Distributed Fractional
Packing and Maximum
Welighted b-Matching via
Taill-Recursive Duality

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

Fractional Packing

m
max ijxj
i1

subject to: ZAX <b (Vi=1l...n)

m
XelR,

Let 0 be the maximum number of constraints
INn which a variable appears.

Maximum Weighted b-Matching

max » WX,

eck

Hypergraph with
edge weights w, _
vertex capacities b. | subject to: D, % <b (VueV)

Let 0 be the maximum number of constraints
In which a variable appears, so o Is the
hyperedge degree (0=2 for graphs).

Distributed Computation

® The problem instance is represented by a
graph where edges are packing variables
and nodes are packing constraints.

® Computation takes place in rounds.
® In each round:

® Each node exchanges O(1) messages
with immediate neighbors,

® then does some computation.

®goal: Finish in a poly-log number of rounds.

Related Work

ratio

2+€ O(log(e?) log n) Lotker et al. 2008
Max Weighted 1+¢ O(e4log? n) Lotker et al. 2008
Matching on 1+¢ O(g? +et log(ein) log n) | Nieberg 2008
Graphs 2 O(log?) I (e=1)
2 O(log n) This work

Related Work

ratio

2+€ O(log(e?) log n) Lotker et al. 2008
Max Weighted 1+¢ O(e4log? n) Lotker et al. 2008
Matching on 1+¢ O(g? +et log(ein) log n) [Nieberg 2008
Graphs 2 O(log?) I (e=1)

2 O(log n) This work
Max Weighted O@©) (>0) O(log m) Kuhn et al. 2006
Matching on _
Hypergraphs 0 O(log® m) This work

Related Work

ratio

2+€ O(log(e?) log n) Lotker et al. 2008
Max Weighted 1+¢ O(e4log? n) Lotker et al. 2008
Matching on 1+¢ O(g? +et log(ein) log n) [Nieberg 2008
Graphs 2 O(log? n) I (e =1)

2 O(log n) This work
Max Weighted O@©) (>0) O(log m) Kuhn et al. 2006
Matching on ,
Hypergraphs 0 O(log? m) This work
Fractional Packing | O(1) (>2) O(log m) Kuhn et al. 2006
0=2 2 O(log m) This work

Related Work

ratio

2+€ O(log(e?) log n) Lotker et al. 2008
Max Weighted 1+¢ O(e4 log? n) Lotker et al. 2008
Matching on 1+¢ O(g? +et log(ein) log n) [Nieberg 2008
Graphs 2 O(log? n) I (e =1)

2 O(log Nn) This work
Max Weighted O@©) (>0) O(log m) Kuhn et al. 2006
Matching on ,
Hypergraphs 0 O(log? m) This work
Fractional Packing | O(1) (>2) O(log m) Kuhn et al. 2006
0=2 2 O(log m) This work
Fractional Packing|©(1) >12 O(log m) Kuhn et al. 2006
general 0 S O(log2 m) This work

Primal-Dual
o-approximation algorithm

Packing Covering
max Zm:Wij min Zn:biyi
=1 i—1
subje(:tJ to: subject to:
iijjsbi (Vi=1...n) gAjyizwj (Vj=1...m)
JxleRT yeR"

» Compute a solution for the dual Covering Problem.

» Use the dual solution to compute a solution for the
primal Packing Problem.

o-approximation for Covering

1. Lety « 0.

2. While 3 j such that » Ay, <w, do:
=1

3 Letﬁ:(Wj—Zn:Aﬁyij. min, (b, / A,)

\

~ - cost to reduce slack by 1 using
slack the cheapest variable

OPT cost to satisfy the constraint given the current solution y

4, Raise each y; (with A, = 0) by g/b;.
5. Returnyy.

min Zn:bi Y.
=1

subject to:
Z;A‘iy‘ >w;, (Vj=1...m)

yeR]

Primal-Dual Attempt

1. Let X,y « 0.
2. While 3 j such that » Ay, <w, do:
3. Do a "step" to satisfy this covering constraint
4, Raise x; maximally without violating any packing constraint.
5. Return x, .
max » WX, min) by,
j=1 =1
subject to: subject to:
> AX; <b (Vi=1..n) DAY zw, (Vj=1...m)
j=1 =1
XxeR" yeR’

Primal-Dual Attempt

1. LetXx,y <%
2. While 3 j such that ZA y; <w; do:

3. Do a "step” to sa sfy this covering.eonstraint.
4, Raise x; maximally without viglating any packing constraint.

5. Return x, .

max Zmlexj min Zi '
=1

j=1
subject to: subject to:

Ax <b (Vi=1..n) Zn:AjinWj (':1...m)

XERT yeR’

. max X, + 3x;

_ min ¥, + ¥, +¥;
Note 0 = 2 topty 2 st x,+x, <1

1
>5 x, <1

= () X, < 1

= —

pu

X3.%;3 2 0

Note 0 = 2

choose ¥, +y, =1
step w+=L nt
primal cost += 2

1

max X, +3x;
st x,+x;=1
X, <1
x; =1

X2: %5 2 0

raise X, maximally

X, =1

Y

Note 0 = 2

stoy+y, 21
-L'Il + l:'l 2 5
MYy ¥y 2

choose ¥, +y, =1

step w+=1L y,+=1

primal cost += 2

max X, + 3x;
st x,+x;=1
X, <1
x; =1

X3:%;3 2 0

raise X, maximally

X, =1

Y

min

I
st y+y,=-1
I

max -x, +4x;

st g, +x; =1

Note 0 = 2

max X, + 3x;

sty +y 21 s.tox,+x, =1
Mty =3 X, =1
Y:¥3.¥3 20 X, <1
X35 %3 2 0
choose 3+, =1
step w+=1 »+=1 raise x;, maximally
primal cost += 2 v | X, =1
min ¥, + ¥, + ¥, max <, + 4%,
st nty,z-1 st g, +x; =1
wty;z4
choose ¥ +1; =4
step y+=4, y.+=4 raise x;maximally
primal cost += 8 ' ' (it remains ()

Note 0 = 2

stoy+y, 21
-L'Il + l:'l 2 5
MYy ¥y 2

choose ¥, +y, =1

step w+=1L y,+=1

primal cost += 2

max x, +5x;
st x,+x;=1
X, <1
x; =1

X3:%;3 2 0

raise X, maximally

X, =1

Y

min

I
st y+y,=-1
I

max -x, +4x;

st g, +x; =1

raise x;maximally

(it remains ()

\J

max -3x, —4x;

st g, +x, =1

Note 0 = 2

max X, + 3x;

st ¥+, =1 s.t. x,+x;=1
Wty 25 X, =1
L U 6, =1
X35 %3 2 0
choose 3+, =1
step y+=L y,+=1 raise X, maximally
primal cost += 2 v | X, =1
min ¥, + ¥, + ¥, max <, + 4%,
st nty,z-1 st g, +x; =1
ity 24
choose ¥ +1; =4
step y+=4, y.+=4 raise x;maximally
primal cost += 8 ' ' (it remains ()

max -3x, —4x;

st g, +x, =1

Final primal scolution:
=4

L
Fd

n =1,
primal cost = 10

e

iy

M=

Final dual solution:
X, =125 =0
dual cost =1

max X, + 3x;

min ¥, + ¥, +¥;
Note 0 = 2

sty +y =1 st x,tx;=
Mty =3 X, £1
¥.¥p. ¥ 20 x; =1
X3, %3 2 0
choose ¥ +y, 21
step w+=L y,+=1 raise x, maxumally
L | - = X1 - i
primal cost += 2 v | x4, =1
min ¥ +3; +¥; mMan -x, +4%;
st. y+y,2-1 st x,+x; <1
Vv, =4
choose ¥+ =4
primal cost += 8 ' ' (it remains 0)
min Y+ ¥+ ¥ max 4.
Ty —4
Final primal sclution: Final dual solution:
w=5y=1Ly== X%, =1,x;=0

primal cost = 10 dual cost =1

Primal-Dual Algorithm

1. Let X,y « 0.

2. While 3 j such that » Ay, <w; do:
1=1

3. Do a "step" to satisfy this covering constraint..
4. For each j for which a step was done (line 2) in reverse order do:
b. Raise x; maximally without violating any packing constraint.
0. Return x, .
max » WX, min > by,
j=1 =1
subject to: subject to:
Y AX <b (Vi=l..n) Y Ay 2w, (Vj=1..m)
J=1 i=1
xeR" yeR’

Note 0 = 2

Execution starts here.
Follow the arrows

st oy +y =1
-L'll + l:" 2 5
WY ¥;: 20

Note 0 = 2

Execution starts here.
Follow the arrows

st oy +y =1
-L'll + l:" 2 5
WY ¥;: 20

step w+=L »,+=1
primal cost += 2

Note 0 = 2

step

Execution starts here.
Follow the arrows

Note 0 = 2

Execution starts here.
Follow the arrows

st oy +y =1
-L'll + l:" 2 5
WY ¥;: 20

step y,t=4 ¥y +=4
primal cost += &

Note 0 = 2

Execution starts here.
Follow the arrows

min y; +V; + ¥,
st oy +y =1
Wt =S
WY ¥;: 20
choose ¥ +1;, =1
step +=L yt+=1
primal cost += 2
min ¥y, +y,+¥;
sty +y,=-1
yity;z4

step

Note 0 = 2

Execution starts here.
Follow the arrows

step w+=L »,+=1

step

Note 0 = 2

Execution starts here.
Follow the arrows

step w+=L »,+=1

choose y' | +y3';24
step y,t=4 ¥y +=4

min y'|+¥",+ 1", max -3x",—4x";
sty +y, =25 st x",+x"; =1
:-L.I I|1_|_l:L.II:ll 2_\4 I"l::Ill]—: EI:]

Base case
=0 Xy =x"3=0

dual cost =10

Note 0 = 2

Execution starts here.
Follow the arrows

step w+=L »,+=1

step

raise x';; maximally

(it becomes 1)

min y'|+¥",+ 1", max -3x",—4x";
sty +y, =25 st x",+x"; =1
:-L.I I|1_|_l:L.II:ll 2_\4 I"l::Ill]—: EI:]

Base case
=0 Xy =x"3=0

dual cost =10

Note 0 = 2

Execution starts here.
Follow the arrows

step w+=L »,+=1

] 1 1 — 1 —
-1 st x|, tx; =1 X' =0 x5 =1

yity;z4 X', x5 20 dual cost += 4

\ raise x . maximally
E-tE-'p' _:L-'1+:4= 1 -|—:4 13 J

(it becomes 1)

min y'|+¥",+ 1", max -3x",—4x";
S._t_ l:l.--I "1+ :L-I "-| 2_5 S--t- III1:+ I"L: E].
:-L.I Ill+l:L|Il-: 2_\4 I"lz:I"]—: E[:I

Base case
=0 Xy =x"3=0

dual cost =10

Note 0 = 2

Execution starts here.
Follow the arrows

min y; +V; + ¥,
st oy +y =1
Wt =S
WY ¥;: 20
y, 21
step y+=1 w+=1 raise X, maximally
(it remains 0)
min ¥y, +y,+¥; max -x',+4x'g
sty ty,=-1 st x|, tx; =1 =0 x5 =1
Vit =4 X', %' 20 dual cost += 4

step ¥,

raise x';; maximally

(it becomes 1)

min y'|+¥",+ 1", max -3x",—4x";
sty +y, =25 st x",+x"; =1
:-L.I I|1_|_l:L.II:ll 2_\4 I"l::Ill]—: EI:]

Base case
=0 Xy =x"3=0

dual cost =10

Note 0 = 2

step

step

Execution starts here.
Follow the arrows

max X, + 3%,

min)+, F; sty ;=1
st oy +y =1 i, <1
Nty 23 x; =1
WY ¥;: 20 x1;=:r:1: =)
y, 21
H=1 pt+=1 raise X, maximally
(it remains 0)
min ¥y, +y,+¥; max -x',+4x'g
sty +y,=-1 st x|, tx;=1
yity;z4 X')3. X320

raise x';; maximally

(it becomes 1)

min y'|+¥",+ 1", max -3x",—4x";
sty +y, =25 st x",+x"; =1
:-L.I Ill+l:L|ll-= 2_\4 I"l::Ill]—: EI:]

Base case
=0 Xy =x"3=0

dual cost =10

r].: = [}. Il_: =].
dual cost +=1
&

dual cost mcreases by 1 because
wy; increases by 1and x,;=1

'!I'-I].: = []'._ .l!':l]_: =].

dual cost += 4

Note 0 = 2

Execution starts here.
Follow the arrows

Final dual solution:
X, = 0.5 =1

dual cost =5

}

max X, + 3%,
st o, +x; =1
x5, =1
x5 =1

Xj3.%3 =0

raise X, maximally

(it remains 0)

min y; +V; + ¥,
st oy +y =1
Wt =S
WY ¥;: 20
choose ¥ +1;, =1
step w+=L »,+=1
primal cost += 2
min ¥y, +y,+¥;
sty +y,=-1
yity;z4

step y,t=4 ¥y +=4

max -x',+4x'g
st x|, tx;=1

x' . x5 20

raise x';; maximally

(it becomes 1)

min y'|+¥",+ 1",
sty +y, =25
}'"1+;L.II= 2_\4

_{ n o n
max -3x",—4x";
st x",+x"; =1

x"5.x"; 20

Base case

mooo__.m
Xy =x"3=0

dual cost =10

r].: = [}. Il_: =].
dual cost +=1
&

dual cost mcreases by 1 because
wy; increases by 1and x,;=1

'!I'-I].: = []'._ .l!':l]_: =].

dual cost += 4

Recap of the algorithm

® Perform steps to satisfy covering
constraints <<= record the partial order
of the covering constraints for which the

algorithm performed a step.

® Consider the corresponding packing
variables in a valid reverse order, and

raising them maximally.

Partial order

The order In which steps to satisfy covering
constraints does not matter for covering
constraints that do no share a variable.

Since the order Is partial, there might be more than
one valid reverse orders. Any one of them works!

Max Weighted b-matching

®* Raise x; maximally {——> Xx; =min,

®If A, =0/1 and b €Z, thenx, eZ,

max » WX,
eckE

subjectto: > x, <bh,

ecE(u)

[El
Xel,

(VUEV)

Distributed Computation

® Compute solution for the covering problem
(KY 2009].

® Start computing solution for the packing
(matching) problem as soon as possible.

(an edge can compute its packing variable as
long as all of its adjacent edges are covered and
they are not waiting for their adjacent edges)

Distributed covering:

o1

6
7

f>
—
5
E

A%

A\

Distributed covering:

1. Create stars, where the roots have weight greater
than or equal to the weight of leaves.

Distributed covering:

1. Create stars, where the roots have weight greater than
or equal to the weight of leaves.

2. Roots perform steps to cover edges to leafs that
selected them.

round 1, step 1

y, =10

Distributed covering:

1. Create stars, where the roots have weight greater than
or equal to the weight of leaves.

2. Roots perform steps to cover edges to leafs that
selected them.

round 1, step 2

y, =10

y4:6

Distributed covering:

1. Create stars, where the roots have weight greater than
or equal to the weight of leaves.

2. Roots perform steps to cover edges to leafs that
selected them.

round 1, step 3

y, =10

y4:6

Distributed packing:

1. For each edge record “when” a covering step was
performed.

Distributed packing:

1. For each edge record “when” a covering step was
performed.

2. If an edge is covered but no step was performed for
It, set its packing variable to O.

Distributed packing:

1. For each edge record “when” a covering step was
performed.

2. If an edge is covered but no step was performed for it,
set its packing variable to O.

3. If edge e and all of its adjacent edges are covered.:

a) wait until all adjacent edges that were covered
later have set their packing variables.

b) raise x, maximally w/out violating any constraint.

Q\r
QO
\fO(/ q/f}
/9
s S §b
f@,O O 5/
S A S\ep
cound ™
=== Stepr == round 4, step 3
[] “,/)
25 8 o&
& & S,
%' @) °s
Q ;: .
S '
S
O

Distributed packing:

1. For each edge record “when” a covering step was
performed.

2. If an edge is covered but no step was performed for it,
set its packing variable to O.

3. If edge e and all of its adjacent edges are covered.:

a) wait until all adjacent edges that were covered
later have set their packing variables.

b) raise x, maximally w/out violating any constraint.

Done? Q,Q\/
N &
O, # 2% Done?
/70,6\ Qb :
e > 1 -
coun® ™
== =0 Stepr== round 4, step 3
A ,
[*y,
& Edge under 5} s
Z . . %) %
5 W consideration o N
. c S
% ; .
S Done?
N

Analysis

Analysis of number of rounds

* emma: If the distributed covering algorithm finishes in T
rounds, then the distributed packing algorithm finishes In
at most 2T rounds.

* proof: (Next)

corollary: Since T = O(log n), the distributed packing algorithm
finishes in O(log n) rounds.

Analysis of number of rounds

Edges covered at the same round by the same root node
can all set their packing variables in a single round as long
as neither of them iIs waiting for any adjacent edge.

Edges covered at round T (last round of covering algorithm)
can Immediately raise their packing variables (at round T).

Then, edges covered at round T-1, can set their packing
variables in round T+1.

Edges covered at round T-t, can set their packing variables
at round T+t...

Using inductionont =1,2,.., at most T more rounds are
necessary to construct the packing solution.

Open problems

® (1+¢)-approximation in O, (log n)
rounds?

® Deterministic algorithm?

thank you

