Competitive Data-Structure Dynamization

— SODA 2021 —

(an 11-minute talk summarizing the conference paper)

Claire Mathieu CNRS, Paris

Rajmohan Rajaraman Northeastern University

Neal E. Young University of California Riverside Northeastern University

Arman Yousefi _{Google}

— research funded by NSF and Google

compaction policies for LSM (log-structured merge) systems

through the lens of competitive analysis

MOTIVATION

B-TREES VS. MOORE'S LAW

LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION

PROBLEM 2 — K-COMPONENT DYNAMIZATION

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, $\Theta(\log^* n)$ -COMPETITIVE PROBLEM 2 LOWER BOUND PROBLEM 2 ALGORITHMS, K-COMPETITIVE

external-memory ordered dictionaries: Better than B-trees?

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x is x.n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has 1001 nodes at depth 1 and over one million leaves at depth 2.

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS

But THIS way achieves about 1 disk access per insert or query.

- 1. B-tree node degree \approx number of keys that can be fetched from disk in the twice the disk-access time
- 2. in 2020 \rightarrow can fetch *thousands* of keys in twice the disk access time \rightarrow node degree should be over 1000
- 3. in $2020 \rightarrow$ non-leaf nodes take up < 0.1% of the total space
- 4. Database servers are typically configured so that RAM size is 1–3% of disk size [31, p. 227] !
- 5. Can easily hold all non-leaf nodes in (10% of) RAM, and replace them with in-RAM dictionary.
- 6. Doing this achieves about 1 disk access per insertion or query.
- 7. Is it possible to get *less* than one disk access per insertion or query?

MOTIVATION

MOORE'S LAW

B-TREES VS.

external-memory dictionaries via LSM = "log-structured merge" [O'Neil et al 1996, and others]

- 1. INSERTs are cached in RAM, require no disk access
- 2. periodically flush RAM cache to disk in a single batch
- 3. maintain on-disk items in *immutable* sorted files called *components*
- 4. each QUERY checks the cache, then if necessary each on-disk component (one disk access per)
- 5. periodically compact destroy some components and build new ones from scratch
 - use data-structure dynamization algorithm to choose which components to destroy and build
 - build cost vs query cost tradeoff

notes:

- a. component builds use high-throughput sequential disk access, not slow random access
- b. LSM systems are used today by most companies that need high-throughput big-data storage
- c. most academic work assumes uniform batch sizes and uniform INSERT/QUERY rates, but these assumptions don't hold in production systems, e.g. Google Bigtable

TABLE OF CONTENTS

compaction policies for LSM (log-structured merge) systems

through the lens of competitive analysis

MOTIVATION

B-TREES VS. MOORE'S LAW

LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION

PROBLEM 2 — K-COMPONENT DYNAMIZATION

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, $\Theta(\log^* n)$ -COMPETITIVE PROBLEM 2 LOWER BOUND PROBLEM 2 ALGORITHMS, K-COMPETITIVE

we call the sets in each cover "components"

Prok inpu ⁻ outp	PROBLEM 1 EXAMPLE 2					
MINIMIZE COST: $\sum_{t=1}^{n} \sum_{S \in \mathscr{C} \setminus \mathscr{C}_{t-1}} \operatorname{wt}(S) + \sum_{t=1}^{n} \mathscr{C}_{t} \text{(build cost + query cost)}$						
					on uniform ir	put (wt(I_t) = 1)
TRIVIAL ALCORITUM 1. incomt batch as component pays qu					build cost $\Theta(n)$	
time	input batch	cover	query cost	build cost		
1	$\{a,b\}$	$\{a, b\}$	1	wt(a) + wt(b)		
2	{ <i>c</i> }	$\{a, b\}, \{c\}$	2	wt(<i>c</i>)		
3	$\{d, e\}$	$\{a, b\}, \{c\}, \{d, e\}$	3	wt(d) + wt(e)		
		total c	cost: 6 + v	$\operatorname{wt}(a) + \operatorname{wt}(b) + \operatorname{wt}(c) +$	$\operatorname{wt}(d) + \operatorname{wt}(e)$	

Prob INPUT: OUTPU t	INTRO PROBLEM 1 EXAMPLE 3					
TRI	VIAL A	$t=1 S \in \mathscr{C}_t \setminus \mathscr{C}_{t-1}$	t=1 use just o	ne component	on uniform in pays o pays b	put (wt(I_t) = 1) query cost $\Theta(n)$ build cost $\Theta(n^2)$
time	input batch	cover	query cost	build cost		
1	$\{a, b\}$	$\{a, b\}$	1	wt(a)+wt(b)		
2	{ <i>C</i> }	$\{a, b, c\}$	1	wt(a)+wt(b)+wt(c)		
3	$\{d, e\}$	$\{a, b, c, d, e\}$	1	wt(a)+wt(b)+wt(c	wt(d)+wt(e)	
			1 4 4 . 4			(())

total cost: 4 + 4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

time	in binary	input batch	cover	similar to classical Binomial Heap:
1	0001	I_1	I_1	At each time <i>t</i> , there is one component
2	0010	I_2	$I_1 \cup I_2$	for each 1 in the binary representation of t .
3	0011	I3	$I_1 \cup I_2, I_3$	Each step emulates an increment in binary.
4	0100	I4	$I_1 \cup I_2 \cup I_3 \cup I_4$	\longrightarrow on uniform input:
5	0101	I5	$I_1 \cup I_2 \cup I_3 \cup I_4, I_5$	pays build cost $\Theta(n \log n)$
6	0110	I_6	$I_1 \cup I_2 \cup I_3 \cup I_4, I_5 \cup I_6$	pays query cost $\Theta(n \log n)$
7	0111	<i>I</i> 7	$I_1 \cup I_2 \cup I_3 \cup I_4, I_5 \cup I_6,$	total cost $\Theta(n \log n)$
8	0100	I_8	$I_1 \cup I_2 \cup I_3 \cup I_4 \cup I_5 \cup I_6 \cup$	$I_7 \cup I_8$
9	0101	I9	$I_1 \cup I_2 \cup I_3 \cup I_4 \cup I_5 \cup I_6 \cup$	$I_7 \cup I_{8,}$ I_9 optimal for uniform input
10	0110	I10	$I_1 \cup I_2 \cup I_3 \cup I_4 \cup I_5 \cup I_6 \cup$	$I_7 \cup I_{8}$, $I_9 \cup I_{10}$
•		:	:	

BINARY TRANSFORM [Bentley, 1979] achieves cost $O(n \log n)$ on uniform inputs

Problem 2: K-COMPONENT DYNAMIZATIONINTRO
PROBLEM 2INPUT: I_1, I_2, \dots, I_n — a sequence of batches (sets of weighted items)DEFN
K-BIN. TRANSFORMOUTPUT: $\mathscr{C}_1, \mathscr{C}_2, \dots, \mathscr{C}_n$ — a sequence of set covers such that
the sets in \mathscr{C}_t cover all items inserted up to time $t \left(\bigcup_{S \in \mathscr{C}_t} S = \bigcup_{i=1}^t I_i \right)$ Same as beforeCONSTRAINT: $|\mathscr{C}_t| \leq k$ — at each time t, cover size is at most kMINIMIZE BUILD COST: $\sum_{t=1}^n \sum_{S \in \mathscr{C}_t \setminus \mathscr{C}_{t-1}} \operatorname{wt}(S)$

Problem 2: K-COMPONENT DYNAMIZATIONINTRO
PROBLEM 2INPUT: I_1, I_2, \dots, I_n — a sequence of batches (sets of weighted items)DEFN
K-BIN. TRANSFORMOUTPUT: $\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_n$ — a sequence of set covers such that
the sets in \mathcal{C}_t cover all items inserted up to time $t \left(\bigcup_{S \in \mathcal{C}_t} S = \bigcup_{i=1}^t I_i \right)$ Same as beforeCONSTRAINT: $|\mathcal{C}_t| \leq k$ — at each time t, cover size is at most kMINIMIZE BUILD COST: $\sum_{t=1}^n \sum_{S \in \mathcal{C}_t \setminus \mathcal{C}_{t-1}} \operatorname{wt}(S)$

K-BINOMIAL TRANSFORM [Bentley & Saxe, 1980] achieves $cost \Theta(kn^{1+1/k})$ on uniform inputs optimal for uniform input

At each time *t*:

- 1. Let i_1, \ldots, i_k be the k integers such that $0 \le i_1 < i_2 < i_3 < \cdots < i_k$ and $\sum_{j=1}^k \binom{i_j}{j} = t$.
- 2. Use the cover consisting of k sets, where
 - the first set contains the first $\binom{i_k}{k}$ batches,
 - the second set contains the next $\binom{i_{k-1}}{k-1}$ batches,
 - and so on.

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION INPUT: $I_1, I_2, ..., I_n$ — a sequence of batches (sets of weighted items) OUTPUT: $\mathscr{C}_1, \mathscr{C}_2, ..., \mathscr{C}_n$ — a sequence of set covers such that the sets in \mathscr{C}_t cover all items inserted up to time $t \left(\bigcup_{S \in \mathscr{C}_t} S = \bigcup_{i=1}^t I_i \right)$... INTRO MODEL

Prior results for uniform input, but production LSM-system inputs are online and non-uniform.

Non-uniform inputs can be easier (less costly) than uniform inputs.

COMPETITIVE ANALYSIS

DEFN: An algorithm is *online* if its cover at each time t is independent of $I_{t+1}, I_{t+2}, ..., I_n$.

DEFN: An algorithm is *c*-competitive if, for every input, its solution costs at most *c* times the optimum **Standard** for that input. The competitive ratio of the algorithm is the minimum such *c*.

GOAL: online algorithms with smallest possible competitive ratios...

PREVIOUS RESULTS

- For Min-Sum Dynamization, Bentley's Binary Transform yields competitive ratio $\Theta(\log n)$.
- For k-Component Dynamization, the k-Binomial Transform yields competitive ratio $\Theta(kn^{1/k})$.

TABLE OF CONTENTS

compaction policies for LSM (log-structured merge) systems

through the lens of competitive analysis

MOTIVATION

B-TREES VS. MOORE'S LAW

LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION PROBLEM 2 — K-COMPONENT DYNAMIZATION COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, Θ(log* n)-COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: $I_1, I_2, ..., I_n$ — a sequence of batches (sets of weighted items)

OUTPUT: $\mathscr{C}_1, \mathscr{C}_2, \dots, \mathscr{C}_n$ — a sequence of set covers such that the sets in \mathscr{C}_t cover all items inserted up to time $t \left(\bigcup_{S \in \mathscr{C}_t} S = \bigcup_{i=1}^t I_i \right)$

PREVIOUS RESULTS

• • •

- For Min-Sum Dynamization, Bentley's Binary Transform yields competitive ratio $\Theta(\log n)$.
- For k-Component Dynamization, the k-Binomial Transform yields competitive ratio $\Theta(kn^{1/k})$.

MAIN RESULTS

- THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio $\Theta(\log^* n)$.
- **THMS 3.1—3.4.** For k-Component Dynamization, there are deterministic online algorithms with competitive ratio k, and this is best possible for deterministic algorithms.
- **EXTENSIONS**: the *k*-Component Dynamization results extend to allow *lazy deletions*, *updates, item expiration* as they occur in LSM systems such as Bigtable (see the paper).

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: $I_1, I_2, ..., I_n$ — a sequence of batches (sets of weighted items)

OUTPUT: $\mathscr{C}_1, \mathscr{C}_2, \dots, \mathscr{C}_n$ — a sequence of set covers such that the sets in \mathscr{C}_t cover all items inserted up to time $t \left(\bigcup_{S \in \mathscr{C}_t} S = \bigcup_{i=1}^t I_i \right)$

PREVIOUS RESULTS

• • •

- For Min-Sum Dynamization, Bentley's Binary Transform yields competitive ratio $\Theta(\log n)$.
- For k-Component Dynamization, the k-Binomial Transform yields competitive ratio $\Theta(kn^{1/k})$.

MAIN RESULTS

- THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio Θ(log* n).
 OPEN: constant competitive ratio for Min-Sum Dynamization?
- THMS 3.1—3.4. For k-Component Dynamization, there are deterministic online algorithms with competitive ratio k, and this is best possible for deterministic algorithms.
 OPEN: randomized algorithms for k-Component Dynamization?
- EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions, updates, item expiration as they occur in big-data storage systems (see the paper).
 OPEN: same extensions for Min-Sum Dynamization?

See the paper for many more open problems.

RESULTS OPEN PROBLEMS

THM 2.1. The online algorithm below has competitive ratio $\Theta(\log^* n)$.

at each time $t \leftarrow 1, 2, ..., n$ do:

1. add current batch I_t to the current cover as a single new set

- 2. let 2^{j} be the largest power of 2 such that t is an integer multiple of 2^{j}
- 3. merge all sets S in the cover such that $wt(S) \leq 2^{j}$ into one new set

PROBLEM 1

ALGORITHM

TABLE OF CONTENTS

compaction policies for LSM (log-structured merge) systems

through the lens of competitive analysis

MOTIVATION

B-TREES VS. MOORE'S LAW

LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION PROBLEM 2 — K-COMPONENT DYNAMIZATION COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, Θ(log* n)-COMPETITIVE PROBLEM 2 LOWER BOUND PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Problem 2: K-COMPONENT DYNAMIZATION

 $t=1 S \in \mathcal{C}_t \setminus \mathcal{C}_{t-1}$

MINIMIZE BUILD COST: $\sum \sum$

INPUT: $I_1, I_2, ..., I_n$ — a sequence of batches (sets of weighted items) OUTPUT: $\mathscr{C}_1, \mathscr{C}_2, ..., \mathscr{C}_n$ — a sequence of set covers such that the sets in \mathscr{C}_t cover all items inserted up to time $t \left(\bigcup_{S \in \mathscr{C}_t} S = \bigcup_{i=1}^t I_i \right)$ CONSTRAINT: $|\mathscr{C}_t| \leq k$ — at each time t, cover size is at most k

wt(S)

PROBLEM 2 LOWER BOUND

THM 3.1. Any deterministic online algorithm has competitive ratio at least k.

Here we give the idea for k=2.

input alg cover time weight alg cost **OPT cost?** {1} 1 $\{1\}, \{\varepsilon\}$ $1 + \varepsilon$ 2 \mathcal{E} $\{1\}, \{\varepsilon, 0\}$ 0 0 3 Е Е $\{1\}, \{\varepsilon, 0, 0\}$ 0 0 4 : : : $\{1\}, \{\varepsilon, 0, 0, ..., 0\}$ 0 0 *m*-1 Е Е $\{1, \varepsilon, 0, 0, ..., 0, 0\}$ 0 $1 + \varepsilon$ 0 Е m total: $2 + (m-1)\varepsilon$ $\min(2+\varepsilon, 1+(m-1)\varepsilon)$ Alg chooses $m \approx 1/\epsilon$, so If there were no "setup cost" $\frac{\text{alg cost}}{\text{oPt cost}} \approx \frac{2+1}{2} = 3/2$ of 1 at time 1, ratio would be $\frac{\text{alg cost}}{\text{OPT cost}} \approx \frac{1+1}{1} = 2$

Problem 2: K-COMPONENT DYNAMIZATION

 $I_1, I_2, ..., I_n$ — a sequence of batches (sets of weighted items) INPUT: **OUTPUT**: $\mathscr{C}_1, \mathscr{C}_2, \dots, \mathscr{C}_n$ — a sequence of set covers such that the sets in \mathscr{C}_t cover all items inserted up to time $t\left(\bigcup_{S\in\mathscr{C}_t}S=\bigcup_{i=1}^t I_i\right)$

CONSTRAINT: $|\mathscr{C}_t| \leq k$ — at each time *t*, cover size is at most *k*

MINIMIZE BUILD COST: $\sum \quad \sum \quad wt(S)$ $t=1 S \in \mathscr{C}_t \setminus \mathscr{C}_{t-1}$

PROBLEM 2 LOWER BOUND

THM 3.1. Any deterministic online algorithm has competitive ratio at least k.

Here we sketch a proof for k=2.

time	input weight	alg cover	alg cost	OPT cost?	
1	1	{1}	1	1	1
2	Е	$\{1\}, \{\varepsilon\}$	Е	$1 + \varepsilon$	Е
3	0	$\{1\}, \{\varepsilon, 0\}$	Е	0	Е
4	0	$\{1\}, \{\varepsilon, 0, 0\}$	Е	0	Е
0 0 0	•	0 0 0	0 0 0	•	0 0 0
<i>m</i> -1	0	$\{1\}, \{\varepsilon, 0, 0,, 0\}$	Е	0	Е
т	0	$\{1, \varepsilon, 0, 0,, 0, 0\}$	1 + ε	0	Е
<i>m</i> +1	$\sqrt{\epsilon}$	$\{1, \varepsilon, 0,, 0\}, \{\sqrt{\epsilon}\}$	$\sqrt{\epsilon}$	$1 + \sqrt{\epsilon} + \epsilon$	$\sqrt{\epsilon} + \epsilon$
<i>m</i> +2	0	$\{1, \varepsilon, 0,, 0\}, \{\sqrt{\epsilon}, 0\}$	$\sqrt{\epsilon}$	0	$\sqrt{\epsilon} + \epsilon$
:	:	:	:	:	:
	0	$\{1, \varepsilon, 0,, 0\}, \{\sqrt{\epsilon}, 0,, 0\}$	$\sqrt{\epsilon}$	0	$\sqrt{\epsilon} + \epsilon$
	0	$\{1, \varepsilon, 0,, 0, \sqrt{\epsilon}, 0,, 0\}$	$1 + \sqrt{\epsilon} + \epsilon$	0	$\sqrt{\epsilon} + \epsilon$

r this second und the ratio is $2 - O(\sqrt{\epsilon})$. peating drives e total ratio bitrarily near 2.

The paper also gives a second "recursive rent-or-buy" algorithm with a very different analysis.

PROBLEM 2 ALGORITHM 1

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio k.

at each time $t \leftarrow 1, 2, ..., n$, in response to batch I_t do:

- 1. if there are k sets in the cover:
 - a. increase all sets' credits continuously until a set S has credit[S] \geq wt(S)
 - b. let S_t be the oldest such set
 - c. merge I_t , S_t , and all sets newer than S_t into one new set with credit 0
- 2. else: add I_t as a new set, with credit 0

PROOF OUTLINE:

- 1. let δ_t be the decrease in credit in iteration t
- 2. total credit given to sets is $k \sum_{t} \delta_{t}$
- 3. sets S_t contribute at most $k \sum_t \delta_t$ to algorithm's cost (as credit $[S_t] \ge wt(S_t)$ when merged)
- 4. remaining sets contribute at most $k \sum_{t} wt(I_t)$ to algorithm's cost (as items decrease in "rank")
- 5. so algorithm's cost is at most $k \sum_{t} \operatorname{wt}(I_t) + \delta_t$
- 6. charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least $\sum_{t} wt(I_t) + \delta_t$

compaction policies for LSM (log-structured merge) systems

through the lens of competitive analysis

MOTIVATION

B-TREES VS. MOORE'S LAW

LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS

PROBLEM 1 — MIN-SUM DYNAMIZATION

PROBLEM 2 — K-COMPONENT DYNAMIZATION

COMPETITIVE ANALYSIS

RESULTS

PROBLEM 1 ALGORITHM, $\Theta(\log^* n)$ -COMPETITIVE PROBLEM 2 LOWER BOUND PROBLEM 2 ALGORITHMS, K-COMPETITIVE

QUESTIONS, IF TIME PERMITS