
Distributed Fractional

Packing and Maximum

Weighted b-Matching via

Tail-Recursive Duality

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

Fractional Packing

 

1

1

 max

subject to: 1

m

j j

j

m

ij j i

j

m

w x

A x b i n

x







  







Let δ be the maximum number of constraints

in which a variable appears.

Maximum Weighted b-Matching

 
()

| |

 max

subject to:

e e

e E

e u

e E u

E

w x

x b u V

x







  







Let δ be the maximum number of constraints

in which a variable appears, so δ is the

hyperedge degree (δ=2 for graphs).

Hypergraph with

edge weights w,

vertex capacities b.

Distributed Computation

•The problem instance is represented by a

graph where edges are packing variables

and nodes are packing constraints.

• Computation takes place in rounds.

• In each round:

• Each node exchanges O(1) messages

with immediate neighbors,

• then does some computation.

•goal: Finish in a poly-log number of rounds.

Related Work

Problem Approx.

ratio
Running time Where

Max Weighted

Matching on

Graphs

2+ε O(log(ε-1) log n) Lotker et al. 2008

1+ε O(ε-4 log2 n) Lotker et al. 2008

1+ε O(ε-2 +ε-1 log(ε-1n) log n) Nieberg 2008

2 O(log2 n) (ε =1)

2 O(log n) This work

Related Work

Problem Approx.

ratio
Running time Where

Max Weighted

Matching on

Graphs

2+ε O(log(ε-1) log n) Lotker et al. 2008

1+ε O(ε-4 log2 n) Lotker et al. 2008

1+ε O(ε-2 +ε-1 log(ε-1n) log n) Nieberg 2008

2 O(log2 n) (ε =1)

2 O(log n) This work

Max Weighted

Matching on

Hypergraphs

O(δ) (>δ) O(log m) Kuhn et al. 2006

δ O(log2 m) This work

Related Work

Problem Approx.

ratio
Running time Where

Max Weighted

Matching on

Graphs

2+ε O(log(ε-1) log n) Lotker et al. 2008

1+ε O(ε-4 log2 n) Lotker et al. 2008

1+ε O(ε-2 +ε-1 log(ε-1n) log n) Nieberg 2008

2 O(log2 n) (ε =1)

2 O(log n) This work

Max Weighted

Matching on

Hypergraphs

O(δ) (>δ) O(log m) Kuhn et al. 2006

δ O(log2 m) This work

Fractional Packing

δ = 2

O(1) (>2) O(log m) Kuhn et al. 2006

2 O(log m) This work

Related Work

Problem Approx.

ratio
Running time Where

Max Weighted

Matching on

Graphs

2+ε O(log(ε-1) log n) Lotker et al. 2008

1+ε O(ε-4 log2 n) Lotker et al. 2008

1+ε O(ε-2 +ε-1 log(ε-1n) log n) Nieberg 2008

2 O(log2 n) (ε =1)

2 O(log n) This work

Max Weighted

Matching on

Hypergraphs

O(δ) (>δ) O(log m) Kuhn et al. 2006

δ O(log2 m) This work

Fractional Packing

δ = 2

O(1) (>2) O(log m) Kuhn et al. 2006

2 O(log m) This work

Fractional Packing

general δ

O(1) >12 O(log m) Kuhn et al. 2006

δ O(log2 m) This work

Primal-Dual

δ-approximation algorithm

 

1

1

max

subject to:

 1

m

j j

j

m

ij j i

j

m

w x

A x b i n

x







  





  

1

1

min

subject to:

 1

n

i i

i

n

ij i j

i

n

b y

A y w j m

y







  







Packing Covering

‣Compute a solution for the dual Covering Problem.

‣Use the dual solution to compute a solution for the

primal Packing Problem.

δ-approximation for Covering

 

1

1
 cost to reduce slack by 1 using
 the cheapest variable

OPT cost to satisfy

1. Let 0.

2. While such that do:

3. Let min /

n

ij i j

i

n

j ij i i i ij

i

slack

y

j A y w

w A y b A







 

 
   
 





the constraint given the current solution y

4. Raise each (with 0) by .

5. Return .

i ij iy A b

y



 

1

1

min

subject to:

 1

n

i i

i

n

ij i j

i

n

b y

A y w j m

y







  







Primal-Dual Attempt

1

1. Let , 0.

2. While such that do:

3. Do a "step" to satisfy this covering constraint.

4. Raise maximally without violating any packing constraint.

5. Return , .

n

ij i j

i

j

x y

j A y w

x

x y





 

 

1

1

min

subject to:

 1

n

i i

i

n

ij i j

i

n

b y

A y w j m

y







  





 

1

1

max

subject to:

 1

m

j j

j

m

ij j i

j

m

w x

A x b i n

x







  







Primal-Dual Attempt

1

1. Let , 0.

2. While such that do:

3. Do a "step" to satisfy this covering constraint.

4. Raise maximally without violating any packing constraint.

5. Return , .

n

ij i j

i

j

x y

j A y w

x

x y





 

 

1

1

min

subject to:

 1

n

i i

i

n

ij i j

i

n

b y

A y w j m

y







  





 

1

1

max

subject to:

 1

m

j j

j

m

ij j i

j

m

w x

A x b i n

x







  







Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Not 2-approximate

Primal-Dual Algorithm

1

1. Let , 0.

2. While such that do:

3. Do a "step" to satisfy this covering constraint..

4. For each for which a step was done (line 2) in reverse order do:

5. Raise

n

ij i j

i

x y

j A y w

j





 

 maximally without violating any packing constraint.

6. Return , .

jx

x y

 

1

1

min

subject to:

 1

n

i i

i

n

ij i j

i

n

b y

A y w j m

y







  





 

1

1

max

subject to:

 1

m

j j

j

m

ij j i

j

m

w x

A x b i n

x







  







Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Note δ = 2

Recap of the algorithm

• Perform steps to satisfy covering

constraints record the partial order

of the covering constraints for which the

algorithm performed a step.

• Consider the corresponding packing

variables in a valid reverse order, and

raising them maximally.

Partial order

The order in which steps to satisfy covering

constraints does not matter for covering

constraints that do no share a variable.

Since the order is partial, there might be more than

one valid reverse orders. Any one of them works!

Max Weighted b-matching

• Raise xj maximally

• If and then

1

min
m

j i i ij j

j

x b A x


 
  

 


0 /1ijA  ib  jx 

 
()

| |

 max

subject to:

e e

e E

e u

e E u

E

w x

x b u V

x







  







Distributed Computation

•Compute solution for the covering problem

[KY 2009].

•Start computing solution for the packing

(matching) problem as soon as possible.

(an edge can compute its packing variable as

long as all of its adjacent edges are covered and

they are not waiting for their adjacent edges)

•Distributed covering:

2

2 3

4

6

3

2

11

5

1

3

3

17

5

1

1

2
0

10

4

11
2

13

7
5

76

410

9

•Distributed covering:

1. Create stars, where the roots have weight greater
than or equal to the weight of leaves.

4

11
2

7
6

10

9

5 5

6

1

11

2 3

4

3

4

11
2

7
6

10

9

5 5

6

1

11

2 3

4

3

1 10y 

2 4y 

round 1, step 1

4 6y 

6 11y 

7 11 5y 

5 3y 

•Distributed covering:

1. Create stars, where the roots have weight greater than
or equal to the weight of leaves.

2. Roots perform steps to cover edges to leafs that
selected them.

4

11
2

7
6

10

9

5 5

6

1

11

2 3

4

3

1 10y 

2 4y 

round 1, step 2

4 6y 

6 11y 

7 11 5y 

5 7y 

8 0y 

9 0y 

10 6y 

•Distributed covering:

1. Create stars, where the roots have weight greater than
or equal to the weight of leaves.

2. Roots perform steps to cover edges to leafs that
selected them.

•Distributed covering:

1. Create stars, where the roots have weight greater than
or equal to the weight of leaves.

2. Roots perform steps to cover edges to leafs that
selected them.

4

11
2

7
6

10

9

5 5

6

1

11

2 3

4

3

1 10y 

2 4y 

round 1, step 3

4 6y 

6 11y 

7 11 5y 

5 7y 

8 0y 

9 0y 

10 6y 
11 0y 

•Distributed packing:

1. For each edge record “when” a covering step was
performed.

no step

round 1, step 1
no step

no stepround 1, step 1

ro
un

d
1,

 s
te

p
1 ro

un
d

1,
 s
te

p
2

5 5

6

1

11

2 3

4

3

•Distributed packing:

1. For each edge record “when” a covering step was
performed.

2. If an edge is covered but no step was performed for
it, set its packing variable to 0.

no step

round 1, step 1
no step

no stepround 1, step 1

ro
un

d
1,

 s
te

p
1 ro

un
d

1,
 s
te

p
2

5 5

6

1

11

2 3

4

3

3 0x 

1 0x 

2 0x 

•Distributed packing:

1. For each edge record “when” a covering step was
performed.

2. If an edge is covered but no step was performed for it,
set its packing variable to 0.

3. If edge e and all of its adjacent edges are covered:

a) wait until all adjacent edges that were covered
later have set their packing variables.

b) raise xe maximally w/out violating any constraint.

round 4, step 3

n
o
 s

te
p

no step

round 4, step 5

ro
u
n
d
 8

,
st

e
p
 3

no step

round 5, step 3 ro
un

d
2,

 s
te

p
1

•Distributed packing:

1. For each edge record “when” a covering step was
performed.

2. If an edge is covered but no step was performed for it,
set its packing variable to 0.

3. If edge e and all of its adjacent edges are covered:

a) wait until all adjacent edges that were covered
later have set their packing variables.

b) raise xe maximally w/out violating any constraint.

round 4, step 3

n
o
 s

te
p

no step

round 4, step 5

ro
u
n
d
 8

,
st

e
p
 3

no step

round 5, step 3 ro
un

d
2,

 s
te

p
1Done?

Done?

Done?

Edge under

consideration

Analysis

• Guaranteed to return a 2-approximate

solution, since it implements the sequential

algorithm.

• What about running time?

• Goal: Show O(log n) rounds (w.h.p.).

Analysis of number of rounds

• lemma: If the distributed covering algorithm finishes in T

rounds, then the distributed packing algorithm finishes in

at most 2T rounds.

• proof: (next)

corollary: Since T = O(log n), the distributed packing algorithm

finishes in O(log n) rounds.

Analysis of number of rounds

• Edges covered at the same round by the same root node

can all set their packing variables in a single round as long

as neither of them is waiting for any adjacent edge.

• Edges covered at round T (last round of covering algorithm)

can immediately raise their packing variables (at round T).

• Then, edges covered at round T-1, can set their packing

variables in round T+1.

• Edges covered at round T-t, can set their packing variables

at round T+t…

• Using induction on t = 1,2,.., at most T more rounds are

necessary to construct the packing solution.

Open problems

• (1+ε)-approximation in Oε(log n)

rounds?

• Deterministic algorithm?

thank you

