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Let o be the maximum number of variables per
constraint (l.e. o0 = 2 for Vertex Cover).
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use the KC-inequalities and an ellipsoid-based
method [Carr et al., 2000][Pritchard, 2009].



Covering Integer Programs

min X, +0.5X, +6X,:
2X, + X, =3
X, +4X, =3
X, <2
X)Xy, X3 €L,
Previous sequential o-approximation algorithms

use the KC-inequalities and an ellipsoid-based
method [Carr et al., 2000][Pritchard, 2009].

Slow, not suitable for the distributed or online setting.



Welighted Vertex Cover

min c- X
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Given a node-weighted graph, find a
minimum-welght subset of the nodes,
touching all the edges.



Welighted Vertex Cover

Given a node-weighted graph, find a
minimum-welght subset of the nodes,
touching all the edges.



A sequential and online
2-approximation algorithm for
Weighted VC

> “Edge discount”: reduce edge endpoints’ costs equally.

» Do edge discounts until zero-cost nodes form a cover.
Return the cover formed by the zero-cost nodes.

[Bar-Yehuda and Even, 1981]



edge discount operation
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Reduce both endpoints’ costs equally.
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Reduce both endpoints’ costs equally.
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Reduce both endpoints’ costs equally.
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Theorem: COSt(C) S ZOPT



Distributed Computation

® Proceed in rounds.
® In each round:

® Each node exchanges O(1) messages
with immediate neighbors,

® then does some computation.

®goal: Finish in a poly-log number of rounds.



Distributed :

Algorithm

(PODC 20009)

50

Each round: °

1. form independent rooted “stars”
2. coordinate discounts within stars

® Done when zero-cost vertices cover all edges.

sa: DONe after O(log n) rounds (n = #nodes).




How to form stars

1. Each node randomly chooses to be “boy” or “girl”
(Just for this round)

2. For the round, use only edges from boys to higher-
cost (or equal-cost) girls. (Pretend other edges don't
exist.)T

3. Each boy chooses a random neighbor (girl of =2 cost).

TIn each round, every edge has a one in four chance of being used.
(... will be used if low-cost endpoint is boy, high-cost endpoint is girl)
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How to form stars:
1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-
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How girls allocate discounts

» Each girl allocates discounts greedily, in alphabetic
order.

» If she partially allocates some boy's discount, then...

® with probability 1/2:
1. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

Some boys may be jilted (have no chance for discount).
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» Each girl allocates discounts greedily, in alphabetical order.
» |If she partially allocates some boy’s discount, then...
with probability 1/2:
She revokes discounts to all other boys. She allocates full
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» Each girl allocates discounts greedily, in alphabetical order.
» |f she partially allocates some boy’s discount, then...
with probability 1/2:

She revokes discounts to all other boys. She allocates
full discount to that boy.
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» Each girl allocates discounts greedily, in alphabetical order.
» |f she partially allocates some boy’s discount, then...
with probability 1/2:

She revokes discounts to all other boys. She allocates
full discount to that boy.
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each of girl’s boys is either:
> jilted (qgirl gives no chance of any discount)
> not Jilted (girl gives at least 50% chance of discount)

07 ;E> }notjted
(50%)

50% chance of full discount.
(50%) 5

D
0 \
IZ'> definitely jilted.
no chance of any discount.



Analysis




Analysis of number of rounds

» “"Delete” edges when one endpoint’s cost becomes zero.

* lemma: INn each round, in expectation, a constant fraction of

each boy’s active edges are deleted.

® proof: (next)

corollary: Number of rounds is O(log n?) = O(log n)

In expectation and with high probabillity.



lemma: N each round, In expectation, a constant fraction of
each boy’s active edges are deleted.

This girl would jilt boy.
= Girl’s own cost will
definitely go to zero, even

if boy doesn’t choose girl.

This girl would not jilt boy.
Would have 50% chance of zeroing

boy’s cost.

This girl would not
jilt boy.

Would reduce boy’s
cost to zero.

This girl would not
jilt boy.

Would have

50% chance of
zeroing boy’s cost.

key observation:

girl would jilt boy = her cost is going to zero regardless of what boy does.

girl would not jilt boy = if boy chooses her,
she has at least a 50% chance of zeroing boy’s cost...



key observation:

girl would jilt boy = her cost is going to zero regardless of what boy does.

girl would not jilt boy = if boy chooses her,
she has at least a 50% chance of zeroing boy’s cost...

® case (i): At least half of boy’s girls would jilt him.
= At least half of boy’s edges will be deleted regardless of what boy does.

® case (ii): At least half of boy’s girls would not jilt him.

= Boy has at least a 50% chance of choosing a girl
who has at least a 50% chance of zeroing his cost (deleting all his edges).



® There is a simple, fast, sequential,
online and distributed 2-approximation
algorithm for Weighted Vertex Cover!



More general Covering Problems
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Bar-Yehuda and Even’s algorithm does not
extend to non 0/1 problems.
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Bar-Yehuda and Even’s algorithm does not
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Goal: Simple 2-approximation algorithm, applicable In
the sequential, distributed and online setting.



Flooding algorithm

1. Let x < O.
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3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.
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Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

Let X be any feasible solution.

Each step starts with a non-yet-satisfied constraint,
SO X, > X, Or X, > X,

Let residual_(x) be the min cost to increase X to full
feasibllity.

The step increases the cost by 2 but it reduces
residual  (X) by at least 8 = 2-approximation



Results (sequential)

® Covering Mixed Integer Programs: Nearly linear
time o-approximation algorithm. Improves over the
previous ellipsoid-based (slow) algorithm.

® Non-metric Facility Location: Linear time o-

approximation. o Is the maximum number of
facilities that might serve a customer.

® Covering problems with submodular cost function

ICALP 2009



Results (online)

® Online CMIP: §-competitive algorithm.

® Paging, Weighted Caching, File Caching,
Connection Caching: Generalize k-competitive
algorithms 1.e. Landlord, Harmonic, Greedy-Dual.

® Upgradable Caching: (k+d)-competitive algorithm,
where K is the cache size and d is the number of
upgradable parameters.

ICALP 2009



Results (distributed)

® Covering Mixed Integer Programs with 2 variables
per constraint: 2-approximation in O(log|C |)

rounds, where |C | is the number of constraints.
Also, 2-approximation in RNC.

=) 2-approximation for Weighted Vertex Cover in O(log n) rounds.

® Covering Problems with at most o variables
per constraint: d-approximation in O(log” | C |)

rounds. PODC 2009
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