Beating Simplex for fractional packing and covering linear programs

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

March 9, 2009

G\&K's sublinear-time algorithm for zero-sum games

Theorem (Grigoriadis and Khachiyan, 1995)

Given a two-player zero-sum $m \times n$ matrix game A with payoffs in $[-1,1]$, near-optimal mixed strategies can be computed in time

$$
O\left((m+n) \log (m n) / \varepsilon^{2}\right)
$$

Each strategy gives expected payoff within additive ε of optimal.

Matrix has size $m \times n$, so for fixed ε this is sublinear time.
The algorithm can be viewed as fictitious play, where each player plays randomly from a distribution.
The distribution gives more weight to pure strategies that are good responses to opponent's historical average play.

Takes $O\left(\log (m n) / \varepsilon^{2}\right)$ rounds, each round takes $O(m+n)$ time.

G\&K's sublinear-time algorithm for zero-sum games

Theorem (Grigoriadis and Khachiyan, 1995)

Given a two-player zero-sum $m \times n$ matrix game A with payoffs in $[-1,1]$, near-optimal mixed strategies can be computed in time

$$
O\left((m+n) \log (m n) / \varepsilon^{2}\right) .
$$

Each strategy gives expected payoff within additive ε of optimal.

Matrix has size $m \times n$, so for fixed ε this is sublinear time.
The algorithm can be viewed as fictitious play, where each player plays randomly from a distribution.
The distribution gives more weight to pure strategies that are good responses to opponent's historical average play.

Takes $O\left(\log (m n) / \varepsilon^{2}\right)$ rounds, each round takes $O(m+n)$ time.

How do LP algorithms do in practice?

Simplex, interior-point methods, ellipsoid method optimistic estimate of Simplex run time (\# basic operations):

```
(# pivots) }\times(\mathrm{ time per pivot) }\approx=5\textrm{min}(m,n)\timesm
```

m rows, n columns
Empirically, ratio (observed time / this estimate) is in [0.3,20]:

$$
\mathrm{y}=\text { actual time } / \text { estimated time }
$$

How do LP algorithms do in practice?

Simplex, interior-point methods, ellipsoid method optimistic estimate of Simplex run time (\# basic operations):

$$
(\# \text { pivots }) \times(\text { time per pivot }) \approx 5 \min (m, n) \times m n
$$

m rows, n columns
in terms of number of non-zeroes, N : $\quad(m+n \leq N \leq m n)$

- if constraint matrix is dense: time $\Theta\left(N^{1.5}\right)$
- if constraint matrix is sparse: time $\Theta\left(N^{3}\right)$

This is optimistic - can be slower if numerical issues arise. Time to find, say, .95-approximate solution is comparable. Time for interior-point seems similar (within constant factors).

We will extend G\&K to LPs with non-negative coefficients:
packing: maximize $c \cdot x$ such that $A x \leq b ; x \geq 0$ covering: minimize $b \cdot y$ such that $A^{\top} y \geq c ; y \geq 0$
... solutions with relative error ε (harder to compute):

- a feasible x with cost $\geq(1-\varepsilon) O P T$,
- a feasible y with cost $\leq(1+\varepsilon) O P T$, or
- a primal-dual pair (x, y) with $c \cdot x \geq b \cdot y /(1+\varepsilon)$.

But... isn't LP equivalent to solving a zero-sum game?

canonical packing LP
maximize $|x|_{1}$

minimize λ

$$
\begin{aligned}
A z & \leq \lambda \\
z & \geq 0 \\
|z|_{1} & =1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { solution } x^{*} \\
(\text { can be large })
\end{array} \Longleftrightarrow \text { solution } \begin{array}{l}
z^{*}=x^{*} /\left|x^{*}\right| \\
\lambda^{*}=1 /\left|x^{*}\right|
\end{array}
\end{aligned}
$$

relative error $\varepsilon \quad \Longleftrightarrow \quad$ additive error $\varepsilon /\left|x^{*}\right|$

- Straight G\&K algorithm (given $A_{i j} \in[0,1]$) requires time

$$
\left|x^{*}\right|^{2}(m+n) \log (m+n) / \varepsilon^{2}
$$

to achieve relative error ε.

Run time it will take us to get relative error ε

Worst-case time:
$n=$ rows, $m=$ columns, $N=$ non-zeros

$$
n+m \leq N \leq n m
$$

$$
O\left(N+(n+m) \log (n m) / \varepsilon^{2}\right)
$$

- This is $O(N)$ (linear) for fixed ε and slightly dense matrices.
- Really? In practice $1 / \varepsilon^{2}$ is a "constant" that matters...

$$
\begin{aligned}
& \ldots \text { for } \varepsilon \approx 1 \% \text { down to } 0.1 \%, \\
& \quad \text { "constant" } 1 / \varepsilon^{2} \text { is } 10^{4} \text { to } 10^{6} .
\end{aligned}
$$

Run time it will take us to get relative error ε

Worst-case time:

$$
n=\text { rows, } m=\text { columns, } N=\text { non-zeros }
$$

$$
n+m \leq N \leq n m
$$

$$
O\left(N+(n+m) \log (n m) / \varepsilon^{2}\right)
$$

Empirically: about $40 N+12(n+m) \log (n m) / \varepsilon^{2}$ basic ops
Empirically, ratio of (observed time / this estimate) is in [1,2]: $y=$ actual time / estimated time

Estimated speedup versus Simplex ($n \times n$ matrix)

$$
\text { estimated speedup } \approx \frac{\text { est. Simplex run time }}{\text { est. algorithm run time }} \approx \frac{\varepsilon^{2} n^{2}}{12 \ln n}
$$

Empirically, ratio (observed speedup/this estimate) is in [0.4,10]:

Slower than Simplex for small n, faster than Simplex for large n.

Estimated speedup versus Simplex ($n \times n$ matrix)

$$
\text { estimated speedup } \approx \frac{\text { est. Simplex run time }}{\text { est. algorithm run time }} \approx \frac{\varepsilon^{2} n^{2}}{12 \ln n}
$$

- Slower than Simplex for small n, faster for large n.
- Break even at about 900 rows and columns (for $\varepsilon=1 \%$).
- For larger problems, speedup grows proportionally to $n^{2} / \ln n$.
"Hours instead of days, days instead of years."

$$
\text { (with } \varepsilon=1 \% \text { and } 1 G H z C P U)
$$

Next (sketch of algorithm):

- canonical forms for packing and covering
- some smooth penalty functions
- simple gradient-based basic packing and covering algorithms
- coupling two algorithms (Grigoriadis \& Khachiyan)
- non-uniform increments (Garg \& Konemann)
- combining coupling and non-uniform increments (new)
- a random-sampling trick (new) - won't present today

packing and covering, canonical form

$$
\operatorname{maximize}_{x} \frac{|x|_{1}}{\max _{i} A_{i} x}=\mathrm{OPT}=\operatorname{minimize}_{y} \frac{|y|_{1}}{\min _{j} A_{j}^{\top} y} .
$$

A (1+ ε)-approximate primal-dual pair: $x \geq 0, y \geq 0$ with

$$
\frac{|x|_{1}}{\max _{i} A_{i} x} \geq(1-O(\varepsilon)) \times \frac{|y|_{1}}{\min _{j} A_{j}^{\top} y}
$$

A - constraint matrix (rows $i=1 . . m$, columns $j=1 . . n$)
$|x|$ - size (1-norm), $\sum_{j} x_{j}$
$A_{i} x$ - left-hand side of i th packing constraint
$A_{j}^{\top} y$ - left-hand side of j th covering constraint

smooth estimates of max and min

Define $\operatorname{smax}\left(z_{1}, z_{2}, \ldots, z_{m}\right)=\ln \sum_{i} e^{z_{i}}$.

1. smax approximates max within an additive $\ln m$:

$$
\left|\operatorname{smax}\left(z_{1}, z_{2}, \ldots, z_{m}\right)-\max _{i} z_{i}\right| \leq \ln m .
$$

2. smax is $(1+\varepsilon)$-smooth within an ε-neighborhood:

$$
\begin{aligned}
& \text { If each } d_{i} \leq \varepsilon \text {, then } \\
& \operatorname{smax}(z+d) \leq \operatorname{smax}(z)+(1+\varepsilon) d \cdot \nabla \operatorname{smax}(z)
\end{aligned}
$$

analogous estimate of min:

$$
\operatorname{smin}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=-\ln \sum_{i} e^{-z_{i}} \ldots \geq \min _{j} z_{j}-\ln n
$$

Packing algorithm, assuming each $A_{i j} \in[0,1]$

1. $x \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
3. Let vector $p=\nabla \operatorname{smax}(A x)$.
4. Choose j minimizing $A_{j}^{\top} p$. (=derivative of $\operatorname{smax} A x$ w.r.t. $\left.x_{j}\right)$
5. Increase x_{j} by ε.
6. return x (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(??), 1990's)
Alg. returns $(1+O(\varepsilon))$-approximate packing solution.

Proof.

In each iteration, since $A_{i j} \in[0,1]$, each $A_{i x}$ increases by $\leq \varepsilon$. Using smoothness of smax, show invariant

$$
\operatorname{smax} A x \leq \ln m+(1+O(\varepsilon)) \frac{|x|}{\mathrm{OPT}} \cdots
$$

Covering algorithm, assuming each $A_{i j} \in[0,1]$

1. $y \leftarrow 0$
2. while $\min _{j} A_{j}^{\top} y \leq \ln (n) / \varepsilon$ do:
3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i maximizing $A_{i} q$. (= derivative of $\operatorname{smin} A^{\top} y$ w.r.t. y_{i})
5. Increase y_{i} by ε.
6. return y (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(??), 1990's)
Alg. returns $(1-O(\varepsilon))$-approximate covering solution.

Proof.
Similar invariant:

$$
\operatorname{smin} A^{\top} y \geq-\ln m+(1-O(\varepsilon)) \frac{|y|}{\mathrm{OPT}} \ldots
$$

The two algorithms ...

```
packing
1. }x\leftarrow
2. while maxi}\mp@subsup{A}{i}{}x\leq\operatorname{ln}(m)/\varepsilon do
3. Let vector }p=\nabla\operatorname{smax}(Ax)\mathrm{ .
4. Choose j minimizing }\mp@subsup{A}{j}{\top}p\mathrm{ .
5. Increase }\mp@subsup{x}{j}{}\mathrm{ by }\varepsilon\mathrm{ .
```


covering

1. $y \leftarrow 0$
2. while $\min _{j} A_{j}^{\top} y \leq \ln (n) / \varepsilon$ do:
3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i maximizing $A_{i} q$.
5. Increase y_{i} by ε.

The two algorithms ... coupled.

packing	covering \quad (coupled)
1. $x \leftarrow 0$	1. $y \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ do:	2. while $\min _{j} A_{j}^{\top} y \leq \ln (n m) / \varepsilon$ do:
3. Let vector $p=\nabla \operatorname{smax}(A x)$.	3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose j minimizing $\Lambda_{j}^{\top} p$	4. Choose i maximizing $A_{i} q$.
\quad randomly from distribution $q /\|q\|$.	randomly from distribution $p /\|p\|$.
5. Increase x_{j} by ε.	5. Increase y_{i} by ε.

The two algorithms ... coupled.

| packing | covering \quad (coupled) |
| :--- | :--- | :--- |
| 1. $x \leftarrow 0$ | 1. $y \leftarrow 0$ |
| 2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ do: | 2. while $\min _{j} A_{j}^{\top} y \leq \ln (n m) / \varepsilon$ do: |
| 3. Let vector $p=\nabla \operatorname{smax}(A x)$. | 3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$. |
| 4. Choose j minimizing $\Lambda_{j}^{\top} p$ | 4. Choose i maximizing $A_{i} q$. |
| \quad randomly from distribution $q /\|q\|$. | randomly from distribution $p /\|p\|$. |
| 5. Increase x_{j} by ε. | 5. Increase y_{i} by ε. |

packing

1. $x \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ do:
3. Let vector $p=\nabla \operatorname{smax}(A x)$.
4. Choose j minimizing $\Lambda_{j}^{\top} p$ randomly from distribution $q /|q|$.
5. Increase x_{j} by ε.

covering

1. $y \leftarrow 0$
2. while $\min _{j} A_{j}^{\top} y \leq \ln (n m) / \varepsilon$ do:
3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i maximizing $A_{i} q$.
randomly from distribution $p /|p|$.
5. Increase y_{i} by ε.

Theorem (\approx Grigoriadis \& Khachiyan, 1995)
W.h.p., alg. returns $(1+O(\varepsilon))$-approximate primal-dual pair (x, y).

Proof.
Invariants:

$$
|x|=|y|
$$

in expectation: $\operatorname{smax} A x \leq \ln n+\ln m+(1+O(\varepsilon)) \operatorname{smin} A^{\top} y$

Why couple?

packing
 1. $x \leftarrow 0$

2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
3. Let vector $p=\nabla \operatorname{smax}(A x)$.
4. Choose j minimizing $A_{j}^{\top} p$.
5. Increase x_{j} by ε.

Packing without coupling:

covering

1. $y \leftarrow 0$
2. while $\min _{j} A_{j}^{\top} y \leq \ln (n) / \varepsilon$ do:
3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i maximizing $A_{i} q$.
5. Increase y_{i} by ε.

A
 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0

Why couple? Consider implementing each iteration...

packing
 1. $x \leftarrow 0$
 2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
 3. Let vector $p=\nabla \operatorname{smax}(A x)$.
 4. Choose j minimizing $A_{j}^{\top} p$.
 5. Increase x_{j} by ε.

```
covering
1. }y\leftarrow
2. while }\mp@subsup{\operatorname{min}}{j}{}\mp@subsup{A}{j}{\top}y\leq\operatorname{ln}(n)/\varepsilon do
3. Let vector q=\nabla smin}(\mp@subsup{A}{}{\top}y)\mathrm{ .
4. Choose i maximizing }\mp@subsup{A}{i}{}q\mathrm{ .
5. Increase }\mp@subsup{y}{i}{}\mathrm{ by }\varepsilon\mathrm{ .
```

Packing without coupling: note: $p_{i} \propto e^{A_{i x}}$.
A

x_{3}				
0	1	1	0	
0	1	0	1	
1	0	0	1	
1	0	1	0	

Why couple? Consider implementing each iteration...

packing
 1. $x \leftarrow 0$
 2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
 3. Let vector $p=\nabla \operatorname{smax}(A x)$.
 4. Choose j minimizing $A_{j}^{\top} p$.
 5. Increase x_{j} by ε.

```
covering
1. }y\leftarrow
2. while min
3. Let vector q=\nabla smin}(\mp@subsup{A}{}{\top}y)\mathrm{ .
4. Choose i maximizing }\mp@subsup{A}{i}{}q\mathrm{ .
5. Increase }\mp@subsup{y}{i}{}\mathrm{ by }\varepsilon\mathrm{ .
```

Packing without coupling: note: $p_{i} \propto e^{A_{i} x}$.

A				
\times_{3}				
0	1	1	0	$A_{1 \times}$
0	1	0	1	
1	0	0	1	
1	0	1	0	$A_{4} \times$

Why couple? Consider implementing each iteration...

packing
 1. $x \leftarrow 0$
 2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
 3. Let vector $p=\nabla \operatorname{smax}(A x)$.
 4. Choose j minimizing $A_{j}^{\top} p$.
 5. Increase x_{j} by ε.

covering

1. $y \leftarrow 0$
2. while $\min _{j} A_{j}^{\top} y \leq \ln (n) / \varepsilon$ do:
3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i maximizing $A_{i} q$.
5. Increase y_{i} by ε.

Packing without coupling: note: $p_{i} \propto e^{A_{i} x}$.

A				
${ }^{3}$				
0	1	1	0	$A_{1} X$
0	1	0	1	
1	0	0	1	
1	0	1	0	$A_{4} x$
$A_{1}^{\top} p$	$A_{2}^{\top} p$	$A_{3}^{\top} p$		

Why couple? Consider implementing each iteration...

packing
 1. $x \leftarrow 0$
 2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
 3. Let vector $p=\nabla \operatorname{smax}(A x)$.
 4. Choose j minimizing $A_{j}^{\top} p$.
 5. Increase x_{j} by ε.

covering

1. $y \leftarrow 0$
2. while $\min _{j} A_{j}^{\top} y \leq \ln (n) / \varepsilon$ do:
3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i maximizing $A_{i} q$.
5. Increase y_{i} by ε.

Packing without coupling: note: $p_{i} \propto e^{A_{i} x}$.

A				
${ }^{3}$				
0	1	1	0	$A_{1} X$
0	1	0	1	
1	0	0	1	
1	0	1	0	$A_{4} x$
$A_{1}^{\top} p$	$A_{2}^{\top} p$	$A_{3}^{\top} p$		

Why couple? Consider implementing each iteration...

packing	covering \quad (coupled)
1. $x \leftarrow 0$	1. $y \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ do:	2. while $\min _{j} A_{j}^{\top} y \leq \ln (n m) / \varepsilon$ do:
3. Let vector $p=\nabla \operatorname{smax}(A x)$.	3. Let vector $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose j minimizing $\Lambda_{j}^{\top} p$	4. Choose i maximizing $A_{i} q$.
\quad randomly from distribution $q /\|q\|$.	5. Increase y_{i} by ε.

Packing without coupling: note: $p_{i} \propto e^{A_{i} x}$. x_{j} increases
$\Longrightarrow p_{i}$ increases for i with $A_{i j}>0$
$\Longrightarrow A_{j^{\prime}}^{\top} p$ increases for many j^{\prime}.
Update takes time $\Theta(N)$ (=\#non-zeros).
Packing with coupling:
Maintain only p.

		x_{3}		
0	1	1	0	$A_{1} X$
0	1	0	1	
1	0	0	1	
1	0	1	0	$A_{4} x$
$A_{1}^{\top} p$	$A_{2}^{\top} p$	$A_{3}^{\top} p$		

Update takes time $O(m)$ (=\#constraints).

Bounding the iterations ...

1. $x \leftarrow 0$
packing
2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
3. Let vector p by $p_{i}=e^{A_{i} x}$.
4. Choose j minimizing $A_{j}^{\top} p$
5. Increase x_{j} by ε.

Bounding the iterations using non-uniform increments

1. $x \leftarrow 0$ packing (general A)
2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
3. Let vector p by $p_{i}=e^{A_{i} x}$.
4. Choose j minimizing $A_{j}^{\top} p$
5. Increase x_{j} by ε.
by δ_{j} such that max. increase in any $A_{i x}$ is ε.

Bounding the iterations using non-uniform increments

1. $x \leftarrow 0$
packing (general A)
2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
3. Let vector p by $p_{i}=e^{A_{i} x}$.
4. Choose j minimizing $A_{j}^{\top} p$
5. Increase x_{j} by ε.
by δ_{j} such that max. increase in any $A_{i} x$ is ε.

Theorem (Garg-Konemann, 1998)
Alg. returns $(1+O(\varepsilon))$-approximate packing solution in at most $m \ln (m) / \varepsilon^{2}$ iterations. ($m=\#$ packing constraints)

Bounding the iterations using non-uniform increments

1. $x \leftarrow 0$
packing (general A)
2. while $\max _{i} A_{i} x \leq \ln (m) / \varepsilon$ do:
3. Let vector p by $p_{i}=e^{A_{i} x}$.
4. Choose j minimizing $A_{j}^{\top} p$
5. Increase x_{j} by ε.
by δ_{j} such that max. increase in any $A_{i} x$ is ε.

Theorem (Garg-Konemann, 1998)
Alg. returns $(1+O(\varepsilon))$-approximate packing solution in at most $m \ln (m) / \varepsilon^{2}$ iterations. ($m=\#$ packing constraints)

Proof of iteration bound.
Charge each iteration to an increase in some $A_{i} x$.

Covering algorithm with non-uniform increments

1. $y \leftarrow 0$
covering (general A)
2. while $\min _{j} A_{j}^{\top} y \leq \ln (n) / \varepsilon$ do:
3. Let vector q by $q_{j}=e^{-A_{j}^{\top} y}$.
4. Choose i maximizing $A_{i} q$.
5. Increase y_{i} by δ_{i} such that max. increase in any $A_{j}^{\top} y$ is ε.
6. Delete all covering constraints such that $A_{j}^{\top} y \geq \ln (n) / \varepsilon$.

Theorem (Konemann (?), 1998)
Alg. returns $(1-O(\varepsilon))$-approximate covering solution in at most $n \ln (n) / \varepsilon^{2}$ iterations. ($n=\#$ covering constraints)

Proof (of iteration bound).
Charge each iteration to an increase in some non-deleted $A_{j}^{\top} y . \quad \square$

Coupled algorithm ...

coupled

1. $x \leftarrow 0, y \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ or $\min _{j} A_{j}^{\top} y \leq \ln (m n) / \varepsilon$ do:
3. Let vectors $p=\nabla \operatorname{smax}(A x)$ and $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i and j from distributions $p /|p|$ and $q /|q|$, resp.
5. Increase x_{j} and y_{i} by ε.

Coupled algorithm ... with non-uniform increments

coupled

1. $x \leftarrow 0, y \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ or $\min _{j} A_{j}^{\top} y \leq \ln (m n) / \varepsilon$ do:
3. Let vectors $p=\nabla \operatorname{smax}(A x)$ and $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i and j from distributions $p /|p|$ and $q /|q|$, resp.
5. Increase x_{j} and y_{i} by ε.
by $\delta_{i j}$, so max increase in any $A_{i} x$ or $A_{j}^{\top} y$ is ε.
6. Delete all covering constraints such that $A_{j}^{\top} y \geq \ln (m n) / \varepsilon$.

Coupled algorithm ... with non-uniform increments

coupled

1. $x \leftarrow 0, y \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ or $\min _{j} A_{j}^{\top} y \leq \ln (m n) / \varepsilon$ do:
3. Let vectors $p=\nabla \operatorname{smax}(A x)$ and $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i and j from distributions $p /|p|$ and $q /|q|$, resp. joint distribution $\propto p_{i} q_{j} / \delta_{i j}$
5. Increase x_{j} and y_{i} by ε.
by $\delta_{i j}$, so max increase in any $A_{i} x$ or $A_{j}^{\top} y$ is ε.
6. Delete all covering constraints such that $A_{j}^{\top} y \geq \ln (m n) / \varepsilon$.

Coupled algorithm ... with non-uniform increments

coupled

1. $x \leftarrow 0, y \leftarrow 0$
2. while $\max _{i} A_{i} x \leq \ln (m n) / \varepsilon$ or $\min _{j} A_{j}^{\top} y \leq \ln (m n) / \varepsilon$ do:
3. Let vectors $p=\nabla \operatorname{smax}(A x)$ and $q=\nabla \operatorname{smin}\left(A^{\top} y\right)$.
4. Choose i and j from distributions $p /|p|$ and $q /|q|$, resp. joint distribution $\propto p_{i} q_{j} / \delta_{i j}$
5. Increase x_{j} and y_{i} by ε.
by $\delta_{i j}$, so max increase in any $A_{i} x$ or $A_{j}^{\top} y$ is ε.
6. Delete all covering constraints such that $A_{j}^{\top} y \geq \ln (m n) / \varepsilon$.

Theorem (KY, 2007)
W.h.p., alg. returns $(1+O(\varepsilon))$-approximate primal-dual pair (x, y) in time $O\left(N+(m+n) \log (m n) / \varepsilon^{2}\right)$.
(Iterations: $(m+n) \log (m n) / \varepsilon^{2}$.)

Summary

Grigoriadis and Khachiyan's sublinear-time algorithm for games

+ Garg/Konemann's non-uniform increments
+ a random-sampling trick

Theorem (KY, 2007)
For fractional packing and covering, solutions with relative error ε
can be computed in time proportional to

$$
\# \text { non-zeros }+\frac{(\# \text { rows }+ \text { cols }) \log (\# \text { non-zeros })}{\varepsilon^{2}}
$$

"Hours instead of days, days instead of years."

$$
(w / \varepsilon=0.01 \text { and } 1 G H z C P U)
$$

Possible directions

- positive LPs with both packing and covering constraints?
- improve Luby/Nisan's parallel algorithm (1993) to $1 / \varepsilon^{3}$?
- extend to implicitly defined problems, e.g. multicommodity flow?

Comments? Questions?

