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1. B-tree node degree ￼  number of keys that can be fetched from disk in the twice the disk-access time


2. in 2020 ￼  can fetch thousands of keys in twice the disk access time ￼  node degree should be over 1000


3. in 2020 ￼  non-leaf nodes take up < 0.1% of the total space


4. Database servers are typically configured so that RAM size is 1–3% of disk size [31, p. 227] !


5. Can easily hold all non-leaf nodes in (10% of) RAM, and replace them with in-RAM dictionary.


6. Doing this achieves about 1 disk access per insertion or query.


7. Is it possible to get less than one disk access per insertion or query?

≈

→ →

→

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS

488 Chapter 18 B-Trees
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Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x
is x:n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

18.1 Definition of B-trees

To keep things simple, we assume, as we have for binary search trees and red-black
trees, that any “satellite information” associated with a key resides in the same
node as the key. In practice, one might actually store with each key just a pointer to
another disk page containing the satellite information for that key. The pseudocode
in this chapter implicitly assumes that the satellite information associated with a
key, or the pointer to such satellite information, travels with the key whenever the
key is moved from node to node. A common variant on a B-tree, known as a
BC-tree, stores all the satellite information in the leaves and stores only keys and
child pointers in the internal nodes, thus maximizing the branching factor of the
internal nodes.

A B-tree T is a rooted tree (whose root is T:root) having the following proper-
ties:
1. Every node x has the following attributes:

a. x:n, the number of keys currently stored in node x,
b. the x:n keys themselves, x:key1; x:key2; : : : ; x:keyx: n, stored in nondecreas-

ing order, so that x:key1 ! x:key2 ! " " " ! x:keyx: n,
c. x: leaf , a boolean value that is TRUE if x is a leaf and FALSE if x is an internal

node.
2. Each internal node x also contains x:nC 1 pointers x:c1; x:c2; : : : ; x:cx: nC1 to

its children. Leaf nodes have no children, and so their ci attributes are unde-
fined.

1,000,000

1000 1000 1000
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…

But THIS way achieves about 1 disk access per insert or query.

Contract the non-leaf nodes into a single mega-root, held in RAM
and implemented as a RAM-based ordered dictionary.
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external-memory�ordered�dictionaries:���Better�than�B-trees?
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MOTIVATION

LSM-SYSTEMS

COMPACTION


VIA DATA-STRUCTURE 

DYNAMIZATION

external-memory dictionaries via LSM = "log-structured merge" [O’Neil et al 1996, and others]

1. INSERTs are cached in RAM, require no disk access


2. periodically flush RAM cache to disk in a single batch


3. maintain on-disk items in immutable sorted files called components


4. each QUERY checks the cache, then if necessary each on-disk component (one disk access per)


5. periodically compact — destroy some components and build new ones from scratch 

— use data-structure dynamization algorithm to choose which components to destroy and build 

— build cost vs query cost tradeoff


notes:


a. component builds use high-throughput sequential disk access, not slow random access


b. LSM systems are used today by most companies that need high-throughput big-data storage


c. most academic work assumes uniform batch sizes and uniform INSERT/QUERY rates, 

but these assumptions don’t hold in production systems, e.g. Google Bigtable
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Problem 1: MIN-SUM DYNAMIZATION 


INPUT:      ￼    — a sequence of batches (sets of weighted items)
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MINIMIZE COST:  ￼      (build cost + query cost)
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TRIVIAL ALGORITHM 1:   insert batch as component

time
input 
batch cover query cost build cost

1 {a, b} {a, b} 1 wt(a) + wt(b)

2 {c} {a, b}, {c} 2 wt(c)

3 {d, e} {a, b}, {c}, {d, e} 3 wt(d) + wt(e)

total cost:  6   +  wt(a) + wt(b) + wt(c) + wt(d) + wt(e)

on uniform input (￼ ) 
        pays query cost ￼ 


pays build cost ￼

wt(It) = 1
Θ(n2)
Θ(n)
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TRIVIAL ALGORITHM 2:   use just one component

time
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2 {c} {a, b, c} 1 wt(a)+wt(b)+wt(c)

3 {d, e} {a, b, c, d, e} 1 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)

total cost:  4  +  4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

on uniform input (￼ ) 
        pays query cost ￼ 


pays build cost ￼

wt(It) = 1
Θ(n)

Θ(n2)

INTRO

PROBLEM 1

EXAMPLE 3



BINARY TRANSFORM  [Bentley, 1979] achieves cost O(n log n) on uniform inputs

time
in


binary
input 
batch cover

1 0001 I1 I1

2 0010 I2 I1 ∪ I2

3 0011 I3 I1 ∪ I2,     I3

4 0100 I4 I1 ∪ I2 ∪ I3 ∪ I4

5 0101 I5 I1 ∪ I2 ∪ I3 ∪ I4,     I5

6 0110 I6 I1 ∪ I2 ∪ I3 ∪ I4,     I5 ∪ I6

7 0111 I7 I1 ∪ I2 ∪ I3 ∪ I4,     I5 ∪ I6,    I7

8 0100 I8 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8

9 0101 I9 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8,     I9

10 0110 I10 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8,     I9 ∪ I10

⠇ ⠇ ⠇

     similar to classical Binomial Heap:


       At each time ￼, there is one component 

    for each 1 in the binary representation of ￼.   

 Each step emulates an increment in binary.


     ￼    on uniform input: 

           pays build cost  ￼ 


        pays query cost ￼ 

                                                                                                           


             total cost ￼ 


                   


     optimal for uniform input

t
t

⟶
Θ(n log n)
Θ(n log n)

Θ(n log n)
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INTRO

PROBLEM 1


BINARY TRANSFORM
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Problem 2:  K-COMPONENT DYNAMIZATION 


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


CONSTRAINT:  ￼    —  at each time ￼, cover size is at most ￼ 


MINIMIZE BUILD COST:  ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

}same�as�before

INTRO

PROBLEM 2


DEFN

K-BIN. TRANSFORM



Problem 2:  K-COMPONENT DYNAMIZATION 


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


CONSTRAINT:  ￼    —  at each time ￼, cover size is at most ￼ 


MINIMIZE BUILD COST:  ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)
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}same�as�before

K-BINOMIAL TRANSFORM  [Bentley & Saxe, 1980] achieves cost ￼  on uniform inputs


At each time ￼:


1. Let ￼  be the ￼  integers such that ￼  and ￼ .


2. Use the cover consisting of ￼  sets, where  

- the first set contains the first ￼  batches,  

- the second set contains the next ￼  batches,  

- and so on.


Θ(kn1+1/k)

t

i1, …, ik k 0 ≤ i1 < i2 < i3 < ⋯ < ik ∑k
j=1 (ij

j ) = t

k

(ik
k)

( ik−1

k − 1)

INTRO

PROBLEM 2


DEFN

K-BIN. TRANSFORM

     optimal for uniform input
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Prior results for uniform input, but production LSM-system inputs are online and non-uniform.


Non-uniform inputs can be easier (less costly) than uniform inputs.


COMPETITIVE ANALYSIS


DEFN: An algorithm is online if its cover at each time ￼ is independent of ￼  .


DEFN: An algorithm is ￼ -competitive if, for every input, its solution costs at most ￼  times the optimum 

for that input.  The competitive ratio of the algorithm is the minimum such ￼ .


GOAL:   online algorithms with smallest possible competitive ratios…


PREVIOUS RESULTS


• For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ￼ .


• For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ￼ . 

t It+1, It+2, …, In

c c
c

Θ(log n)

Θ(kn1/k)

}standard

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

INTRO

MODEL
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MOTIVATION

B-TREES VS. MOORE’S LAW

LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION


DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION

PROBLEM 2 — K-COMPONENT DYNAMIZATION

COMPETITIVE ANALYSIS


RESULTS

PROBLEM 1 ALGORITHM, ￼ -COMPETITIVE

PROBLEM 2 LOWER BOUND 
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Θ(log* n)

TABLE OF CONTENTS

Compaction�policies�for�LSM�(log-structured�merge)�systems�
through�the�lens�of�competitive�analysis
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PREVIOUS RESULTS


• For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ￼ .


• For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ￼ . 


MAIN RESULTS


• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ￼ . 

OPEN: constant competitive ratio?


• THMS 3.1—3.4. For k-Component Dynamization, there are deterministic online algorithms 

with competitive ratio k, and this is best possible for deterministic algorithms. 

OPEN: randomized algorithms?


• EXTENSIONS: the k-Component Dynamization results extend to allow lazy deletions, 

updates, item expiration as they occur in LSM systems such as Bigtable (see the paper). 

OPEN: same extensions for Min-Sum Dynamization?


Θ(log n)

Θ(kn1/k)

Θ(log* n)

RESULTSMIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)
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PREVIOUS RESULTS


• For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio ￼ .


• For k-Component Dynamization, the k-Binomial Transform yields competitive ratio ￼ . 


MAIN RESULTS


• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ￼ . 

OPEN: constant competitive ratio for Min-Sum Dynamization?


• THMS 3.1—3.4. For k-Component Dynamization, there are deterministic online algorithms 

with competitive ratio k, and this is best possible for deterministic algorithms. 

OPEN: randomized algorithms for k-Component Dynamization?


• EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions, 

updates, item expiration as they occur in big-data storage systems (see the paper). 

OPEN: same extensions for Min-Sum Dynamization?


Θ(log n)

Θ(kn1/k)

Θ(log* n)

RESULTS 
OPEN PROBLEMS

See�the�paper�for�many�more�open�problems.

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)



Problem 1: MIN-SUM DYNAMIZATION 


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


MINIMIZE COST:  ￼      (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

￼16

THM 2.1. The online algorithm below has competitive ratio ￼ . 

 

Θ(log* n)

at each time ￼  do:


1. add current batch ￼  to the current cover as a single new set


2. let ￼  be the largest power of 2 such that ￼ is an integer multiple of ￼ 


3. merge all sets ￼  in the cover such that ￼  into one new set


t ← 1,2,…, n
It

2j t 2j

S wt(S) ≤ 2j

PROBLEM 1

ALGORITHM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

4

8

16

t

µ
(t
)

Figure 7: The capacities µ(t) as a function of t.

Fix any such S
⇤. Let [t1, t2] be the interval of S⇤ in

C⇤. That is, C⇤ adds S⇤ to its cover at time t1, where it
remains through time t2, so its contribution to OPT is
t2 � t1 + 1 + wt(S⇤). At each (integer) time t 2 [t1, t2],
component S⇤ is charged wt(S⇤\St). To finish, we showPt2

t=t1
wt(S⇤ \ St) = O(t2 � t1 + log⇤(�)wt(S⇤)).

By Observation 2.2, there can be at most one time
t
0 2 [t1, t2] with capacity µ(t0) > t2 � t1 + 1. If there is
such a time t0, the charge received then, i.e. wt(S⇤\St0),
is at most wt(S⇤). To finish, we bound the charges at
the times t 2 [t1, t2] \ {t0}, with µ(t)  t2 � t1 + 1.

Definition 2.1. (dominant) Classify each such time

t and C’s component St as dominant if the capacity µ(t)
strictly exceeds the capacity µ(i) of every earlier time

i 2 [t1, t � 1] (µ(t) > maxt�1
i=t1

µ(i)) in S
⇤
’s interval

[t1, t2]. Otherwise t and St are non-dominant.

Lemma 2.3. (non-dominant times) The net charge

to S
⇤
at non-dominant times is at most t2 � t1.

Proof. Let ⌧1 be any dominant time. Let ⌧2 > ⌧1 be
the next larger dominant time step, if any, else t2 + 1.
Consider the charge to S

⇤ during the open interval
(⌧1, ⌧2). We show that this charge is at most ⌧2� ⌧1�1.

Component S⇤ is built at time t1  ⌧1, so S
⇤ ✓ I

⇤
⌧1 .

At time ⌧1, every item x that can charge S
⇤ (that

is, x 2 S
⇤) is in some component S in C⌧1 . By the

definition of dominant, each time in t 2 (⌧1, ⌧2) has
capacity µ(t)  µ(⌧1), so the components S in C⌧1
that have weight wt(S) > µ(⌧1) remain unchanged in C
throughout (⌧1, ⌧2), and the items in them do not charge
S
⇤ during (⌧1, ⌧2). So we need only consider items in

components S in C⌧1 with wt(S)  µ(⌧1). Assume there
are such components. By inspection of the algorithm,
there can only be one: the component S⌧1 built at time
⌧1. All charges in (⌧1, ⌧2) come from items x 2 S⌧1 \S

⇤.
Let ⌧1 = t

0
1 < t

0
2 < · · · < t

0
` be the times in [⌧1, ⌧2)

when these items are put in a new component. These

are the times in (⌧1, ⌧2) when S
⇤ is charged, and, at

each, the charge is wt(S⇤ \ S⌧1)  wt(S⌧1), so the total
charge to S

⇤ during (⌧1, ⌧2) is at most (`� 1)wt(S⌧1).
At each time t

0
i with i � 2 the previous component

St0i�1
, of weight at least wt(S⌧1), is merged. So each time

t
0
i has capacity µ(t0i) � wt(S⌧1). By Observation 2.2, the
di↵erence between each time t

0
i and the next t

0
i+1 is at

least wt(S⌧1). So (`� 1)wt(S⌧1)  t
0
` � t

0
1  ⌧2 � ⌧1 � 1.

By the two previous paragraphs the charge to S
⇤

during (⌧1, ⌧2) is at most ⌧2� ⌧1� 1. Summing over the
dominant times ⌧1 in [t1, t2] proves the lemma.

Let D be the set of dominant times. For the rest of
the proof the only times we consider are those in D.

Definition 2.2. (congestion) For any time t 2 D

and component St, define the congestion of t and St to

be wt(St \ S
⇤)/µ(t), the amount St charges S

⇤
, divided

by the capacity µ(t). Call t and St congested if this

congestion exceeds 64, and uncongested otherwise.

Lemma 2.4. (dominant uncongested times) The

total charge to S
⇤
at uncongested times is O(t2 � t1).

Proof. The charge to S
⇤ at any uncongested time t is at

most 64µ(t), so the total charge to C⇤ during such times
is at most 64

P
t2D µ(t). By definition of dominant,

the capacity µ(t) for each t 2 D is a distinct power
of 2 no larger than t2 � t1 + 1. So

P
t2D µ(t) is at

most 2(t2 � t1 + 1), and the total charge to C⇤ during
uncongested times is O(t2 � t1).

Lemma 2.5. (dominant congested times) The to-

tal charge to S
⇤
at congested times is O(wt(S⇤) log⇤ �).

Proof. Let Z denote the set of congested times. For each
item x 2 S

⇤, let W (x) be the collection of congested
components that contain x and charge S

⇤. The total
charge to S

⇤ at congested times is
P

x2S⇤ |W (x)|wt(x).
To bound this, we use a random experiment that

starts by choosing a random item X in S
⇤, where each

item x has probability proportional to wt(x) of being
chosen: Pr[X = x] = wt(x)/wt(S⇤).

We will show that EX [|W (X)|] is O(log⇤ �). Since
EX [|W (X)|] =

P
x2S⇤ |W (x)|wt(x)/wt(S⇤), this will

imply that the total charge is O(log⇤ �)wt(S⇤), proving
the lemma.

The merge forest for S⇤. Define the followingmerge

forest. There is a leaf {x} for each item x 2 S
⇤. There

is a non-leaf node St for each congested component
St. The parent of each leaf {x} is the first congested
component St that contains x (that is, t = min{i 2 Z :
x 2 Si), if any. The parent of each node St is the next
congested component St0 that contains all items in St

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2j

Roughly,�every�￼ �time�steps� 
it�merges�together�all�sets 

of�weight�￼ �or�less.

2j

2j
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Problem 2:  K-COMPONENT DYNAMIZATION 


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


CONSTRAINT:  ￼    —  at each time ￼, cover size is at most ￼ 


MINIMIZE BUILD COST:  ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

PROBLEM 2

LOWER BOUND

time
input 

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

total:	  2 + (m-1)ε min(2+ε,   1+(m-1)ε)

If�there�were�no�"setup�cost"�

of�1�at�time�1,�ratio�would�be�

￼
alg�cost

OPT�cost
≈ 1 + 1

1 = 2

THM 3.1. Any deterministic 
online  algorithm has 
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

THM 3.1. Any deterministic 
online  algorithm has 
competitive ratio at least k.�

Here�we�give�the�idea�for�k=2.

￼18

Alg�chooses�￼ ,�so�

￼

m ≈ 1/ϵ
alg�cost

OPT�cost
≈ 2 + 1

2 = 3/2



}

time
input 

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

m+1 {1, ε, 0,  …, 0}, {      }

m+2 0 {1, ε, 0,  …, 0}, {      , 0} 0

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

0 {1, ε, 0,  …, 0}, {      , 0, …, 0} 0

0 {1, ε, 0,  …, 0,       , 0, …, 0} 0
⠇

ϵ ϵ ϵ

ϵ

ϵϵ

ϵ

ϵ
1 + ϵ + ϵ

1 + ϵ + ϵ ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

For�this�second�
round�the�ratio�is��

￼ .�

Repeating�drives�
the�total�ratio�
arbitrarily�near�￼ .

2 − O( ϵ)

2

Problem 2:  K-COMPONENT DYNAMIZATION 


INPUT:      ￼    — a sequence of batches (sets of weighted items)


OUTPUT:  ￼  — a sequence of set covers such that 
        the sets in ￼  cover all items inserted up to time ￼ ￼ 


CONSTRAINT:  ￼    —  at each time ￼, cover size is at most ￼ 


MINIMIZE BUILD COST:  ￼

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

THM 3.1. Any deterministic 
online  algorithm has 
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

PROBLEM 2

LOWER BOUND

￼19



for Problem 2, k-Component Dynamization:


THM 3.2. The online algorithm below has competitive ratio ￼ .k

PROBLEM 2

ALGORITHM 1

￼20

at each time ￼ , in response to batch ￼  do:


1. if there are ￼  sets in the cover:


a. increase all sets’ credits continuously until a set ￼  has ￼ 


b. let ￼  be the oldest such set


c. merge ￼  , ￼  , and all sets newer than ￼  into one new set with credit 0


2. else:  add ￼  as a new set, with credit 0


t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It

we�associate�a�"credit"�with�

each�set�in�the�current�cover

The�paper�also�gives�a�second�"recursive�rent-or-buy"�algorithm�with�a�very�different�analysis.



PROBLEM 2

ALGORITHM 1
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 PROOF OUTLINE:


1. let ￼  be the decrease in credit in iteration ￼ 


2. total credit given to sets is ￼ 


3. sets ￼  contribute at most ￼  to algorithm’s cost (as ￼  when merged)


4. remaining sets contribute at most ￼  to algorithm’s cost (as items decrease in "rank")


5. so algorithm’s cost is at most ￼ 


6. charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least ￼

δt t
k∑t δt

St k∑t δt credit[St] ≥ wt(St)
k∑t wt(It)

k∑t wt(It) + δt

∑t wt(It) + δt

for Problem 2, k-Component Dynamization:


THM 3.2. The online algorithm below has competitive ratio ￼ .k

at each time ￼ , in response to batch ￼  do:


1. if there are ￼  sets in the cover:


a. increase all sets’ credits continuously until a set ￼  has ￼ 


b. let ￼  be the oldest such set


c. merge ￼  , ￼  , and all sets newer than ￼  into one new set with credit 0


2. else:  add ￼  as a new set, with credit 0


t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It
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