean value that is TRUE if x is a leaf and FALSE if x is an internal

node.
2. Each internal node x also contains x:nC 1 pointers x:c1; x:c2; : : : ; x:cx: nC1 to

its children. Leaf nodes have no children, and so their ci attributes are unde-
fined.

1,000,000

1000 1000 1000

1,000,000

…

But doing it THIS way achieves about 1 disk access per read.

Contract the non-leaf nodes into a single mega-root, held in RAM
and implemented as a RAM-based ordered dictionary.

ADDENDUM

B-TREES SUCCUMB

TO MOORE’S LAW

Why?

a. node degree ￼ number of keys that can be fetched disk in the twice the disk-access time

b. disks in 2020: access time ￼ milliseconds; throughput ￼ gigabytes per second  
￼ can fetch megabytes from disk in twice the disk-access time

c. (assuming 1K keys, say) we can fetch thousands of keys in twice the disk access time

≈

≈ ≈
⟶

tldr:�ideal�degree�grows�
rapidly,�following�Moore’s�
law,�over�the�years.

�in-RAM�
dictionary

Since�2000�or�so,�B-trees�are�not�optimal�for�many�big-data�workloads…

￼44

Observation 1. For on-disk storage in 2020 and beyond, B-tree node degree should be over 1000.

Observation 2. ￼ The non-leaf nodes will make up less than 0.1% of the total bytes used by the B-tree.

Observation 3. Database servers are typically configured so that RAM size is 1–3% of disk size [31, p. 227] !!!

Observation 4. ￼ Can easily hold all non-leaf nodes in (10% of) RAM. Then each read/write requires about 1 disk access.

Observation 5. Contract all non-leaf nodes into one single mega-root, store in (RAM-based) ordered dictionary.

→

→

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS

488 Chapter 18 B-Trees

1000
1001

1000
1001

1000
1001

1000
1001

100010001000

…
1 node,
 1000 keys
1001 nodes,
 1,001,000 keys

1,002,001 nodes,
 1,002,001,000 keys…

T:root

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x
is x:n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

18.1 Definition of B-trees

To keep things simple, we assume, as we have for binary search trees and red-black
trees, that any “satellite information” associated with a key resides in the same
node as the key. In practice, one might actually store with each key just a pointer to
another disk page containing the satellite information for that key. The pseudocode
in this chapter implicitly assumes that the satellite information associated with a
key, or the pointer to such satellite information, travels with the key whenever the
key is moved from node to node. A common variant on a B-tree, known as a
BC-tree, stores all the satellite information in the leaves and stores only keys and
child pointers in the internal nodes, thus maximizing the branching factor of the
internal nodes.

A B-tree T is a rooted tree (whose root is T:root) having the following proper-
ties:
1. Every node x has the following attributes:

a. x:n, the number of keys currently stored in node x,
b. the x:n keys themselves, x:key1; x:key2; : : : ; x:keyx: n, stored in nondecreas-

ing order, so that x:key1 ! x:key2 ! " " " ! x:keyx: n,
c. x: leaf , a boolean value that is TRUE if x is a leaf and FALSE if x is an internal

node.
2. Each internal node x also contains x:nC 1 pointers x:c1; x:c2; : : : ; x:cx: nC1 to

its children. Leaf nodes have no children, and so their ci attributes are unde-
fined.

1,000,000

1000 1000 1000

1,000,000

…

But doing it THIS way achieves about 1 disk access per read.

Contract the non-leaf nodes into a single mega-root, held in RAM
and implemented as a RAM-based ordered dictionary.

ADDENDUM

B-TREES SUCCUMB

TO MOORE’S LAW

Why?

a. node degree ￼ number of keys that can be fetched disk in the twice the disk-access time

b. disks in 2020: access time ￼ milliseconds; throughput ￼ gigabytes per second  
￼ can fetch megabytes from disk in twice the disk-access time

c. (assuming 1K keys, say) we can fetch thousands of keys in twice the disk access time

≈

≈ ≈
⟶

tldr:�ideal�degree�grows�
rapidly,�following�Moore’s�
law,�over�the�years.

�in-RAM�
dictionary

Since�2000�or�so,�B-trees�are�not�optimal�for�many�big-data�workloads…

￼44

Competitive Data-Structure Dynamization 

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Claire Mathieu

CNRS, Paris

Neal E. Young

University of California Riverside 

Northeastern University

Arman Yousefi

Google

Rajmohan Rajaraman

Northeastern University

— research funded by NSF and Google
￼45

This is the end of the talk. Thank you for your attention.

Competitive Data-Structure Dynamization 

— SODA 2021 —

(a 25-minute talk summarizing the conference paper)

Claire Mathieu

CNRS, Paris

Neal E. Young

University of California Riverside 

Northeastern University

Arman Yousefi

Google

Rajmohan Rajaraman

Northeastern University

— research funded by NSF and Google
￼45

