Distributed 2-approximation algorithm for Vertex Cover

Christos Koufogiannakis and Neal E.Young University of California, Riverside

Weighted Vertex Cover

Given a node-weighted graph, find a minimum-weight subset of the nodes, touching all the edges.

Weighted Vertex Cover

Given a node-weighted graph, find a minimum-weight subset of the nodes, touching all the edges.

Weighted Vertex Cover

Given a node-weighted graph, find a minimum-weight subset of the nodes, touching all the edges.

A sequential

2-approximation algorithm

- "Edge discount" ---
reduce edge endpoints' costs equally.
- Do edge discounts until zero-cost nodes form a cover. Return the cover formed by the zero-cost nodes.
[Bar-Yehuda and Even, I98I]

edge discount operation

Reduce both endpoints' costs equally.

edge discount operation

Reduce both endpoints' costs equally.

edge discount operation

Reduce both endpoints' costs equally.

Tuesday, February 5, 13

theorem: $\operatorname{cost}(C)$ is at most twice the minimum possible cost.
proof:
Show (i) $\operatorname{cost}(C)$ is at most twice the sum of the discounts.
(ii) The sum of the discounts is at most the optimal cost.

step (i): $\operatorname{cost}(C)$ is at most twice the sum of the discounts. proof:

$$
\sum_{v \in C} \operatorname{cost}(v)=\sum_{v \in C} \sum_{e \sim v} \operatorname{discount}(e) \leq \sum_{e \in E} 2 \operatorname{discount}(e)
$$

step (ii): Optimal cost is at least the sum of the discounts. proof:

$$
\sum_{v \in \mathrm{OPT}} \operatorname{cost}(v) \geq \sum_{v \in \mathrm{OPT}} \sum_{e \sim v} \operatorname{discount}(e) \geq \sum_{e \in E} \operatorname{discount}(e)
$$

theorem: $\operatorname{cost}(C)$ is at most twice the minimum possible cost.
proof:
(i) $\operatorname{cost}(C)$ is at most twice the sum of the discounts.
(ii) The sum of the discounts is at most the optimal cost.

next: fast distributed implementation of BY\&E algorithm

each node knows only its neighbors

distributed computation

- Proceed in rounds.
- In each round:

Each node exchanges $O(1)$ messages
with immediate neighbors,
then does some computation.
goal: Finish in a small (logarithmic) number of rounds.

Each round:

I. form independent rooted "stars"
2. coordinate discounts within stars

Done when zero-cost vertices cover all edges.
goal: Done after $O(\log n)$ rounds ($n=\#$ nodes $)$.

how to form stars

I. Each node randomly chooses to be "boy" or "girl" (just for this round).
2. For the round, use only edges from boys to higher-cost (or equal-cost) girls. (Pretend other edges don't exist.) ${ }^{\dagger}$
3. Each boy chooses a random neighbor (girl of \geq cost).
\dagger In each round, every edge has a one in four chance of being used.
(... will be used if low-cost endpoint is boy, high-cost endpoint is girl)

How to form stars:
I. Each node randomly chooses to be "boy" or "girl".
2. For the round, use only edges from boys to higher-cost (or equal-cost) girls. (Pretend other edges don't exist.)

How to form stars:
I. Each node randomly chooses to be "boy" or "girl".
2. For the round, use only edges from boys to higher-cost (or equal-cost) girls. (Pretend other edges don't exist.)

How to form stars:
I. Each node randomly chooses to be "boy" or "girl".
2. For the round, use only edges from boys to higher-cost (or equal-cost) girls. (Pretend other edges don't exist.)

How to form stars:
I. Each node randomly chooses to be "boy" or "girl".
2. For the round, use only edges from boys to higher-cost (or equal-cost) girls. (Pretend other edges don't exist.)

how girls allocate discounts

- Each girl allocates discounts greedily, in alphabetic order.
- If she partially allocates some boy's discount, then...
with probability I/2:
I. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

- Some boys may be jilted (have no chance for discount).
- Each girl allocates discounts greedily, in alphabetical order.

If she partially allocates some boy's discount, then... with probability I/2:

- Each girl allocates discounts greedily, in alphabetical order.

If she partially allocates some boy's discount, then... with probability I/2:

- If she partially allocates some boy's discount, then... with probability I/2:
I. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

50\%

- If she partially allocates some boy's discount, then... with probability I/2:
I. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

- If she partially allocates some boy's discount, then... with probability I/2:
I. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

- If she partially allocates some boy's discount, then... with probability I/2:
I. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

- If she partially allocates some boy's discount, then... with probability I/2:
I. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

- If she partially allocates some boy's discount, then... with probability I/2:
I. She revokes discounts to all other boys.

2. She allocates full discount to that boy.

each of girl's boys is either:

- jilted (girl gives no chance of any discount)
- not jilted (girl gives at least 50\% chance of discount)

each of girl's boys is either:
- jilted (girl gives no chance of any discount)
- not jilted (girl gives at least 50\% chance of discount)

not jilted.
50% chance of full discount.
definitely jilted. no chance of any discount.
each of girl's boys is either:
- jilted (girl gives no chance of any discount)
- not jilted (girl gives at least 50\% chance of discount)

recap of algorithm

in each round:
I. Each node randomly chooses to be "boy" or "girl". Only edges from boys to higher-cost girls are used.
2. To form stars, each boy chooses a random neighbor (girl).
3. To allocate discounts within stars:
(a) Each girl allocates greedily in alphabetical order.
(b) If a boy is partially allocated, with probability I/2, she gives a full discount to just that boy.

analysis

- Guaranteed to return a 2-approximate solution, since it implements the edge-discount algorithm.
- What about running time?

Goal: Show $\mathrm{O}(\log \mathrm{n})$ rounds (w.h.p.).

analysis of number of rounds

- "Delete" edges when one endpoint's cost becomes zero.
lemma: In each round, in expectation,
a constant fraction of each boy's active edges are deleted. proof: (next)
corollary: Number of rounds is $O\left(\log n^{2}\right)=O(\log n)$
in expectation and with high probability.
lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.

proof: Fix any boy.
For the analysis, condition on the random choices of all other boys. (Imagine that the boy chooses his girl after every other boy chooses.)

For each girl neighbor, what would happen if he were to choose that girl?
lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.

proof: Fix any boy.
For the analysis, condition on the random choices of all other boys. (Imagine that the boy chooses his girl after every other boy chooses.)

For each girl neighbor, what would happen if he were to choose that girl?
lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.

This girl would not jilt boy. Would have 50% chance of zeroing
boy's cost.

This girl would not jilt boy.
Would reduce boy's cost to zero.

proof: Fix any boy.
For the analysis, condition on the random choices of all other boys. (Imagine that the boy chooses his girl after every other boy chooses.)

For each girl neighbor, what would happen if he were to choose that girl?
lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.
 This girl would
not jilt boy.
Would reduce boy's cost to zero.

proof: Fix any boy.
For the analysis, condition on the random choices of all other boys. (Imagine that the boy chooses his girl after every other boy chooses.)

For each girl neighbor, what would happen if he were to choose that girl?
lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.

This girl would Wot jilt boy. Would reduce boy's cost to zero.

lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.

This girl would not jilt boy. Would have 50% chance of zeroing
boy's cost.

This girl would

 not jilt boy.Would reduce boy's cost to zero.

5

cost lu <ero.
proof: Fix any boy.
For the analysis, condition on the random choices of all other boys. (Imagine that the boy chooses his girl after every other boy chooses.)

For each girl neighbor, what would happen if he were to choose that girl?
lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.

This girl would not jilt boy. Would have 50% chance of zeroing
boy's cost.

This girl would not jilt boy.
Would reduce boy's cost to zero.

\square
5

This girl would not jilt boy.
Would have
50% chance of zeroing boy's cost .

key observation:

girl would jilt boy \Rightarrow her cost is going to zero regardless of what boy does.
girl would not jilt boy \Rightarrow if boy chooses her, she has at least a 50% chance of zeroing boy's cost...
girl would jilt boy \Rightarrow her cost is going to zero regardless of what boy does. girl would not jilt boy \Rightarrow if boy chooses her, she has at least a 50% chance of zeroing boy's cost...

case (i): At least half of boy's girls would jilt him.
\Rightarrow At least half of boy's edges will be deleted regardless of what boy does.
case (ii): At least half of boy's girls would not jilt him.
\Rightarrow Boy has at least a 50% chance of choosing a girl who has at least a 50% chance of zeroing his cost (deleting all his edges).

thank you

- deterministic $O\left(\log ^{c} n\right)$-round algorithm?

