Competitive Data-Structure Dynamization

— SODA 2021 —

(an 11-minute talk summarizing the conference paper)

Neal E. Young

University of California Riverside

Claire Mathieu
CNRS, Paris

Northeastern University

Rajmmohan Rajaraman Arman Yousefi

Northeastern University Google

— research funded by NSF and Google

TABLE OF CONTENTS

compaction policies for LSM (\Og—S-bYtAc-bU\Yed mevge) Systews
| through the lens of competitive analysis |

MOTIVATION

B-TREES VS. MOORE'S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, O(log* n)-COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

1.

] el [l o,
LN SYARS) 001, eys \
1001 1001 1001 1,000,000

extevrnal-mewovry ovdeved dictionaries: Better than B-tvees?

T.root

1000 1 node, - m-RAM

T 1000 keys dictionary S| 1,000,000
1001 ‘

1000 | | 1000 . 1000 1,002,001 nodes, 1000 | | 1000 1000
1,002,001,000 keys

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x Contract the non-leaf nodes into a single mega-root, held in RAM
is x.n, the number of keys in x. Each 1‘nternal node and leaf contains 1000 keys. This B-tree has and implemented as a RAM-based ordered dictionary.
1001 nodes at depth 1 and over one million leaves at depth 2.

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS But THIS way achieves about 1 disk access per insert or query.
B-tree node degree ~ number of keys that can be fetched from disk in the twice the disk-access time
in 2020 — can fetch thousands of keys in twice the disk access time — node degree should be over 1000
in 2020 — non-leaf nodes take up < 0.1% of the total space
Database servers are typically configured so that RAM size is 1-3% of disk size [31, p. 227] !
Can easily hold all non-leaf nodes in (10% of) RAM, and replace them with in-RAM dictionary.

Doing this achieves about 1 disk access per insertion or query.

Is it possible to get less than one disk access per insertion or query?

..

o

cache S \)
. X5, Xg | — flush — Xs, Xg Compactlon ;_\.XS,X6,X7,X§:;

o o
..................................

.

external-memory dictionaries via LSM = "log-structured merge" [O'Neil et al 1996, and others]
1. INSERTs are cached in RAM, require no disk access
2. periodically flush RAM cache to disk in a single batch
3. maintain on-disk items in immutable sorted files called components
4. each QUERY checks the cache, then if necessary each on-disk component (one disk access per)
5. periodically compact — destroy some components and build new ones from scratch

— use data-structure dynamization algorithm to choose which components to destroy and build

— build cost vs query cost tradeoft

notes:
component builds use high-throughput sequential disk access, not slow random access
b. LSM systems are used today by most companies that need high-throughput big-data storage
c. most academic work assumes uniform batch sizes and uniform INSERT/QUERY rates,

but these assumptions don’t hold in production systems, e.g. Google Bigtable

TABLE OF CONTENTS

compaction policies fov LSM (log-Stvuctuved wevge) Systems
through the lens of competitive analysis |

MOTIVATION

B-TREES VS. MOORE'S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, ®(log* n)-COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., 1

n

— a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that

the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Zl%l

(build cost + query cost)

= 1 SE%I\%Z 1 _‘

ddding 3 new Set § to the cover

szS

weuvs build cost wit(S) =

wit(x)

EXAMPLE

. input
timeg batch cover

query cost build cost

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., 1

n

— a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that

the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Zl%l

(build cost + query cost)

= 1 SE%I\%Z 1 _‘

ddding 3 new Set § to the cover

szS

weuvs build cost wit(S) =

wit(x)

EXAMPLE

. input
timeg batch cover

query cost build cost

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., 1

n

— a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that

the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Zl%l

(build cost + query cost)

= 1 SE%I\%Z 1 _‘

ddding 3 new Set § to the cover

szS

weuvs build cost wit(S) =

wit(x)

EXAMPLE

. input
time | batch | cover query cost build cost
I {a, b}

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., 1

n

— a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that

the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Zl%l

(build cost + query cost)

= 1 SE%I\%Z 1 _‘

ddding 3 new Set § to the cover

szS

weuvs build cost wit(S) =

wit(x)

EXAMPLE

. input
time? batch cover

query cost build cost

! {a by | {a} b}

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., 1

n

— a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that

the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Zl%l

(build cost + query cost)

= 1 SE%I\%Z 1 _‘

ddding 3 new Set § to the cover

szS

weuvs build cost wit(S) =

wit(x)

EXAMPLE

. input
time? batch cover

query cost build cost

1 {a b} | {a} {b} 2

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE

. input
time batch | cover query cost build cost
1 {a b} {a} {b} 2 wt(a) + wt(b)

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE

. input
time batch | cover query cost build cost
1 {a b} {a} {b} 2 wt(a) + wt(b)

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE

. input
time batch | cover query cost build cost
1 {a b} {a} {b} 2 wt(a) + wt(b)
2 {c}

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE

. input
time batch | cover query cost build cost

! {a by {a} Y 2 wt(a) + wi(b)

..

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE
| input |

time batch cover query cost build cost
1 {a b} {a} {b} 2 wt(a) + wt(b)
2 {c} {b} {a, c} 2

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE
| input |

time batch cover query cost build cost
1 {a b} {a} {b} 2 wt(a) + wt(b)
2 {C}{b}{a C } .. 2 W t(a)+Wt(C) ...

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE
| input |

time batch cover query cost build cost
1 {a b} {a} {b} 2 wt(a) + wt(b)
2 {C}{b}{a C } .. 2 W t(a)+Wt(C) ...

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., 1

. — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE

. input
time batch ~ cover query cost build cost
U {a, b} é{a},{b} 2 wi(a) + wi(h)
— {C}{b}{a _____ C } .. 2 W t(a)+Wt(C) ...
.......... 3 {de}

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT:

OUTPUT: €, €, ...

I, I,, ..., I, — asequence of batches (sets of weighted items)

, €, — a sequence of set covers such that

the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z | 6, |
=1 SEC\C,_, '_‘

EXAMPLE
5 input é

(build cost + query cost)

ddding 3 new Set § to the cover
1 vsS build —
incurs build cost wi(S) zxe

p wit(x)

time batch | cover query cost build cost
1 | {a, b} | {a}, {b} 2 wt(a) + wt(b)
2 {C}{b},{ac} .. 2 W t(a)+Wt(C) ...
.......... 3 {de}{b},{ac},{d€}3Wt(d)+Wt(e)

N

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [}, I,, ..., I, — a sequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,
ddding 3 new Set § to the cover

weurs build cost wi(S) = szS wit(x)

EXAMPLE

. input
time | batch | cover query cost build cost
U {a,by | {a}, (b} 2 wt(a) + wt(b)
2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3. {d e} {b},{a c},{d e} 3 wt(d) + wt(e)

‘\t»otal cost: 7 + 2 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)

we c3ll the sets i edch cover components’

Problem 1: MIN-SUM DYNAMIZATION

INPUT: I, L, ..., 1

n

OUTPUT: 6, €, ..., €, — a sequence of set covers such that

— a sequence of batches (sets of weighted items)

=11

the sets in &, cover all items inserted up to time ¢ (USECgtS = | J;

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 S€C€\C,_,

on uniform input (wt(Z,) = 1)
pays query cost @(n?)
pays build cost O(n)

TRIVIAL ALGORITHM 1: insert batch as component

élnputé

tlme' batch . cover query cost build cost
1 {a b} {a, b} 1 wt(a) + wt(b)
2 {C} {a, b}, {c} 2 wt(c)

...

s {dey {abyAchAder 3 wid)+ wile)

total cost: 6 + wt(a) + wt(b) + wt(c) + wt(d) + wt(e)

Problem 1: MIN-SUM DYNAMIZATION

INPUT:

I, I,, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time (Ugeg, S = Ui=1 1))

MINIMIZE COST: Z Z wt(S) + Z |6,| (build cost + query cost)

t=1 SeG\E,_
1 on uniform input (wt(Z,) = 1)

pays query cost O(n)
pays build cost O(n?)

TRIVIAL ALGORITHM 2: use just one component

Einput 5

time batch = cover query cost build cost

I (a, b} ' {a, b} I wi(a)+wi(b)
________ 2{C}{abc}IWt(a)+Wt(b)+Wt(c)
________ 3{de}{ab6de}1Wt(a)+Wt(b)+Wt(c)+Wt(d)+Wt(e)

total cost: 4 + 4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

BINARY TRANSFORM [Bentley, 1979] achieves cost O(n log n) on uniform inputs

in Einputé

time% binary ; batch ; cover similar to classical Binomial Heap:

1 0001 1 I At each time ¢, there is one component
....... 2 OOIOIZI]Ub for each 1 in the binary representation of .
....... 3 0011[311UI213 Each step emulates an increment in binary
40100 - 14 - I]U12UI3UI4+ on uniform input
....... 5 01011511UI2UI3UI415 bays build cost O log)
....... g 0110[6I]UI2UI3UI415U]6 oays query cost O log 1)
7 O 111 17 - []UIZU]SUM ISUI6 [7 total cost Oz log)
....... 8 010018I]U[2U]3U]4U]5U]6U]7U[8
.. optimal for uniform input

9 0101 lo LULULBULUIsUIsUI;U s g

..

..

Problem 2: K-COMPONENT DYNAMIZATION

..., I, — a sequence of batches (sets of weighted items)

INPUT: [}, I,,

OUTPUT: €, 6>, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time 7 (Ugeg, S = U= 1)

CONSTRAINT: |6,| <k — ateach time t, cover size is at most k
n

MINIMIZE BUILD COST: Z Z wit(S)
t=1 SE%I\Cgt_l

sawme 3s befove

10

Problem 2: K-COMPONENT DYNAMIZATION

INPUT:

OUTPUT: €, 6>, ..., €, — a sequence of set covers such that

..., I, — a sequence of batches (sets of weighted items)

1, I,

sawme 3s befove

the sets in @, cover all items inserted up to time 7 (Ugeg, S = U= 1)

CONSTRAINT: |6,| <k — ateach time t, cover size is at most k

n
MINIMIZE BUILD COST: Z Z wit(S)

t=1 SE%I\Cgt_l

K-BINOMIAL TRANSFORM [Bentley & Saxe, 1980] achieves cost ®(kn'*'/X) on uniform inputs

optimal for uniform input

At each time t:

1.

i
Let iy, ..., [, be the kintegers such that 0 < i, < i, < i3 < --- < i, and Z]Ile <J’> =1

Use the cover consisting of k sets, where

- the first set contains the first <Z‘> batches,

- the second set contains the next (:_’11) batches,

- and so on.

11

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: [}, L,, ..., I, — a sequence of batches (sets of weighted items)

n

OUTPUT: €, 6>, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time 7 ([Useg, S = Ul1 1))

Prior results for uniform input, but production LSM-system inputs are online and non-uniform.

Non-uniform inputs can be easier (less costly) than uniform inputs.

COMPETITIVE ANALYSIS

DEFN: An algorithm is online if its cover at each time 7 is independent of 1, |, .. », ..., I, .
DEFN: An algorithm is c-competitive if, for every input, its solution costs at most ¢ times the optimum standa

for that input. The competitive ratio of the algorithm is the minimum such c.

GOAL: online algorithms with smallest possible competitive ratios...

PREVIOUS RESULTS

e For Min-Sum Dynamization, Bentley's Binary Transform yields competitive ratio ®(log n).

e For k-Component Dynamization, the k-Binomial Transform yields competitive ratio @(kn'/¥).

vd

12

TABLE OF CONTENTS

compaction policies for LSM (\03—StVMcturec\ wevge) Systems
through the lens of competitive analysis |

MOTIVATION

B-TREES VS. MOORE'S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, ®(log* n)-COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

13

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: [, L5, ..., [

. — a sequence of batches (sets of weighted items)

OUTPUT: €, 6>, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time 7 ([Useg, S = Ul1 1))

PREVIOUS RESULTS

e For Min-Sum Dynamization, Bentley's Binary Transform yields competitive ratio ®(log n).

® For k-Component Dynamization, the k-Binomial Transform yields competitive ratio O(kn'’).

MAIN RESULTS

® THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ®(log™* n).

® THMS 3.1—3.4. For k-Component Dynamization, there are deterministic online algorithms

with competitive ratio k, and this is best possible for deterministic algorithms.

® EXTENSIONS: the k-Component Dynamization results extend to allow lazy deletions,

updates, item expiration as they occur in LSM systems such as Bigtable (see the paper).

14

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION RESULTS

INPUT: [, L, ..., 1

. — a sequence of batches (sets of weighted items)

OUTPUT: €, 6>, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time 7 ([Useg, S = Ul1 1))

PREVIOUS RESULTS

e For Min-Sum Dynamization, Bentley's Binary Transform yields competitive ratio ®(logn).

* For k-Component Dynamization, the k-Binomial Transform yields competitive ratio O(kn'’).

MAIN RESULTS

® THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio ®(log™ n).

OPEN: constant competitive ratio for Min-Sum Dynamization?

® THMS 3.1—3.4. For k-Component Dynamization, there are deterministic online algorithms
with competitive ratio k, and this is best possible for deterministic algorithms.

OPEN: randomized algorithms for k-Component Dynamization?

® EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,
updates, item expiration as they occur in big-data storage systems (see the paper).

OPEN: same extensions for Min-Sum Dynamization?

See the papev fov wiany wmove open problews,

OPEN PROBLEMS

15

Problem 1: MIN-SUM DYNAMIZATION

INPUT: [, L, ..., 1

. — a sequence of batches (sets of weighted items)

OUTPUT: €, €, ..., €, — a sequence of set covers such that
the sets in @, cover all items inserted up to time # (Jsee S = U=,)

MINIMIZE COST: 2 2 wt(S) + Zl%l (build cost + query cost)
=1 SeC€\C,_,

THM 2.1. The online algorithm below has competitive ratio ®(log™ n).

at each time t < 1,2,...,n do:
1. add current batch [, to the current cover as a single new set
2. let 2/ be the largest power of 2 such that ¢ is an integer multiple of 2/

3. merge all sets S in the cover such that wt(S) < 2/ into one new set

16 | | | | | | | | | | | | | | | | |

Roughly, every 2/ time Steps
it wevgeS togethev 3ll sets
of weight 2J ovr |ess.

e

| | | 1 T T T T T T T 1
1 2 3 4 5 6 7 8 910111213 14151617
t

TABLE OF CONTENTS

compaction policies for LSM (\03-Stmcturec\ W\e\(se) Systews
through the lens of competitive analysis

MOTIVATION

B-TREES VS. MOORE'S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, O(log* n)-COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

17

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: [}, I,

cees 1y

OUTPUT: €{,6,,..., €

n

I, — a sequence of batches (sets of weighted items)

— a sequence of set covers such that

THM 3.1. Any deterministic

the sets in &, cover all items inserted up to time 7 (Uses, S = Uiz 1)) online algorithm has

CONSTRAINT: |6€,| <k — ateach time t, cover size is at most k

n
MINIMIZE BUILD COST: Z Z wt(S)
t=1 Se€\E,_,

Heve we give the 1dead fov k=2,

competitive ratio at least k.

time v:,r;?;;t alg cover alg cost OPT cost?
L M I I I

""" > e (b e | 1xe &

""" s 00 0 {Ih{eO} & | o e

A0 ey e 0 e

mlo0 (1},{¢,0,0,..,00 e | o .

""" m | 0 | {1,60,0,...0,0 1+e | o &
total: 2 + (m-1)e min(2+¢e, 1+(m-1)e)

Alg chooses m =~ 1/¢, so

alg cost 241 3/9

OPT cost 2

\§ theve weve wo "setu? cos-l;“

of (3t tiwe [vatio would be

a\g cost

1+1
OPT cost ~ 1 =2

18

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: [}, L, ..., I, — asequence of batches (sets of weighted items)

OUTPUT: 6,6, ..., €, — a sequence of set covers such that

THM 3.1. Any deterministic

the sets in &, cover all items inserted up to time 7 (Uses, S = Uiz 1)) online algorithm has

CONSTRAINT: |6€,| <k — ateach time t, cover size is at most k

n
MINIMIZE BUILD COST: Z Z wt(S)
t=1 Se€\E,_,

competitive ratio at least k.

Heve we Sketch 3 proo§ fovr k=2

. i input !
time{ weight | alg cover alg cost OPT cost?
Fov this Secownd
vound the vatio 1S
2—0We€)
m+1 \/E {1,¢,0, ,O},{\/E} \/E l++ye+e €+e (\/_)
01 """" 0 """""" O """" \[O """""""""""" \/_ """"""""""""""""" 0 """"""""""""""""""""""" Repedting drives
2 2 87 2 9 9 9 +
Rl R S .0,0 pive 0y oV N L the total vatio
L L e T P avbitvarily weav 2.
0 {1,6,0, ...,0},{V€,0,...,0y e 0 ¢ +e
O {13870’ ,O,\/E,O,. 0} 1+\/E+€ O €+ €

19

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio k.

we associate 3 ‘cvedit’ with

. edch Set W the cuvvent cover

.................... '

a. increase all sets’ credits continuously until a set S has credit[S] > wt(S)
b. let S, be the oldest such set
c. merge [, , S,, and all sets newer than S, into one new set with credit O

2. else: add I, as a new set, with credit O

The Papev 3lSo gives 3 Second ‘recursive vevxt—ov—buy" dlgorithm with 3 very different analysis.

20

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio k.

at each time t « 1,2,...,n, in response to batch [, do:

1. if there are k sets in the cover:

a. increase all sets’ credits continuously until a set S has credit[S] > wt(S)

b. let S, be the oldest such set

c. merge [, S,, and all sets newer than S, into one new set with credit O

2. else: add I, as a new set, with credit O

PROOF OUTLINE:

1. let 6, be the decrease in credit in iteration ¢

total credit given to sets is kztét
sets S, contribute at most kzt o, to algorithm’s cost (as credit[S,] > wt(S,) when merged)

remaining sets contribute at most k », wt(/,) to algorithm’s cost (as items decrease in "rank")

so algorithm’s cost is at most k), wt(l,) + 5,

o A w b

charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least Zt wt(l)) + 6,

2

END

compaction policies fov LSM (log-Stvuctuved wevge) Systems
| through the lens of competitive analysis |

MOTIVATION

B-TREES VS. MOORE'S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, ®(log* n)-COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

QUESTIONS |F TIME PERMITS

22

