
Flooding Overcomes

Small Covering

Constraints

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

Covering Integer Programs

Let δ be the maximum number of variables per

constraint (i.e. δ = 2 for Vertex Cover).

 min

subject to:

 n

c x

Ax b

x u

x Z









Covering Integer Programs

Let δ be the maximum number of variables per

constraint (δ = 2 for this example).

1 2 3

1 2

2 3

2

1 2 3

min 0.5 6 :

 2 3

 4 5

 2

 , ,

x x x

x x

x x

x

x x x Z

 

 

 





Covering Integer Programs

Let δ be the maximum number of variables per

constraint (δ = 2 for this example).

Goal: Simple δ-approximation algorithm, applicable in

the sequential

1 2 3

1 2

2 3

2

1 2 3

min 0.5 6 :

 2 3

 4 5

 2

 , ,

x x x

x x

x x

x

x x x Z

 

 

 





Covering Integer Programs

Let δ be the maximum number of variables per

constraint (δ = 2 for this example).

Goal: Simple δ-approximation algorithm, applicable in

the sequential, distributed

1 2 3

1 2

2 3

2

1 2 3

min 0.5 6 :

 2 3

 4 5

 2

 , ,

x x x

x x

x x

x

x x x Z

 

 

 





x1 x2 x3
3 5

1 1c  2 0.5c  3 6c 

Covering Integer Programs

Let δ be the maximum number of variables per

constraint (δ = 2 for this example).

Goal: Simple δ-approximation algorithm, applicable in

the sequential, distributed and online setting.

1 2 3

2

1 2 3

min 0.5 6 :

 2

 , ,

x x x

x

x x x Z

 





Covering Integer Programs

Let δ be the maximum number of variables per

constraint (δ = 2 for this example).

Goal: Simple δ-approximation algorithm, applicable in

the sequential, distributed and online setting.

1 2 3

1 2

2

1 2 3

min 0.5 6 :

 2 3

 2

 , ,

x x x

x x

x

x x x Z

 

 





Covering Integer Programs

Let δ be the maximum number of variables per

constraint (δ = 2 for this example).

Goal: Simple δ-approximation algorithm, applicable in

the sequential, distributed and online setting.

1 2 3

1 2

2 3

2

1 2 3

min 0.5 6 :

 2 3

 4 5

 2

 , ,

x x x

x x

x x

x

x x x Z

 

 

 





Covering Integer Programs

1 2 3

1 2

2 3

2

1 2 3

min 0.5 6 :

 2 3

 4 5

 2

 , ,

x x x

x x

x x

x

x x x Z

 

 

 





Previous sequential δ-approximation algorithms

use the KC-inequalities and an ellipsoid-based

method [Carr et al., 2000][Pritchard, 2009].

Covering Integer Programs

1 2 3

1 2

2 3

2

1 2 3

min 0.5 6 :

 2 3

 4 5

 2

 , ,

x x x

x x

x x

x

x x x Z

 

 

 





Previous sequential δ-approximation algorithms

use the KC-inequalities and an ellipsoid-based

method [Carr et al., 2000][Pritchard, 2009].

Slow, not suitable for the distributed or online setting.

Weighted Vertex Cover

Given a node-weighted graph, find a

minimum-weight subset of the nodes,

touching all the edges.

min :

1 (,)

 {0,1}

u v

n

c x

x x u v

x



  



Weighted Vertex Cover

Given a node-weighted graph, find a

minimum-weight subset of the nodes,

touching all the edges.

min :

1 (,)

 {0,1}

u v

n

c x

x x u v

x



  



A sequential and online

2-approximation algorithm for

Weighted VC

‣“Edge discount”: reduce edge endpoints’ costs equally.

‣Do edge discounts until zero-cost nodes form a cover.

Return the cover formed by the zero-cost nodes.

[Bar-Yehuda and Even, 1981]

edge discount operation

Reduce both endpoints’ costs equally.

edge discount operation

Reduce both endpoints’ costs equally.

edge discount operation

Reduce both endpoints’ costs equally.

Theorem: cost() 2OPTC 

Distributed Computation

• Proceed in rounds.

• In each round:

• Each node exchanges O(1) messages

with immediate neighbors,

• then does some computation.

•goal: Finish in a poly-log number of rounds.

•Each round:

1. form independent rooted “stars”

2. coordinate discounts within stars

• Done when zero-cost vertices cover all edges.

•goal: Done after O(log n) rounds (n = #nodes).

Distributed

Algorithm
(PODC 2009)

1. Each node randomly chooses to be “boy” or “girl”
(just for this round)

2. For the round, use only edges from boys to higher-

cost (or equal-cost) girls. (Pretend other edges don’t

exist.)†

3. Each boy chooses a random neighbor (girl of ≥ cost).

How to form stars

† In each round, every edge has a one in four chance of being used.

(... will be used if low-cost endpoint is boy, high-cost endpoint is girl)

•How to form stars:

1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-cost)
girls. (Pretend other edges don’t exist.)

3. Each boy chooses a random neighbor (girl of ≥ cost).

•How to form stars:

1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-cost)
girls. (Pretend other edges don’t exist.)

3. Each boy chooses a random neighbor (girl of ≥ cost).

•How to form stars:

1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-
cost) girls. (Pretend other edges don’t exist.)

3. Each boy chooses a random neighbor (girl of ≥ cost).

•How to form stars:

1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-
cost) girls. (Pretend other edges don’t exist.)

3. Each boy chooses a random neighbor (girl of ≥
cost).

•How to form stars:

1. Each node randomly chooses to be “boy” or “girl”.

2. Use only edges from boys to higher-cost (or equal-
cost) girls. (Pretend other edges don’t exist.)

3. Each boy chooses a random neighbor (girl of ≥ cost).

‣Each girl allocates discounts greedily, in alphabetic

order.

‣If she partially allocates some boy’s discount, then...

• with probability 1/2:

1. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

How girls allocate discounts

Some boys may be jilted (have no chance for discount).

‣ Each girl allocates discounts greedily, in alphabetical order.

‣ If she partially allocates some boy’s discount, then...

with probability 1/2:

She revokes discounts to all other boys. She allocates full

discount to that boy.

jilted!

(partial discount)

‣ Each girl allocates discounts greedily, in alphabetical order.

‣ If she partially allocates some boy’s discount, then...

with probability 1/2:

She revokes discounts to all other boys. She allocates full

discount to that boy.

jilted!

(partial discount)

‣ Each girl allocates discounts greedily, in alphabetical order.

‣ If she partially allocates some boy’s discount, then...

with probability 1/2:

She revokes discounts to all other boys. She allocates

full discount to that boy.

full discount

jilted

}

-- partial discount

50%

‣ Each girl allocates discounts greedily, in alphabetical order.

‣ If she partially allocates some boy’s discount, then...

with probability 1/2:

She revokes discounts to all other boys. She allocates

full discount to that boy.

not jilted

still jilted

}

-- full discount 50%

each of girl’s boys is either:

‣ jilted (girl gives no chance of any discount)

‣ not jilted (girl gives at least 50% chance of discount)

not jilted.

50% chance of full discount.

definitely jilted.

no chance of any discount.

}

Analysis

• Guaranteed to return a 2-approximate

solution, since it implements the edge-

discount algorithm.

• What about running time?

• Goal: Show O(log n) rounds (w.h.p.).

Analysis of number of rounds

• lemma: In each round, in expectation, a constant fraction of

each boy’s active edges are deleted.

• proof: (next)

corollary: Number of rounds is O(log n2) = O(log n)

in expectation and with high probability.

‣ “Delete” edges when one endpoint’s cost becomes zero.

lemma: In each round, in expectation, a constant fraction of
each boy’s active edges are deleted.

proof: Fix any boy.

For the analysis, condition on the random choices of all other boys.

(Imagine that the boy chooses his girl after every other boy chooses.)

‣ For each girl neighbor, what would happen if he were to choose that girl?

key observation:

girl would jilt boy ⇒ her cost is going to zero regardless of what boy does.

girl would not jilt boy ⇒ if boy chooses her,
she has at least a 50% chance of zeroing boy’s cost...

This girl would not

jilt boy.

Would reduce boy’s

cost to zero.

This girl would not jilt boy.

Would have 50% chance of zeroing

boy’s cost.

This girl would jilt boy.

Girl’s own cost will

definitely go to zero, even

if boy doesn’t choose girl.

This girl would not

jilt boy.

Would have

50% chance of

zeroing boy’s cost.

• case (i): At least half of boy’s girls would jilt him.

⇒ At least half of boy’s edges will be deleted regardless of what boy does.

• case (ii): At least half of boy’s girls would not jilt him.

⇒ Boy has at least a 50% chance of choosing a girl
who has at least a 50% chance of zeroing his cost (deleting all his edges).

key observation:

girl would jilt boy ⇒ her cost is going to zero regardless of what boy does.

girl would not jilt boy ⇒ if boy chooses her,
she has at least a 50% chance of zeroing boy’s cost...

• There is a simple, fast, sequential,

online and distributed 2-approximation

algorithm for Weighted Vertex Cover!

More general Covering Problems

Bar-Yehuda and Even’s algorithm does not

extend to non 0/1 problems.

min 2 3 :

 3

 4

 , ,

u v w

u v

v w

u v w

x x x

x x

x x

x x x Z

 

 

 



u v w3 5

1uc  2vc  3wc 

More general Covering Problems

Bar-Yehuda and Even’s algorithm does not

extend to non 0/1 problems.

Goal: Simple 2-approximation algorithm, applicable in

the sequential, distributed and online setting.

min 2 3 :

 3

 4

 , ,

u v w

u v

v w

u v w

x x x

x x

x x

x x x Z

 

 

 



u v w3 5

1uc  2vc  3wc 

Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

u v w3 4

1uc  2vc  3wc 

0ux  0vx  0wx 

min 2 3 :

 3

 4

 , ,

u v w

u v

v w

u v w

x x x

x x

x x

x x x Z

 

 

 



Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

u v w3 4

1uc  2vc  3wc 

0ux  0vx  0wx 

min 2 :

 3

3

4

 , ,

w

v w

w

u v

u v

u v

xx x

x x

x x Z

x x

x 















Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

u v w0 3

1uc  2vc  3wc 

2ux  1vx  0wx 

min 2 :

 3

3

4

 , ,

w

v w

w

u v

u v

u v

xx x

x x

x x Z

x x

x 















Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

u v w0 3

1uc  2vc  3wc 

2ux  1vx  0wx 

min 2 3 :

 4

 ,

3

,

v w

v w

u

u

v w

v

u

x x

x x

x x

x

Z

x

x

x 







 





Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

u v w0 0

1uc  2vc  3wc 

2ux 
2
3vx




4

3
wx 

min 2 3 :

 4

 ,

3

,

v w

v w

u

u

v w

v

u

x x

x x

x x

x

Z

x

x

x 







 





Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

u v w0 0

1uc  2vc  3wc 

2ux  3vx 
4

3
wx 

Return
4

2, 3, 1
3

u v wx x x
 

    
 

min 2 3 :

 3

 4

 , ,

u v w

u v

v w

u v w

x x x

x x

x x

x x x Z

 

 

 



Flooding algorithm
1. Let 0.

2. While edge (,) s.t. + do:

3. Raise at rate 1 and at rate 1 until + .

4. Return .

u v uv

u u v v u v uv

x

u v x x b

x c x c x x b

x



       

      

  

Let be any feasible solution.

Each step starts with a non-yet-satisfied constraint,

so or .

Let be the min cost to increase to full

feasibility.

The step increases the cost by 2β but it reduces

by at least β 2-approximation

*x

*

u ux x
*

v vx x

()cresidual x

()cresidual x

x

Results (sequential)

• Covering Mixed Integer Programs: Nearly linear

time δ-approximation algorithm. Improves over the

previous ellipsoid-based (slow) algorithm.

• Non-metric Facility Location: Linear time δ-

approximation. δ is the maximum number of

facilities that might serve a customer.

• Covering problems with submodular cost function

ICALP 2009

Results (online)

• Online CMIP: δ-competitive algorithm.

• Paging, Weighted Caching, File Caching,

Connection Caching: Generalize k-competitive

algorithms i.e. Landlord, Harmonic, Greedy-Dual.

• Upgradable Caching: (k+d)-competitive algorithm,

where k is the cache size and d is the number of

upgradable parameters.

ICALP 2009

Results (distributed)

• Covering Mixed Integer Programs with 2 variables

per constraint: 2-approximation in

rounds, where |C | is the number of constraints.

Also, 2-approximation in RNC.

2-approximation for Weighted Vertex Cover in rounds.

• Covering Problems with at most δ variables

per constraint: δ-approximation in

rounds.

2(log | |)O C

(log | |)O C

(log)O n

PODC 2009

thank you

