
Competitive Data-Structure Dynamization

— SODA 2021 —

(an 11-minute talk summarizing the conference paper)

Claire Mathieu
CNRS, Paris

Neal E. Young
University of California Riverside

Northeastern University

Arman Yousefi
Google

Rajmohan Rajaraman
Northeastern University

— research funded by NSF and Google
 1

 2

MOTIVATION
B-TREES VS. MOORE’S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS
PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS
PROBLEM 1 ALGORITHM, -COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Θ(log* n)

TABLE OF CONTENTS

Compaction�policies�for�LSM�(log-structured�merge)�systems�
through�the�lens�of�competitive�analysis

1. B-tree node degree number of keys that can be fetched from disk in the twice the disk-access time

2. in 2020 can fetch thousands of keys in twice the disk access time node degree should be over 1000

3. in 2020 non-leaf nodes take up < 0.1% of the total space

4. Database servers are typically configured so that RAM size is 1–3% of disk size [31, p. 227] !

5. Can easily hold all non-leaf nodes in (10% of) RAM, and replace them with in-RAM dictionary.

6. Doing this achieves about 1 disk access per insertion or query.

7. Is it possible to get less than one disk access per insertion or query?

≈

→ →

→

As suggested in Figure 18.3 from Introduction to Algorithms by CLRS

488 Chapter 18 B-Trees

1000
1001

1000
1001

1000
1001

1000
1001

100010001000

…
1 node,
 1000 keys
1001 nodes,
 1,001,000 keys

1,002,001 nodes,
 1,002,001,000 keys…

T:root

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x
is x:n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

18.1 Definition of B-trees

To keep things simple, we assume, as we have for binary search trees and red-black
trees, that any “satellite information” associated with a key resides in the same
node as the key. In practice, one might actually store with each key just a pointer to
another disk page containing the satellite information for that key. The pseudocode
in this chapter implicitly assumes that the satellite information associated with a
key, or the pointer to such satellite information, travels with the key whenever the
key is moved from node to node. A common variant on a B-tree, known as a
BC-tree, stores all the satellite information in the leaves and stores only keys and
child pointers in the internal nodes, thus maximizing the branching factor of the
internal nodes.

A B-tree T is a rooted tree (whose root is T:root) having the following proper-
ties:
1. Every node x has the following attributes:

a. x:n, the number of keys currently stored in node x,
b. the x:n keys themselves, x:key1; x:key2; : : : ; x:keyx: n, stored in nondecreas-

ing order, so that x:key1 ! x:key2 ! " " " ! x:keyx: n,
c. x: leaf , a boolean value that is TRUE if x is a leaf and FALSE if x is an internal

node.
2. Each internal node x also contains x:nC 1 pointers x:c1; x:c2; : : : ; x:cx: nC1 to

its children. Leaf nodes have no children, and so their ci attributes are unde-
fined.

1,000,000

1000 1000 1000

1,000,000

…

But THIS way achieves about 1 disk access per insert or query.

Contract the non-leaf nodes into a single mega-root, held in RAM
and implemented as a RAM-based ordered dictionary.

MOTIVATION
B-TREES VS.

MOORE’S LAW

�in-RAM�
dictionary

external-memory�ordered�dictionaries:���Better�than�B-trees?

 3

disk

 4

MOTIVATION
LSM-SYSTEMS
COMPACTION

VIA DATA-STRUCTURE
DYNAMIZATION

external-memory dictionaries via LSM = "log-structured merge" [O’Neil et al 1996, and others]
1. INSERTs are cached in RAM, require no disk access

2. periodically flush RAM cache to disk in a single batch

3. maintain on-disk items in immutable sorted files called components

4. each QUERY checks the cache, then if necessary each on-disk component (one disk access per)

5. periodically compact — destroy some components and build new ones from scratch

— use data-structure dynamization algorithm to choose which components to destroy and build

— build cost vs query cost tradeoff

notes:

a. component builds use high-throughput sequential disk access, not slow random access

b. LSM systems are used today by most companies that need high-throughput big-data storage

c. most academic work assumes uniform batch sizes and uniform INSERT/QUERY rates,

but these assumptions don’t hold in production systems, e.g. Google Bigtable

 x1, x2, x3, x4

 x5, x6
cache
flush

 x7, x8RAM

 x1, x2, x3, x4

 x5, x6

disk x7, x8

RAM

compaction

 x1, x2, x3, x4

disk

 x5, x6, x7, x8

RAM

 5

MOTIVATION
B-TREES VS. MOORE’S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS
PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS
PROBLEM 1 ALGORITHM, -COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Θ(log* n)

TABLE OF CONTENTS

Compaction�policies�for�LSM�(log-structured�merge)�systems�
through�the�lens�of�competitive�analysis

EXAMPLE

time
input
batch cover query cost build cost

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b}

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b}

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c}

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c}

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3 {d, e}

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3 {d, e} {b}, {a, c}, {d, e} 3 wt(d) + wt(e)

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

EXAMPLE

time
input
batch cover query cost build cost

1 {a, b} {a}, {b} 2 wt(a) + wt(b)

2 {c} {b}, {a, c} 2 wt(a) + wt(c)

3 {d, e} {b}, {a, c}, {d, e} 3 wt(d) + wt(e)

total cost: 7 + 2 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)

 6

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

INTRO
PROBLEM 1
EXAMPLE 1

adding�a�new�set�� �to�the�cover��
incurs�build�cost

S
wt(S) = ∑x∈S wt(x)

we�call�the�sets�in�each�cover�"components"

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

 7

TRIVIAL ALGORITHM 1: insert batch as component

time
input
batch cover query cost build cost

1 {a, b} {a, b} 1 wt(a) + wt(b)

2 {c} {a, b}, {c} 2 wt(c)

3 {d, e} {a, b}, {c}, {d, e} 3 wt(d) + wt(e)

total cost: 6 + wt(a) + wt(b) + wt(c) + wt(d) + wt(e)

on uniform input ()
 pays query cost

pays build cost

wt(It) = 1
Θ(n2)
Θ(n)

INTRO
PROBLEM 1
EXAMPLE 2

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

 8

TRIVIAL ALGORITHM 2: use just one component

time
input
batch cover query cost build cost

1 {a, b} {a, b} 1 wt(a)+wt(b)

2 {c} {a, b, c} 1 wt(a)+wt(b)+wt(c)

3 {d, e} {a, b, c, d, e} 1 wt(a)+wt(b)+wt(c)+wt(d)+wt(e)

total cost: 4 + 4wt(a)+4wt(b)+3wt(c)+2wt(d)+2wt(e)+wt(f)

on uniform input ()
 pays query cost

pays build cost

wt(It) = 1
Θ(n)

Θ(n2)

INTRO
PROBLEM 1
EXAMPLE 3

BINARY TRANSFORM [Bentley, 1979] achieves cost O(n log n) on uniform inputs

time
in

binary
input
batch cover

1 0001 I1 I1

2 0010 I2 I1 ∪ I2

3 0011 I3 I1 ∪ I2, I3

4 0100 I4 I1 ∪ I2 ∪ I3 ∪ I4

5 0101 I5 I1 ∪ I2 ∪ I3 ∪ I4, I5

6 0110 I6 I1 ∪ I2 ∪ I3 ∪ I4, I5 ∪ I6

7 0111 I7 I1 ∪ I2 ∪ I3 ∪ I4, I5 ∪ I6, I7

8 0100 I8 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8

9 0101 I9 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8, I9

10 0110 I10 I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I7 ∪ I8, I9 ∪ I10

⠇ ⠇ ⠇

 similar to classical Binomial Heap:

 At each time , there is one component

 for each 1 in the binary representation of .

 Each step emulates an increment in binary.

 on uniform input:

 pays build cost

 pays query cost

 total cost

 optimal for uniform input

t
t

⟶
Θ(n log n)
Θ(n log n)

Θ(n log n)

 9

INTRO
PROBLEM 1

BINARY TRANSFORM

 10

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

CONSTRAINT: — at each time , cover size is at most

MINIMIZE BUILD COST:

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

}same�as�before

INTRO
PROBLEM 2

DEFN
K-BIN. TRANSFORM

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

CONSTRAINT: — at each time , cover size is at most

MINIMIZE BUILD COST:

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

 11

}same�as�before

K-BINOMIAL TRANSFORM [Bentley & Saxe, 1980] achieves cost on uniform inputs

At each time :

1. Let be the integers such that and .

2. Use the cover consisting of sets, where

- the first set contains the first batches,

- the second set contains the next batches,

- and so on.

Θ(kn1+1/k)

t

i1, …, ik k 0 ≤ i1 < i2 < i3 < ⋯ < ik ∑k
j=1 (ij

j) = t

k

(ik
k)

(ik−1

k − 1)

INTRO
PROBLEM 2

DEFN
K-BIN. TRANSFORM

 optimal for uniform input

 12

Prior results for uniform input, but production LSM-system inputs are online and non-uniform.

Non-uniform inputs can be easier (less costly) than uniform inputs.

COMPETITIVE ANALYSIS

DEFN: An algorithm is online if its cover at each time is independent of .

DEFN: An algorithm is -competitive if, for every input, its solution costs at most times the optimum

for that input. The competitive ratio of the algorithm is the minimum such .

GOAL: online algorithms with smallest possible competitive ratios…

PREVIOUS RESULTS

• For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio .

• For k-Component Dynamization, the k-Binomial Transform yields competitive ratio .

t It+1, It+2, …, In

c c
c

Θ(log n)

Θ(kn1/k)

}standard

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

INTRO
MODEL

 13

MOTIVATION
B-TREES VS. MOORE’S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS
PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS
PROBLEM 1 ALGORITHM, -COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Θ(log* n)

TABLE OF CONTENTS

Compaction�policies�for�LSM�(log-structured�merge)�systems�
through�the�lens�of�competitive�analysis

 14

PREVIOUS RESULTS

• For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio .

• For k-Component Dynamization, the k-Binomial Transform yields competitive ratio .

MAIN RESULTS

• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio .

OPEN: constant competitive ratio?

• THMS 3.1—3.4. For k-Component Dynamization, there are deterministic online algorithms

with competitive ratio k, and this is best possible for deterministic algorithms.

OPEN: randomized algorithms?

• EXTENSIONS: the k-Component Dynamization results extend to allow lazy deletions,

updates, item expiration as they occur in LSM systems such as Bigtable (see the paper).

OPEN: same extensions for Min-Sum Dynamization?

Θ(log n)

Θ(kn1/k)

Θ(log* n)

RESULTSMIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

 15

PREVIOUS RESULTS

• For Min-Sum Dynamization, Bentley’s Binary Transform yields competitive ratio .

• For k-Component Dynamization, the k-Binomial Transform yields competitive ratio .

MAIN RESULTS

• THM 2.1. Min-Sum Dynamization has an online algorithm with competitive ratio .

OPEN: constant competitive ratio for Min-Sum Dynamization?

• THMS 3.1—3.4. For k-Component Dynamization, there are deterministic online algorithms

with competitive ratio k, and this is best possible for deterministic algorithms.

OPEN: randomized algorithms for k-Component Dynamization?

• EXTENSIONS: the results on k-Component Dynamization extend to allow lazy deletions,

updates, item expiration as they occur in big-data storage systems (see the paper).

OPEN: same extensions for Min-Sum Dynamization?

Θ(log n)

Θ(kn1/k)

Θ(log* n)

RESULTS
OPEN PROBLEMS

See�the�paper�for�many�more�open�problems.

MIN-SUM DYNAMIZATION, K-COMPONENT DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

…

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

Problem 1: MIN-SUM DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

MINIMIZE COST: (build cost + query cost)

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S) +
n

∑
t=1

|𝒞t |

 16

THM 2.1. The online algorithm below has competitive ratio .

Θ(log* n)

at each time do:

1. add current batch to the current cover as a single new set

2. let be the largest power of 2 such that is an integer multiple of

3. merge all sets in the cover such that into one new set

t ← 1,2,…, n
It

2j t 2j

S wt(S) ≤ 2j

PROBLEM 1
ALGORITHM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

4

8

16

t

µ
(t
)

Figure 7: The capacities µ(t) as a function of t.

Fix any such S
⇤. Let [t1, t2] be the interval of S⇤ in

C⇤. That is, C⇤ adds S⇤ to its cover at time t1, where it
remains through time t2, so its contribution to OPT is
t2 � t1 + 1 + wt(S⇤). At each (integer) time t 2 [t1, t2],
component S⇤ is charged wt(S⇤\St). To finish, we showPt2

t=t1
wt(S⇤ \ St) = O(t2 � t1 + log⇤(�)wt(S⇤)).

By Observation 2.2, there can be at most one time
t
0 2 [t1, t2] with capacity µ(t0) > t2 � t1 + 1. If there is
such a time t0, the charge received then, i.e. wt(S⇤\St0),
is at most wt(S⇤). To finish, we bound the charges at
the times t 2 [t1, t2] \ {t0}, with µ(t) t2 � t1 + 1.

Definition 2.1. (dominant) Classify each such time

t and C’s component St as dominant if the capacity µ(t)
strictly exceeds the capacity µ(i) of every earlier time

i 2 [t1, t � 1] (µ(t) > maxt�1
i=t1

µ(i)) in S
⇤
’s interval

[t1, t2]. Otherwise t and St are non-dominant.

Lemma 2.3. (non-dominant times) The net charge

to S
⇤
at non-dominant times is at most t2 � t1.

Proof. Let ⌧1 be any dominant time. Let ⌧2 > ⌧1 be
the next larger dominant time step, if any, else t2 + 1.
Consider the charge to S

⇤ during the open interval
(⌧1, ⌧2). We show that this charge is at most ⌧2� ⌧1�1.

Component S⇤ is built at time t1 ⌧1, so S
⇤ ✓ I

⇤
⌧1 .

At time ⌧1, every item x that can charge S
⇤ (that

is, x 2 S
⇤) is in some component S in C⌧1 . By the

definition of dominant, each time in t 2 (⌧1, ⌧2) has
capacity µ(t) µ(⌧1), so the components S in C⌧1
that have weight wt(S) > µ(⌧1) remain unchanged in C
throughout (⌧1, ⌧2), and the items in them do not charge
S
⇤ during (⌧1, ⌧2). So we need only consider items in

components S in C⌧1 with wt(S) µ(⌧1). Assume there
are such components. By inspection of the algorithm,
there can only be one: the component S⌧1 built at time
⌧1. All charges in (⌧1, ⌧2) come from items x 2 S⌧1 \S

⇤.
Let ⌧1 = t

0
1 < t

0
2 < · · · < t

0
` be the times in [⌧1, ⌧2)

when these items are put in a new component. These

are the times in (⌧1, ⌧2) when S
⇤ is charged, and, at

each, the charge is wt(S⇤ \ S⌧1) wt(S⌧1), so the total
charge to S

⇤ during (⌧1, ⌧2) is at most (`� 1)wt(S⌧1).
At each time t

0
i with i � 2 the previous component

St0i�1
, of weight at least wt(S⌧1), is merged. So each time

t
0
i has capacity µ(t0i) � wt(S⌧1). By Observation 2.2, the
di↵erence between each time t

0
i and the next t

0
i+1 is at

least wt(S⌧1). So (`� 1)wt(S⌧1) t
0
` � t

0
1 ⌧2 � ⌧1 � 1.

By the two previous paragraphs the charge to S
⇤

during (⌧1, ⌧2) is at most ⌧2� ⌧1� 1. Summing over the
dominant times ⌧1 in [t1, t2] proves the lemma.

Let D be the set of dominant times. For the rest of
the proof the only times we consider are those in D.

Definition 2.2. (congestion) For any time t 2 D

and component St, define the congestion of t and St to

be wt(St \ S
⇤)/µ(t), the amount St charges S

⇤
, divided

by the capacity µ(t). Call t and St congested if this

congestion exceeds 64, and uncongested otherwise.

Lemma 2.4. (dominant uncongested times) The

total charge to S
⇤
at uncongested times is O(t2 � t1).

Proof. The charge to S
⇤ at any uncongested time t is at

most 64µ(t), so the total charge to C⇤ during such times
is at most 64

P
t2D µ(t). By definition of dominant,

the capacity µ(t) for each t 2 D is a distinct power
of 2 no larger than t2 � t1 + 1. So

P
t2D µ(t) is at

most 2(t2 � t1 + 1), and the total charge to C⇤ during
uncongested times is O(t2 � t1).

Lemma 2.5. (dominant congested times) The to-

tal charge to S
⇤
at congested times is O(wt(S⇤) log⇤ �).

Proof. Let Z denote the set of congested times. For each
item x 2 S

⇤, let W (x) be the collection of congested
components that contain x and charge S

⇤. The total
charge to S

⇤ at congested times is
P

x2S⇤ |W (x)|wt(x).
To bound this, we use a random experiment that

starts by choosing a random item X in S
⇤, where each

item x has probability proportional to wt(x) of being
chosen: Pr[X = x] = wt(x)/wt(S⇤).

We will show that EX [|W (X)|] is O(log⇤ �). Since
EX [|W (X)|] =

P
x2S⇤ |W (x)|wt(x)/wt(S⇤), this will

imply that the total charge is O(log⇤ �)wt(S⇤), proving
the lemma.

The merge forest for S⇤. Define the followingmerge

forest. There is a leaf {x} for each item x 2 S
⇤. There

is a non-leaf node St for each congested component
St. The parent of each leaf {x} is the first congested
component St that contains x (that is, t = min{i 2 Z :
x 2 Si), if any. The parent of each node St is the next
congested component St0 that contains all items in St

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2j

Roughly,�every�� �time�steps��
it�merges�together�all�sets�

of�weight�� �or�less.

2j

2j

 17

MOTIVATION
B-TREES VS. MOORE’S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS
PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS
PROBLEM 1 ALGORITHM, -COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Θ(log* n)

TABLE OF CONTENTS

Compaction�policies�for�LSM�(log-structured�merge)�systems�
through�the�lens�of�competitive�analysis

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

CONSTRAINT: — at each time , cover size is at most

MINIMIZE BUILD COST:

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

PROBLEM 2
LOWER BOUND

time
input

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

total: 2 + (m-1)ε min(2+ε, 1+(m-1)ε)

If�there�were�no�"setup�cost"�

of�1�at�time�1,�ratio�would�be�

�
alg�cost

OPT�cost
≈ 1 + 1

1 = 2

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�give�the�idea�for�k=2.

 18

Alg�chooses�� ,�so�

�

m ≈ 1/ϵ
alg�cost

OPT�cost
≈ 2 + 1

2 = 3/2

}

time
input

weight alg cover alg cost OPT cost?
1 1 {1} 1 1 1

2 ε {1}, {ε} ε 1 + ε ε

3 0 {1}, {ε, 0} ε 0 ε

4 0 {1}, {ε, 0, 0} ε 0 ε

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

m-1 0 {1}, {ε, 0, 0, …, 0} ε 0 ε

m 0 {1, ε, 0, 0, …, 0, 0} 1 + ε 0 ε

m+1 {1, ε, 0, …, 0}, { }

m+2 0 {1, ε, 0, …, 0}, { , 0} 0

⠇ ⠇ ⠇ ⠇ ⠇ ⠇

0 {1, ε, 0, …, 0}, { , 0, …, 0} 0

0 {1, ε, 0, …, 0, , 0, …, 0} 0
⠇

ϵ ϵ ϵ

ϵ

ϵϵ

ϵ

ϵ
1 + ϵ + ϵ

1 + ϵ + ϵ ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

ϵ + ϵ

For�this�second�
round�the�ratio�is��

� .�

Repeating�drives�
the�total�ratio�
arbitrarily�near�� .

2 − O(ϵ)

2

Problem 2: K-COMPONENT DYNAMIZATION

INPUT: — a sequence of batches (sets of weighted items)

OUTPUT: — a sequence of set covers such that
 the sets in cover all items inserted up to time

CONSTRAINT: — at each time , cover size is at most

MINIMIZE BUILD COST:

I1, I2, …, In

𝒞1, 𝒞2, …, 𝒞n
𝒞t t (⋃S∈𝒞t

S = ⋃t
i=1 Ii)

|𝒞t | ≤ k t k
n

∑
t=1

∑
S∈𝒞t∖𝒞t−1

wt(S)

THM 3.1. Any deterministic
online algorithm has
competitive ratio at least k.�

Here�we�sketch�a�proof�for�k=2.

PROBLEM 2
LOWER BOUND

 19

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio .k

PROBLEM 2
ALGORITHM 1

 20

at each time , in response to batch do:

1. if there are sets in the cover:

a. increase all sets’ credits continuously until a set has

b. let be the oldest such set

c. merge , , and all sets newer than into one new set with credit 0

2. else: add as a new set, with credit 0

t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It

we�associate�a�"credit"�with�

each�set�in�the�current�cover

The�paper�also�gives�a�second�"recursive�rent-or-buy"�algorithm�with�a�very�different�analysis.

PROBLEM 2
ALGORITHM 1

 21

 PROOF OUTLINE:

1. let be the decrease in credit in iteration

2. total credit given to sets is

3. sets contribute at most to algorithm’s cost (as when merged)

4. remaining sets contribute at most to algorithm’s cost (as items decrease in "rank")

5. so algorithm’s cost is at most

6. charge credit to OPT (via implicit LP-dual soln) to show OPT cost is at least

δt t
k∑t δt

St k∑t δt credit[St] ≥ wt(St)
k∑t wt(It)

k∑t wt(It) + δt

∑t wt(It) + δt

for Problem 2, k-Component Dynamization:

THM 3.2. The online algorithm below has competitive ratio .k

at each time , in response to batch do:

1. if there are sets in the cover:

a. increase all sets’ credits continuously until a set has

b. let be the oldest such set

c. merge , , and all sets newer than into one new set with credit 0

2. else: add as a new set, with credit 0

t ← 1,2,…, n It

k
S credit[S] ≥ wt(S)

St

It St St

It

 22

MOTIVATION
B-TREES VS. MOORE’S LAW
LSM-SYSTEM COMPACTION VIA DATA-STRUCTURE DYNAMIZATION

DEFINITIONS
PROBLEM 1 — MIN-SUM DYNAMIZATION
PROBLEM 2 — K-COMPONENT DYNAMIZATION
COMPETITIVE ANALYSIS

RESULTS
PROBLEM 1 ALGORITHM, -COMPETITIVE
PROBLEM 2 LOWER BOUND
PROBLEM 2 ALGORITHMS, K-COMPETITIVE

Θ(log* n)

END

Compaction�policies�for�LSM�(log-structured�merge)�systems�
through�the�lens�of�competitive�analysis

QUESTIONS,�IF�TIME�PERMITS

