Beating Simplex for fractional packing and
covering linear programs

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

March 9, 2009

G&K's sublinear-time algorithm for zero-sum games

Theorem (Grigoriadis and Khachiyan, 1995)

Given a two-player zero-sum m X n matrix game A with payoffs in
[—1, 1], near-optimal mixed strategies can be computed in time

O((m + n) log(mn)/&?).

Each strategy gives expected payoff within additive € of optimal.

Matrix has size m x n, so for fixed ¢ this is sublinear time.

The algorithm can be viewed as fictitious play,

where each player plays randomly from a distribution.

The distribution gives more weight to pure strategies

that are good responses to opponent'’s historical average play.

Takes O(log(mn)/e?) rounds, each round takes O(m + n) time.

G&K's sublinear-time algorithm for zero-sum games

Theorem (Grigoriadis and Khachiyan, 1995)

Given a two-player zero-sum m X n matrix game A with payoffs in
[—1, 1], near-optimal mixed strategies can be computed in time

O((m + n) log(mn)/&?).

Each strategy gives expected payoff within additive € of optimal.

Matrix has size m x n, so for fixed ¢ this is sublinear time.

The algorithm can be viewed as fictitious play,

where each player plays randomly from a distribution.

The distribution gives more weight to pure strategies

that are good responses to opponent'’s historical average play.

Takes O(log(mn)/e?) rounds, each round takes O(m + n) time.

How do LP algorithms do in practice?
Simplex, interior-point methods, ellipsoid method
optimistic estimate of Simplex run time (# basic operations):
(# pivots) x (time per pivot) &~ 5min(m, n) X mn

m rows, n columns

Empirically, ratio (observed time / this estimate) is in [0.3,20]:

y = actual time / estimated time

100

10

Rz os
TRIOCERO

ST

0.1
1 10 100 1000

x = estimated time for simplex

How do LP algorithms do in practice?
Simplex, interior-point methods, ellipsoid method
optimistic estimate of Simplex run time (# basic operations):

(# pivots) x (time per pivot) &~ 5min(m, n) X mn

m rows, n columns

in terms of number of non-zeroes, N\: (m+n<N< mn)
> if constraint matrix is dense: time ©(N5)

» if constraint matrix is sparse: time ©(N3)

This is optimistic — can be slower if numerical issues arise.
Time to find, say, .95-approximate solution is comparable.
Time for interior-point seems similar (within constant factors).

We will extend G&K to LPs with non-negative coefficients:

packing: maximize ¢ - x such that Ax < b; x>0

covering: minimize b- y such that A’y > ¢; y >0
. solutions with relative error € (harder to compute):
» a feasible x with cost > (1 —¢)OPT,

>
» a feasible y with cost < (14 ¢)OPT, or
» a primal-dual pair (x, y) with c-x > b-y/(1+¢).

But... isn't LP equivalent to solving a zero-sum game?

canonical packing LP equivalent game
maximize |x|, minimize \
<
Ax < 1 Az < A
x > 0 z > 0
|Z|1 = 1
solution x* 25 = x* [|x*|
can be large <= solution
(can be faree) x =1/hc
relative error € <= additive error £ /|x*|

> Straight G&K algorithm (given Aj; € [0,1]) requires time

x*[>(m + n)log(m + n)/&?

to achieve relative error ¢.

Run time it will take us to get relative error ¢

Worst-case time: n = rows, m = columns, N = non-zeros
n+m<N<nm
O(N + (n+ m)log(nm)/e?)

» This is O(N) (linear) for fixed ¢ and slightly dense matrices.

» Really? In practice 1/¢2 is a “constant” that matters...

... for e = 1% down to 0.1%,
“constant” 1/¢2 is 10% to 10°.

Run time it will take us to get relative error ¢

Worst-case time: n = rows, m = columns, N = non-zeros
n+m<N<nm
O(N + (n+ m)log(nm)/e?)

Empirically: about 40N 4 12(n 4 m)log(nm)/c? basic ops

Empirically, ratio of (observed time / this estimate) is in [1,2]:
y = actual time / estimated time

0
2
0

1.8
16 & ?5@ 0
14 Q0 %@ o 0
Lo BE Ve 00

1 NECAN
0.8

1 100 1000

x = estimated time

Estimated speedup versus Simplex (n x n matrix)

est. Simplex run time e2n?

estimated speedup ~ L . ~
2 2 est. algorithm run time 12 Inn

Empirically, ratio (observed speedup/this estimate) is in [0.4,10]:

_ _ actual speedup
estimated speedup

100
10
2
® %@@ %%@%@%% @g@@
1 0@@ %Q@b o) 05 8W I
0 o@ RIS
0.1
1 10 100 1000

x = estimated alg time

Slower than Simplex for small n, faster than Simplex for large n.

(1] N D T Y o I L T I Al 4 |

Estimated speedup versus Simplex (n x n matrix)

est. Simplex run time e2n?

estimated speedup ~ L . ~
2 2 est. algorithm run time 12 Inn

» Slower than Simplex for small n, faster for large n.
> Break even at about 900 rows and columns (for ¢ = 1%).

» For larger problems, speedup grows proportionally to n?/In n.

“Hours instead of days, days instead of years.”
(with € = 1% and 1GHz CPU)

Next (sketch of algorithm):

vV V.V vV VvV VY

canonical forms for packing and covering

some smooth penalty functions

simple gradient-based basic packing and covering algorithms
coupling two algorithms (Grigoriadis & Khachiyan)
non-uniform increments (Garg & Konemann)

combining coupling and non-uniform increments (new)

a random-sampling trick (new) — won't present today

packing and covering, canonical form

maximize = OPT = minimize, ——— | |1

max; A;jx min; AT
A (1 + e)-approximate primal-dual pair. x > 0, y > 0 with

> (1-0(¢)) x vl

max; A;x min; AJTy'

A — constraint matrix (rows i = 1..m, columns j = 1..n)
x| = size (1-norm), >, x;
Aix — left-hand side of ith packing constraint

AJTy — left-hand side of jth covering constraint

smooth estimates of max and min

Define smax(z1, 2z2,...,2zm) =1In)_; 7.

1. smax approximates max within an additive In m:

|smax(z1, 22, ...,2m) — maxz| < Inm.
1

2. smax is (1 + &)-smooth within an e-neighborhood:
If each d; < ¢, then

smax(z + d) < smax(z) + (1 +¢)d - Vsmax(z)

analogous estimate of min:

smin(z1,22,...,27) = —In) ;€7 ... >minjz —Inn

Packing algorithm, assuming each A; € [0, 1]

1. x<—0

2. while max; A;x < In(m)/e do:

3. Let vector p = Vsmax(Ax).

4 Choose j minimizing AJTp. (=derivative of smax Ax w.r.t. x;)
5. Increase x; by e.

6. return x (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(??), 1990's)
Alg. returns (1 4+ O(e))-approximate packing solution.

Proof.
In each iteration, since Aj; € [0,1], each A;x increases by < .
Using smoothness of smax, show invariant

x|
smaxAx < Inm—i-(l—i-O(s))ﬁ... 0

Covering algorithm, assuming each A; € [0, 1]

1. y<0

2. while min; Afy <In(n)/e do:

3 Let vector g = Vsmin(ATy).

4. Choose i maximizing A;q. (= derivative of smin Ay w.r.t. y;)
5 Increase y; by €.

6. return y (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(?7), 1990's)

Alg. returns (1 — O(e))-approximate covering solution.

Proof.

Similar invariant:

ly|

inAly > — -
sminA'y > —Inm+(1 (5))OPT

The two algorithms ...

packing
1.x<0

3. Let vector p = Vsmax(Ax).
4. Choose j minimizing Afp .
5. lIncrease x; by e.

2. while max; A;x < In(m)/e do:

covering

1. y<20

2. while min; Ajy <In(n)/e do:
3. Let vector g= Vsmin(ATy).
4. Choose i maximizing A;q.

5. Increase y; by €.

The two algorithms ... coupled.

packing

1.x<0

2. while max; A;x < In(mn)/e do:

3. Let vector p = Vsmax(Ax).

4. Choose j minimizingAlp
randomly from distribution q/lql.

5. lIncrease x; by e.

covering (coupled)

1.

el N

o

y <0

while min; ATy <In(nm)/e do:

Let vector g= Vsmin(A'y).

Choose i maximizingAg-
randomly from distribution p/|p|.

Increase y; by ¢.

The two algorithms ... coupled.

packing covering (coupled)

1.x«—0 1. y<—20

2. while max; A;x < In(mn)/e do: while min; ATy <In(nm)/e do:

3. Let vector p = Vsmax(Ax). Let vector g= Vsmin(A'y).

4. Choose j minimizing AP Choose i maximizingAg-
randomly from distribution q/lql. randomly from distribution p/|p|.

5. lIncrease x; by e. Increase y; by ¢.

el N

o

Theorem (= Grigoriadis & Khachiyan, 1995)
W.h.p., alg. returns (1 + O(e))-approximate primal-dual pair (x,y).

Proof.

Invariants: x| =yl
in expectation: smaxAx < Inn+Inm + (14 O(g))smin ATy

O

Why couple?

packing
1.x«—0

3. Let vector p = Vsmax(Ax).
4. Choose j minimizing Afp .
5. lIncrease x; by e.

2. while max; A;x < In(m)/e do:

covering

1. y<20

2. while min; Ajy <In(n)/e do:
3. Let vector g= Vsmin(ATy).
4. Choose i maximizing A;q.

5. Increase y; by €.

Packing without coupling:

A

== O O
O O = =
= O o
oL~ O

Why couple? Consider implementing each iteration...

packing

1.x<0

2. while max; A;x < In(m)/e do:
3. Let vector p = Vsmax(Ax).
4. Choose j minimizing Afp .
5. lIncrease x; by e.

covering

1. y<20

2. while min; Ajy <In(n)/e do:
3. Let vector g= Vsmin(ATy).
4. Choose i maximizing A;q.
5. Increase y; by €.

Packing without coupling: note: p; oc X, A

Xj increases

X

w

== O O
O O = =
= O o
O Rk O

Why couple? Consider implementing each iteration...

packing

1.x<0

2. while max; A;x < In(m)/e do:
3. Let vector p = Vsmax(Ax).
4. Choose j minimizing Afp .
5. lIncrease x; by e.

covering
1. y<20

2. while min; Ajy <In(n)/e do:

3. Let vector g= Vsmin(A'y).
4. Choose i maximizing A;q.
5. Increase y; by €.

Packing without coupling: note: p; oc e, A

Xj increases
= pj increases for / with A; >0

== O O
O K
l—\OOI—‘&S
oMM O

A1X

A4X

Why couple? Consider implementing each iteration...

packing

1.x<0

2. while max; A;x < In(m)/e do:
3. Let vector p = Vsmax(Ax).
4. Choose j minimizing Afp .
5. lIncrease x; by e.

covering

1. y<20

2. while min; Ajy <In(n)/e do:
3. Let vector g= Vsmin(ATy).
4. Choose i maximizing A;q.
5. Increase y; by €.

Packing without coupling: note: p; oc e, A

Xj increases
= pj increases for / with A; >0
= A p increases for many j'.

X3
0 1 1 0]Ax
0 1 0 1
1 0 o0 1
1 0 1 0]Ax
Alp Aip Aip

Why couple? Consider implementing each iteration...

packing

1.x<0

2. while max; A;x < In(m)/e do:
3. Let vector p = Vsmax(Ax).
4. Choose j minimizing Afp .
5. lIncrease x; by e.

covering

1. y<20

2. while min; Ajy <In(n)/e do:
3. Let vector g= Vsmin(ATy).
4. Choose i maximizing A;q.
5. Increase y; by €.

Packing without coupling: note: p; oc e, A

Xj increases
= pj increases for / with A; >0
= A p increases for many j'.

Update takes time ©(N) (=#non-zeros).

X3
0 1 1 0]Ax
0 1 0 1
1 0 o0 1
1 0 1 0]Ax
Alp Aip Aip

Why couple? Consider implementing each iteration...

packing covering (coupled)
1.x«—0 1. y<—20
2. while max; A;x < In(mn)/e do: 2. while min; Aly <In(nm)/e do:
3. Let vector p = Vsmax(Ax). 3. Let vector g= Vsmin(A'y).
4. Choose j minimizing AP 4. Choose | wmaximizingAg-
randomly from d|str|but|on q/lql. randomly from distribution p/|p].
5. lIncrease x; by e. 5. Increase y; by €.
Packing without coupling: note: p; o< e, A
X; increases X3
= p; increases for / with A; >0 0 1 1 0] Ax
= A} p increases for many J. 0 1 0 1
Update takes time ©(N) (=#non-zeros). 1 0 0 1
Packing with coupling: 1 0 L 0] Ax
& Pine AP Ap Asp

Maintain only p.
Update takes time O(m) (=#constraints).

Bounding the iterations ...

x 0 packing
while max; Ajx < In(m)/e do:

Let vector p by p; = e®*.
Choose j minimizing AJTp
Increase x; by e.

Ol & W N

Bounding the iterations using non-uniform increments

.x+<0 packing (general A)
. while max; Ajx < In(m)/e do:

A,-x_

Choose j minimizing AJTp

Increase x; by-=-

by ¢; such that max. increase in any A;x is e.

1
2
3. Let vector p by p; =€
4
5

Bounding the iterations using non-uniform increments

.x+<0 packing (general A)
. while max; Ajx < In(m)/e do:

A,-x_

Choose j minimizing AJTp

Increase x; by-=-

by ¢; such that max. increase in any A;x is e.

1
2
3. Let vector p by p; =€
4
5

Theorem (Garg-Konemann, 1998)
Alg. returns (1 4+ O(e))-approximate packing solution
in at most mln(m)/e? iterations. (m =# packing constraints)

Bounding the iterations using non-uniform increments

1. x<0 packing (general A)
2. while max; Aix < In(m)/e do:

3. Let vector p by p; = e/,

4. Choose j minimizing AJTp

5. Increase x; by =

by ¢; such that max. increase in any A;x is e.

Theorem (Garg-Konemann, 1998)

Alg. returns (1 + O(g))-approximate packing solution
in at most mln(m)/e? iterations. (m =# packing constraints)

Proof of iteration bound.
Charge each iteration to an increase in some A;x. O

Covering algorithm with non-uniform increments

1. y<0 covering (general A)
2. while min; ATy <In(n)/e do;
3. Let vector g by g; = e Y.

Choose i maximizing A;q.
Increase y; by §; such that max. increase in any AJTy is €.

o @ g>

Delete all covering constraints such that ATy > In(n)/e.

Theorem (Konemann (7), 1998)
Alg. returns (1 — O(e))-approximate covering solution

in at most nin(n)/e? iterations. (n =# covering constraints)

Proof (of iteration bound).

Charge each iteration to an increase in some non-deleted AJTy. O

Coupled algorithm ...

coupled

1.x+—0,y<0

2. while max; Aix < In(mn)/e or min; Ajy < In(mn)/e do:
3. Let vectors p = Vsmax(Ax) and g = Vsmin(ATy).

4. Choose i and j from distributions p/|p| and q/|q|, resp.

5. Increase x; and y; by €.

Coupled algorithm ... with non-uniform increments

coupled

1.x+—0,y<0

2. while max; Aix < In(mn)/e or min; Ajy < In(mn)/e do:
3. Let vectors p = Vsmax(Ax) and g = Vsmin(ATy).

4. Choose i and j from distributions p/|p| and q/|q|, resp.

5. Increase x; and y; by =
by jj, so max increase in any A;x or AJTy is €.

6. Delete all covering constraints such that Ajy > In(mn)/e.

Coupled algorithm ... with non-uniform increments

coupled
1.x+—0,y<0
2. while max; Aix < In(mn)/e or min; Ajy < In(mn)/e do:
3. Let vectors p = Vsmax(Ax) and g = Vsmin(ATy).
4. Choose i and j from distributions—p/pland-g/tgl—resp-
joint distribution o< pjq;/d;
5. Increase x; and y; by =
by ¢jj, so max increase in any A;x or AJTy is €.

6. Delete all covering constraints such that Ajy > In(mn)/e.

Coupled algorithm ... with non-uniform increments

coupled

1.x+—0,y<0

2. while max; Aix < In(mn)/e or min; Ajy < In(mn)/e do:
3. Let vectors p = Vsmax(Ax) and g = Vsmin(ATy).

4. Choose i and j from distributions—p/pland-g/tgl—resp-

joint distribution o< pjq;/d;

5. Increase x; and y; by =
by ¢jj, so max increase in any A;x or AJTy is €.

6. Delete all covering constraints such that Ajy > In(mn)/e.

Theorem (KY, 2007)

W.h.p., alg. returns (1 + O(g))-approximate primal-dual pair (x, y)
in time O(N + (m + n) log(mn)/&?).

(Iterations: (m + n)log(mn)/e2.)

Summary

Grigoriadis and Khachiyan's sublinear-time algorithm for games
+ Garg/Konemann's non-uniform increments

+ a random-sampling trick

Theorem (KY, 2007)

For fractional packing and covering,
solutions with relative error ¢
can be computed in time proportional to

(#rows + cols) log(#non-zeros)
€2 '

#non-zeros +

“Hours instead of days, days instead of years.”
(w/ e =0.01 and 1GHz CPU)

Possible directions

» positive LPs with both packing and covering constraints?
» improve Luby/Nisan’s parallel algorithm (1993) to 1/£37?

» extend to implicitly defined problems,
e.g. multicommodity flow?

Comments? Questions?

	introduction
	Running time versus Simplex
	basic packing algorithm

