Flooding Overcomes
Small Covering
Constraints

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

Covering Integer Programs

min C-X
subject to: Ax>D
X<u

N
Xel,

Let o be the maximum number of variables per
constraint (l.e. o0 = 2 for Vertex Cover).

Covering Integer Programs

min X, +0.5X, +6X,:
2X, + X, =3
X, +4X, =3
X, <2
X, X,, X € Z,

Let 0 be the maximum number of variables per
constraint (o = 2 for this example).

Covering Integer Programs

min X, +0.5X, +6X,:
2X, + X, =3
X, +4X, =3
X, <2
X, X,, X € Z,

Let 0 be the maximum number of variables per
constraint (o = 2 for this example).

Goal: Simple o-approximation algorithm, applicable In
the sequential

Covering Integer Programs

min X, +0.5X, +6X,:

2X, + X, =3
c,=1 c¢,=05 <¢c;,=6

X, +4X, >5
, <

X, X,, X € Z,

Let 0 be the maximum number of variables per
constraint (o = 2 for this example).

Goal: Simple o-approximation algorithm, applicable In
the sequential, distributed

Covering Integer Programs

min X, +0.5X, + 06X, :

X, <2

X3 Xy, X3 € £,

Let 0 be the maximum number of variables per
constraint (o = 2 for this example).

Goal: Simple o-approximation algorithm, applicable In
the sequential, distributed and online setting.

Covering Integer Programs

min X, +0.5X, +6X,:
2X, + X, =3

X, <2

X3 Xy, X3 € £,

Let 0 be the maximum number of variables per
constraint (o = 2 for this example).

Goal: Simple o-approximation algorithm, applicable In
the sequential, distributed and online setting.

Covering Integer Programs

min X, +0.5X, +6X,:
2X, + X, =3
X, +4X, =3
X, <2
X, X,, X € Z,

Let 0 be the maximum number of variables per
constraint (o = 2 for this example).

Goal: Simple o-approximation algorithm, applicable In
the sequential, distributed and online setting.

Covering Integer Programs

min X, +0.5X, +6X,:
2X, + X, =3
X, +4X, =3
X, <2
X, X,, X € Z,
Previous sequential o-approximation algorithms

use the KC-inequalities and an ellipsoid-based
method [Carr et al., 2000][Pritchard, 2009].

Covering Integer Programs

min X, +0.5X, +6X,:
2X, + X, =3
X, +4X, =3
X, <2
X)Xy, X3 €L,
Previous sequential o-approximation algorithms

use the KC-inequalities and an ellipsoid-based
method [Carr et al., 2000][Pritchard, 2009].

Slow, not suitable for the distributed or online setting.

Welighted Vertex Cover

min c- X

x €{0,1}'

Given a node-weighted graph, find a
minimum-welght subset of the nodes,
touching all the edges.

Welighted Vertex Cover

Given a node-weighted graph, find a
minimum-welght subset of the nodes,
touching all the edges.

A sequential and online
2-approximation algorithm for
Weighted VC

> “Edge discount”: reduce edge endpoints’ costs equally.

» Do edge discounts until zero-cost nodes form a cover.
Return the cover formed by the zero-cost nodes.

[Bar-Yehuda and Even, 1981]

edge discount operation

s

Reduce both endpoints’ costs equally.

~ edge discount operation

@——@

Reduce both endpoints’ costs equally.

edge discount operation

1

B

"y
"y
",
=,
=,
-
=,
=,
=,
",
o,
o
"
o
&
-
-
-
-
-
.-'"'.-.
o
o
o
-
o
-~

o0

Reduce both endpoints’ costs equally.

10

Theorem: COSt(C) S ZOPT

Distributed Computation

® Proceed in rounds.
® In each round:

® Each node exchanges O(1) messages
with immediate neighbors,

® then does some computation.

®goal: Finish in a poly-log number of rounds.

Distributed :

Algorithm

(PODC 20009)

50

Each round: °

1. form independent rooted “stars”
2. coordinate discounts within stars

® Done when zero-cost vertices cover all edges.

sa: DONe after O(log n) rounds (n = #nodes).

How to form stars

1. Each node randomly chooses to be “boy” or “girl”
(Just for this round)

2. For the round, use only edges from boys to higher-
cost (or equal-cost) girls. (Pretend other edges don't
exist.)T

3. Each boy chooses a random neighbor (girl of =2 cost).

TIn each round, every edge has a one in four chance of being used.
(... will be used if low-cost endpoint is boy, high-cost endpoint is girl)

How to form stars:
1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-cost)
girls. (Pretend other edges don't exist.)
3. Each boy chooses a random neighbor (girl of = cost).

How to form stars:
1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-cost)
girls. (Pretend other edges don't exist.)

3. Each boy chooses a random neighbor (girl of = cost).

How to form stars:
1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-
cost) girls. (Pretend other edges don’t exist.)

3. Each boy chooses a random neighbor (girl of = cost).

How to form stars:

1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-
cost) girls. (Pretend other edges don't exist.)

3. Each boy chooses a random neighbor (girl of 2
COost).

How to form stars:
1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-
cost) qgirls. (Pretend other edges don’t exist.)

3. Each boy chooses a random neighbor (girl of = cost).

How girls allocate discounts

» Each girl allocates discounts greedily, in alphabetic
order.

» If she partially allocates some boy's discount, then...

® with probability 1/2:
1. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

Some boys may be jilted (have no chance for discount).

» Each girl allocates discounts greedily, in alphabetical order.
» |If she partially allocates some boy’s discount, then...
with probability 1/2:
She revokes discounts to all other boys. She allocates full

.E» discount to that boy.

=
(210
6 _4>\ 1;)
= e

1
._——(partial discount) 0
) %

) ited

» Each girl allocates discounts greedily, in alphabetical order.
» |If she partially allocates some boy’s discount, then...
with probability 1/2:
She revokes discounts to all other boys. She allocates full

|:';’;;> discount to that boy.

SH Sy
| S

34

1

M discount)

» Each girl allocates discounts greedily, in alphabetical order.
» |f she partially allocates some boy’s discount, then...
with probability 1/2:

She revokes discounts to all other boys. She allocates
full discount to that boy.

e } full discount 50940

4
3#...*

1 H@ -- partial discount
0

NS
2\ e
=}

» Each girl allocates discounts greedily, in alphabetical order.
» |f she partially allocates some boy’s discount, then...
with probability 1/2:

She revokes discounts to all other boys. She allocates
full discount to that boy.

4
} not jilted

0
OF_,...:-F'

7H|j:> -- full discount 50%
0

NS
=}

each of girl’s boys is either:
> jilted (qgirl gives no chance of any discount)
> not Jilted (girl gives at least 50% chance of discount)

07 ;E> }notjted
(50%)

50% chance of full discount.
(50%) 5

D
0 \
IZ'> definitely jilted.
no chance of any discount.

Analysis

Analysis of number of rounds

» “"Delete” edges when one endpoint’s cost becomes zero.

* lemma: INn each round, in expectation, a constant fraction of

each boy’s active edges are deleted.

® proof: (next)

corollary: Number of rounds is O(log n?) = O(log n)

In expectation and with high probabillity.

lemma: N each round, In expectation, a constant fraction of
each boy’s active edges are deleted.

This girl would jilt boy.
= Girl’s own cost will
definitely go to zero, even

if boy doesn’t choose girl.

This girl would not jilt boy.
Would have 50% chance of zeroing

boy’s cost.

This girl would not
jilt boy.

Would reduce boy’s
cost to zero.

This girl would not
jilt boy.

Would have

50% chance of
zeroing boy’s cost.

key observation:

girl would jilt boy = her cost is going to zero regardless of what boy does.

girl would not jilt boy = if boy chooses her,
she has at least a 50% chance of zeroing boy’s cost...

key observation:

girl would jilt boy = her cost is going to zero regardless of what boy does.

girl would not jilt boy = if boy chooses her,
she has at least a 50% chance of zeroing boy’s cost...

® case (i): At least half of boy’s girls would jilt him.
= At least half of boy’s edges will be deleted regardless of what boy does.

® case (ii): At least half of boy’s girls would not jilt him.

= Boy has at least a 50% chance of choosing a girl
who has at least a 50% chance of zeroing his cost (deleting all his edges).

® There is a simple, fast, sequential,
online and distributed 2-approximation
algorithm for Weighted Vertex Cover!

More general Covering Problems

min X, +2X, +3X,, :

C, = c, =2 C, =
VIO ORSO
2NN
X, +X, =4
X)X, X, €2,

Bar-Yehuda and Even’s algorithm does not
extend to non 0/1 problems.

More general Covering Problems

min X, +2X, +3X,, :

X, +X, =3 @3 @5 @

X, +X, =4

X, X, X, €2,

u? v o w

Bar-Yehuda and Even’s algorithm does not
extend to non 0/1 problems.

Goal: Simple 2-approximation algorithm, applicable In
the sequential, distributed and online setting.

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

min X, +2X, +3X,,:

X +X >3 7 /\
u v 3 4
X, +X, =4 @ _// @

X,» X, X, €EZ, u

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

min X, +2X,

(o O

X, =0

X,» X,, "\, €L,

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

min X, +2X,

RO O

X, =2

X,» X,, "\, €L,

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

min < +2X,+3X,:

3
X, +X,=4 @ @

X,, X, €Z, %y W

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

min < +2X,+3X,:

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

min X, +2X, +3X,,:

X +X >3 / m
u y 0 0
X, +X, =4 @ _// @4

X,» X, X, €EZ, u

IV N
|
=

Return X, =2, X, =3, X, =

Flooding algorithm

1. Let x < O.

2. While 3 edge (u,v) s.t. | x, |+ | x, | <b,, do:
3. Raise x, at rate 1/c, and x, at rate 1/c, until | x, [+ | x, |>b,,.
4. Return | x |.

Let X be any feasible solution.

Each step starts with a non-yet-satisfied constraint,
SO X, > X, Or X, > X,

Let residual_(x) be the min cost to increase X to full
feasibllity.

The step increases the cost by 2 but it reduces
residual (X) by at least 8 = 2-approximation

Results (sequential)

® Covering Mixed Integer Programs: Nearly linear
time o-approximation algorithm. Improves over the
previous ellipsoid-based (slow) algorithm.

® Non-metric Facility Location: Linear time o-

approximation. o Is the maximum number of
facilities that might serve a customer.

® Covering problems with submodular cost function

ICALP 2009

Results (online)

® Online CMIP: §-competitive algorithm.

® Paging, Weighted Caching, File Caching,
Connection Caching: Generalize k-competitive
algorithms 1.e. Landlord, Harmonic, Greedy-Dual.

® Upgradable Caching: (k+d)-competitive algorithm,
where K is the cache size and d is the number of
upgradable parameters.

ICALP 2009

Results (distributed)

® Covering Mixed Integer Programs with 2 variables
per constraint: 2-approximation in O(log|C |)

rounds, where |C | is the number of constraints.
Also, 2-approximation in RNC.

=) 2-approximation for Weighted Vertex Cover in O(log n) rounds.

® Covering Problems with at most o variables
per constraint: d-approximation in O(log” | C |)

rounds. PODC 2009

thank you

