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Fractional Packing

 

1

1

         max   

subject to:        1

                   

m

j j

j

m

ij j i

j

m

w x

A x b i n

x







  







Let δ be the maximum number of constraints 

in which a variable appears.



Maximum Weighted b-Matching
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Let δ be the maximum number of constraints 

in which a variable appears, so δ is the 

hyperedge degree (δ=2 for graphs).

Hypergraph with

edge weights w,

vertex capacities b.



Distributed Computation

•The problem instance is represented by a 

graph where edges are packing variables 

and nodes are packing constraints. 

• Computation takes place in rounds.

• In each round:

• Each node exchanges O(1) messages     

with immediate neighbors,

• then does some computation.

•goal: Finish in a poly-log number of rounds.
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Primal-Dual

δ-approximation algorithm 
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Packing Covering

‣Compute a solution for the dual Covering Problem.

‣Use the dual solution to compute a solution for the 

primal Packing Problem. 



δ-approximation for Covering
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Primal-Dual Attempt
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Note δ = 2
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Primal-Dual Algorithm
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Recap of the algorithm

• Perform steps to satisfy covering 

constraints          record the partial order 

of the covering constraints for which the 

algorithm performed a step.

• Consider the corresponding packing 

variables in a valid reverse order, and 

raising them maximally. 



Partial order

The order in which steps to satisfy covering

constraints does not matter for covering

constraints that do no share a variable.

Since the order is partial, there might be more than

one valid reverse orders. Any one of them works!



Max Weighted b-matching
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Distributed Computation

•Compute solution for the covering problem  

[KY 2009].

•Start computing solution for the packing 

(matching) problem as soon as possible.

(an edge can compute its packing variable as 

long as all of its adjacent edges are covered and 

they are not waiting for their adjacent edges)



•Distributed covering:
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•Distributed covering:

1. Create stars, where the roots have weight greater 
than or equal to the weight of leaves. 
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•Distributed covering:

1. Create stars, where the roots have weight greater than 
or equal to the weight of leaves. 

2. Roots perform steps to cover edges to leafs that 
selected them.
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•Distributed covering:

1. Create stars, where the roots have weight greater than 
or equal to the weight of leaves. 

2. Roots perform steps to cover edges to leafs that 
selected them.
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•Distributed packing:

1. For each edge record “when” a covering step was 
performed. 

no step

round 1, step 1
no step

no stepround 1, step 1

ro
un

d 
1,

 s
te

p 
1 ro

un
d 

1,
 s
te

p 
2

5 5

6

1

11

2 3

4

3



•Distributed packing:

1. For each edge record “when” a covering step was 
performed. 

2. If an edge is covered but no step was performed for 
it, set its packing variable to 0.
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•Distributed packing:

1. For each edge record “when” a covering step was 
performed. 

2. If an edge is covered but no step was performed for it, 
set its packing variable to 0.

3. If edge e and all of its adjacent edges are covered:

a) wait until all adjacent edges that were covered 
later have set their packing variables.

b) raise xe maximally w/out violating any constraint.
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•Distributed packing:

1. For each edge record “when” a covering step was 
performed. 

2. If an edge is covered but no step was performed for it, 
set its packing variable to 0.
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b) raise xe maximally w/out violating any constraint.

round 4, step 3

n
o
 s

te
p

no step

round 4, step 5

ro
u
n
d
 8

, 
st

e
p
 3

no step

round 5, step 3 ro
un

d 
2,

 s
te

p 
1Done?

Done?

Done?

Edge under 

consideration



Analysis

• Guaranteed to return a 2-approximate 

solution, since it implements the sequential 

algorithm. 

• What about running time?  

• Goal: Show O(log n) rounds (w.h.p.).



Analysis of number of rounds

• lemma: If the distributed covering algorithm finishes in T 

rounds, then the distributed packing algorithm finishes in 

at most 2T rounds.

• proof: (next)

corollary: Since T = O(log n), the distributed packing algorithm 

finishes in O(log n) rounds.



Analysis of number of rounds

• Edges covered at the same round by the same root node 

can all set their packing variables in a single round as long 

as neither of them is waiting for any adjacent edge. 

• Edges covered at round T (last round of covering algorithm) 

can immediately raise their packing variables (at round T). 

• Then, edges covered at round T-1, can set their packing 

variables in round T+1.

• Edges covered at round T-t, can set their packing variables 

at round T+t…

• Using induction on t = 1,2,.., at most T more rounds are 

necessary to construct the packing solution.



Open problems

• (1+ε)-approximation in Oε(log n) 

rounds?

• Deterministic algorithm?



thank you


