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Covering Integer Programs

Let δ be the maximum number of variables per 

constraint  (i.e. δ = 2 for Vertex Cover).
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Previous sequential δ-approximation algorithms 

use the KC-inequalities and an ellipsoid-based 

method [Carr et al., 2000][Pritchard, 2009].
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Previous sequential δ-approximation algorithms 

use the KC-inequalities and an ellipsoid-based 

method [Carr et al., 2000][Pritchard, 2009].

Slow, not suitable for the distributed or online setting. 



Weighted Vertex Cover

Given a node-weighted graph, find a 

minimum-weight subset of the nodes,

touching all the edges.
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A sequential and online

2-approximation algorithm for 

Weighted VC 

‣“Edge discount”: reduce edge endpoints’ costs equally.

‣Do edge discounts until zero-cost nodes form a cover.    

Return the cover formed by the zero-cost nodes.

[Bar-Yehuda and Even, 1981]
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Distributed Computation

• Proceed in rounds.

• In each round:

• Each node exchanges O(1) messages     

with immediate neighbors,

• then does some computation.

•goal: Finish in a poly-log number of rounds.



•Each round:

1. form independent rooted “stars”

2. coordinate discounts within stars

• Done when zero-cost vertices cover all edges.

•goal: Done after O(log n) rounds (n = #nodes).

Distributed 

Algorithm
(PODC 2009)



1. Each node randomly chooses to be “boy” or “girl”
(just for this round)

2. For the round, use only edges from boys to higher-

cost (or equal-cost) girls.  (Pretend other edges don’t 

exist.)†

3. Each boy chooses a random neighbor (girl of ≥ cost).

How to form stars

† In each round, every edge has a one in four chance of being used.

(... will be used if low-cost endpoint is boy, high-cost endpoint is girl)
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‣Each girl allocates discounts greedily, in alphabetic 

order.

‣If she partially allocates some boy’s discount, then...

• with probability 1/2:

1. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

How girls allocate discounts

Some boys may be jilted (have no chance for discount).
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‣ Each girl allocates discounts greedily, in alphabetical order.

‣ If she partially allocates some boy’s discount, then...

with probability 1/2:

She revokes discounts to all other boys. She allocates 

full discount to that boy.

not jilted

still jilted

}

-- full discount 50%



each of girl’s boys is either:

‣ jilted (girl gives no chance of any discount)

‣ not jilted (girl gives at least 50% chance of discount)

not jilted.

50% chance of full discount.

definitely jilted.

no chance of any discount.

}



Analysis

• Guaranteed to return a 2-approximate 

solution, since it implements the edge-

discount algorithm.

• What about running time?  

• Goal: Show O(log n) rounds (w.h.p.).



Analysis of number of rounds

• lemma: In each round, in expectation, a constant fraction of  

each boy’s active edges are deleted.

• proof: (next)

corollary: Number of rounds is O(log n2) = O(log n) 

in expectation and with high probability.

‣ “Delete” edges when one endpoint’s cost becomes zero.



lemma: In each round, in expectation, a constant fraction of 
each boy’s active edges are deleted.

proof: Fix any boy.  

For the analysis, condition on the random choices of all other boys.  

(Imagine that the boy chooses his girl after every other boy chooses.)  

‣ For each girl neighbor, what would happen if he were to choose that girl?

key observation:

girl would jilt boy ⇒ her cost is going to zero regardless of what boy does.

girl would not jilt boy ⇒ if boy chooses her, 
she has at least a 50% chance of zeroing boy’s cost...

This girl would not 

jilt boy.

Would reduce boy’s 

cost to zero.

This girl would not jilt boy.

Would have 50% chance of zeroing 

boy’s cost.

This girl would jilt boy.

Girl’s own cost will 

definitely go to zero, even 

if boy doesn’t choose girl.

This girl would not 

jilt boy.

Would have 

50% chance of 

zeroing boy’s cost.



• case (i):  At least half of boy’s girls would jilt him.

⇒ At least half of boy’s edges will be deleted regardless of what boy does.

• case (ii):  At least half of boy’s girls would not jilt him.

⇒ Boy has at least a 50% chance of choosing a girl 
who has at least a 50% chance of zeroing his cost (deleting all his edges).

key observation:

girl would jilt boy ⇒ her cost is going to zero regardless of what boy does.

girl would not jilt boy ⇒ if boy chooses her, 
she has at least a 50% chance of zeroing boy’s cost...



• There is a simple, fast, sequential, 

online and distributed 2-approximation 

algorithm for Weighted Vertex Cover!



More general Covering Problems

Bar-Yehuda and Even’s algorithm does not 

extend to non 0/1 problems.
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Goal: Simple 2-approximation algorithm, applicable in 
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Flooding algorithm
1. Let 0.

2. While  edge ( , ) s.t. +  do:

3.         Raise  at rate 1  and  at rate 1  until + .

4. Return .
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Let      be any feasible solution.

Each step starts with a non-yet-satisfied constraint, 

so             or            .

Let                      be the min cost to increase     to full 

feasibility. 

The step increases the cost by 2β but it reduces 

by at least β 2-approximation
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Results (sequential) 

• Covering Mixed Integer Programs: Nearly linear 

time δ-approximation algorithm. Improves over the 

previous ellipsoid-based (slow) algorithm.

• Non-metric Facility Location: Linear time δ-

approximation. δ is the maximum number of 

facilities that might serve a customer. 

• Covering problems with submodular cost function

ICALP 2009



Results (online) 

• Online CMIP: δ-competitive algorithm.

• Paging, Weighted Caching, File Caching, 

Connection Caching: Generalize k-competitive 

algorithms i.e. Landlord, Harmonic, Greedy-Dual.

• Upgradable Caching: (k+d)-competitive algorithm, 

where k is the cache size and d is the number of 

upgradable parameters. 

ICALP 2009



Results (distributed) 

• Covering Mixed Integer Programs with 2 variables 

per constraint: 2-approximation in                    

rounds, where |C | is the number of constraints. 

Also, 2-approximation in RNC.

2-approximation for Weighted Vertex Cover in                 rounds.

• Covering Problems with at most δ variables 

per constraint: δ-approximation in

rounds.

2(log | |)O C

(log | |)O C

(log )O n

PODC 2009



thank you


