Beating Simplex for fractional packing and covering linear programs

Christos Koufogiannakis and Neal E. Young University of California, Riverside

March 9, 2009

G&K's sublinear-time algorithm for zero-sum games

Theorem (Grigoriadis and Khachiyan, 1995)

Given a two-player zero-sum $m \times n$ matrix game A with payoffs in [-1,1], near-optimal mixed strategies can be computed in time

 $O((m+n)\log(mn)/\varepsilon^2).$

Each strategy gives expected payoff within additive ε of optimal.

Matrix has size $m \times n$, so for fixed ε this is **sublinear** time.

The algorithm can be viewed as fictitious play, where each player plays randomly from a distribution. The distribution gives more weight to pure strategies that are good responses to opponent's historical average play.

Takes $O(\log(mn)/\varepsilon^2)$ rounds, each round takes O(m+n) time.

G&K's sublinear-time algorithm for zero-sum games

Theorem (Grigoriadis and Khachiyan, 1995)

Given a two-player zero-sum $m \times n$ matrix game A with payoffs in [-1,1], near-optimal mixed strategies can be computed in time

 $O((m+n)\log(mn)/\varepsilon^2).$

Each strategy gives expected payoff within additive ε of optimal.

Matrix has size $m \times n$, so for fixed ε this is **sublinear** time.

The algorithm can be viewed as fictitious play, where each player plays randomly from a distribution. The distribution gives more weight to pure strategies that are good responses to opponent's historical average play.

Takes $O(\log(mn)/\varepsilon^2)$ rounds, each round takes O(m+n) time.

How do LP algorithms do in practice?

Simplex, interior-point methods, ellipsoid method

optimistic estimate of Simplex run time (# basic operations):

(# pivots) × (time per pivot) $\approx 5 \min(m, n) \times mn$

m rows, *n* columns

Empirically, ratio (observed time / this estimate) is in [0.3,20]:

How do LP algorithms do in practice?

Simplex, interior-point methods, ellipsoid method

optimistic estimate of Simplex run time (# basic operations):

(# pivots) × (time per pivot) $\approx 5 \min(m, n) \times mn$ m rows, n columns

in terms of number of non-zeroes, N: $(m + n \le N \le m n)$

- if constraint matrix is dense: time $\Theta(N^{1.5})$
- if constraint matrix is sparse: time $\Theta(N^3)$

This is optimistic — can be slower if numerical issues arise. Time to find, say, .95-*approximate* solution is comparable. Time for interior-point seems similar (within constant factors).

We will extend G&K to LPs with non-negative coefficients:

packing:	maximize $c \cdot x$ such that $Ax \leq b$; $x \geq 0$
covering:	minimize $b \cdot y$ such that $A^{T} y \geq c$; $y \geq 0$

... solutions with *relative* error ε (harder to compute):

- a feasible x with cost $\geq (1 \varepsilon)OPT$,
- ▶ a feasible y with cost $\leq (1 + \varepsilon) OPT$, or
- a primal-dual pair (x, y) with $c \cdot x \ge b \cdot y/(1 + \varepsilon)$.

But... isn't LP equivalent to solving a zero-sum game?

canonical packing LP		equivalent game
$\begin{array}{rl} \text{maximize} \ x _1 \\ Ax & \leq \ 1 \\ x & \geq \ 0 \end{array}$	\iff	$\begin{array}{rll} \text{minimize } \lambda \\ Az &\leq \lambda \\ z &\geq 0 \\ z _1 &= 1 \end{array}$
solution x* (can be large)	\iff	$z^* = x^*/ x^* $ solution $\lambda^* = 1/ x^* $
relative error ε	\iff	additive error $\varepsilon/ x^* $

Straight G&K algorithm (given $A_{ij} \in [0, 1]$) requires time

$$|\mathbf{x}^*|^2(m+n)\log(m+n)/\varepsilon^2$$

to achieve relative error ε .

Run time it will take us to get relative error ε

Worst-case time: n = rows, m = columns, N = non-zeros $n + m \le N \le nm$ $O(N + (n + m) \log(nm) / \varepsilon^2)$

• This is O(N) (linear) for fixed ε and slightly dense matrices.

• Really? In practice $1/\varepsilon^2$ is a "constant" that matters...

... for $\varepsilon \approx 1\%$ down to 0.1%, "constant" $1/\varepsilon^2$ is 10^4 to 10^6 .

Run time it will take us to get relative error ε

Worst-case time: n = rows, m = columns, N = non-zeros $n + m \le N \le nm$ $O(N + (n + m) \log(nm)/\epsilon^2)$

Empirically: about $40N + 12(n+m)\log(nm)/\varepsilon^2$ basic ops

Empirically, ratio of (observed time / this estimate) is in [1,2]: y = actual time / estimated time

Estimated speedup versus Simplex ($n \times n$ matrix)

"House instead of down down instead of works," $\langle \Xi \rangle$

Estimated speedup versus Simplex ($n \times n$ matrix)

Slower than Simplex for small *n*, faster for large *n*.

- Break even at about 900 rows and columns (for $\varepsilon = 1\%$).
- For larger problems, speedup grows proportionally to $n^2/\ln n$.

"Hours instead of days, days instead of years." (with $\varepsilon = 1\%$ and 1GHz CPU)

Next (sketch of algorithm):

- canonical forms for packing and covering
- some smooth penalty functions
- simple gradient-based basic packing and covering algorithms
- coupling two algorithms (Grigoriadis & Khachiyan)
- non-uniform increments (Garg & Konemann)
- combining coupling and non-uniform increments (new)
- ▶ a random-sampling trick (new) won't present today

packing and covering, canonical form $\max_{x} \frac{|x|_{1}}{\max_{i} A_{i}x} = OPT = \min_{y} \frac{|y|_{1}}{\min_{i} A_{i}^{T}y}.$

A $(1 + \varepsilon)$ -approximate primal-dual pair: $x \ge 0$, $y \ge 0$ with

$$\frac{|x|_1}{\max_i A_i x} \geq (1 - O(\varepsilon)) \times \frac{|y|_1}{\min_j A_j^{\mathsf{T}} y}$$

A – constraint matrix (rows i = 1..m, columns j = 1..n) $|x| - \text{size (1-norm)}, \sum_j x_j$ A_{jx} – left-hand side of *i*th packing constraint $A_{j}^{T}y$ – left-hand side of *j*th covering constraint

smooth estimates of max and min

Define smax
$$(z_1, z_2, \ldots, z_m) = \ln \sum_i e^{z_i}$$
.

1. smax approximates max within an additive ln m:

$$|\operatorname{smax}(z_1, z_2, \ldots, z_m) - \max_i z_i| \leq \ln m.$$

2. smax is $(1 + \varepsilon)$ -smooth within an ε -neighborhood:

If each $d_i \leq \varepsilon$, then $\operatorname{smax}(z+d) \leq \operatorname{smax}(z) + (1+\varepsilon) d \cdot \nabla \operatorname{smax}(z)$

analogous estimate of min:

$$smin(z_1, z_2, \ldots, z_n) = -\ln \sum_i e^{-z_i} \ldots \ge \min_j z_j - \ln n$$

Packing algorithm, assuming each $A_{ij} \in [0, 1]$

1. *x* ← 0

- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose j minimizing $A_i^{\mathsf{T}}p$. (=derivative of smax Ax w.r.t. x_j)
- 5. Increase x_j by ε .
- 6. return x (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(??), 1990's) Alg. returns $(1 + O(\varepsilon))$ -approximate packing solution.

Proof.

In each iteration, since $A_{ij} \in [0, 1]$, each $A_i x$ increases by $\leq \varepsilon$. Using smoothness of smax, show invariant

$$\operatorname{smax} Ax \leq \operatorname{In} m + (1 + O(\varepsilon)) \frac{|x|}{\operatorname{OPT}} \dots$$

Covering algorithm, assuming each $A_{ij} \in [0, 1]$

1.
$$y \leftarrow 0$$

- 2. while $\min_j A_j^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector $q = \nabla \text{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* maximizing $A_i q$. (= derivative of smin $A^T y$ w.r.t. y_i)
- 5. Increase y_i by ε .
- 6. return y (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(??), 1990's) Alg. returns $(1 - O(\varepsilon))$ -approximate covering solution.

Proof.

Similar invariant:

smin
$$A^{\mathsf{T}}y \geq -\ln m + (1 - O(\varepsilon)) \frac{|y|}{\mathsf{OPT}} \dots$$

(日) (同) (三) (三) (三) (○) (○)

The two algorithms ...

packing

 $1.x \leftarrow 0$

- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$.
- 5. Increase x_j by ε .

covering

- 1. $y \leftarrow 0$
- 2. while $\min_j A_i^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector $\vec{q} = \nabla \text{smin}(A^{\mathsf{T}}y)$.

- 4. Choose *i* maximizing $A_i q$.
- 5. Increase y_i by ε .

The two algorithms ... coupled.

packing

 $1.x \leftarrow 0$

- 2. while $\max_i A_i x \leq \ln(mn)/\varepsilon$ do:
- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose j minimizing $A_j^{T} p$ randomly from distribution q/|q|.
- 5. Increase x_j by ε .

covering

(coupled)

- 1. *y* ← 0
- 2. while $\min_j A_j^{\mathsf{T}} y \leq \ln(nm)/\varepsilon$ do:
- 3. Let vector $q = \nabla \text{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* maximizing A_iq . randomly from distribution p/|p|.

5. Increase y_i by ε .

The two algorithms ... coupled.

packingcovering(coupled) $1. x \leftarrow 0$ $1. y \leftarrow 0$ $1. y \leftarrow 0$ 2. while max; $A_i x \leq \ln(mn)/\varepsilon$ do:2. while min; $A_j^T y \leq \ln(nm)/\varepsilon$ do:3. Let vector $p = \nabla \operatorname{smax}(Ax)$.3. Let vector $q = \nabla \operatorname{smin}(A^T y)$.4. Choose j minimizing $A_j^T p$ 4. Choose i maximizing $A_i q$.7. randomly from distribution q/|q|.7. randomly from distribution p/|p|.5. Increase x_j by ε .5. Increase y_i by ε .

Theorem (\approx Grigoriadis & Khachiyan, 1995) W.h.p., alg. returns (1 + O(ε))-approximate primal-dual pair (x, y).

Proof.

Invariants: |x| = |y|

in expectation: smax $Ax \leq \ln n + \ln m + (1 + O(\varepsilon)) \operatorname{smin} A^{\mathsf{T}} y$

Why couple?

packing

1. *x* ← 0

- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$.
- 5. Increase x_j by ε .

Packing without coupling:

covering

- 1. $y \leftarrow 0$
- 2. while $\min_j A_i^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector $\vec{q} = \nabla \text{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* maximizing $A_i q$.
- 5. Increase y_i by ε .

Α

packing

1. *x* ← 0

- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$.
- 5. Increase x_j by ε .

covering

- 1. $y \leftarrow 0$
- 2. while $\min_j A_i^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector $\vec{q} = \nabla \text{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* maximizing $A_i q$.
- 5. Increase y_i by ε .

Packing without coupling: x_j increases

ote:	<i>p</i> _i	\propto	$e^{A_i x}$	

		<i>x</i> 3		
0	1	1	0	
0	1	0	1	
1	0	0	1	
1	0	1	0	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

packing

1.*x* ← 0

- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$.
- 5. Increase x_j by ε .

covering

- 1. $y \leftarrow 0$
- 2. while $\min_j A_i^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector $\vec{q} = \nabla \text{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* maximizing $A_i q$.
- 5. Increase y_i by ε .

Packing without coupling: note: $p_i \propto e^{A_i x}$.

x_j increases

$$\implies p_i$$
 increases for i with $A_{ij} > 0$

		<i>x</i> 3		
0	1	1	0	A_1x
0	1	0	1	
1	0	0	1	
1	0	1	0	A_4x

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Α

packing

1. *x* ← 0

- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$.
- 5. Increase x_i by ε .

covering

- 1. $y \leftarrow 0$
- 2. while $\min_j A_i^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector $q = \nabla \text{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* maximizing $A_i q$.
- 5. Increase y_i by ε .

Packing without coupling: note: $p_i \propto e^{A_i x}$.

Α

x_i increases

- $\implies p_i$ increases for *i* with $A_{ii} > 0$
- $\implies A_{i'}^{\mathsf{T}} p$ increases for many j'.

		<i>x</i> 3		
0	1	1	0	A_1x
0	1	0	1	
1	0	0	1	
1	0	1	0	A_4x
$A_1^{\mathrm{T}}p$	$A_2^{T} p$	$A_3^{T} p$		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

packing

1. $x \leftarrow 0$ 2. while max_i $A_i x \leq \ln(m)/\varepsilon$ do:

- 3. Let vector $p = \nabla \operatorname{smax}(Ax)$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$.
- 5. Increase x_j by ε .

covering

- 1. $y \leftarrow 0$
- 2. while $\min_j A_i^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector $\vec{q} = \nabla \text{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* maximizing $A_i q$.
- 5. Increase y_i by ε .

Packing without coupling: note: $p_i \propto e^{A_i x}$.

x_j increases

 $\implies p_i \text{ increases for } i \text{ with } A_{ij} > 0$ $\implies A_{i'}^{\mathsf{T}} p \text{ increases for many } j'.$

Update takes time $\Theta(N)$ (=#non-zeros).

		<i>x</i> 3		
0	1	1	0	A_1x
0	1	0	1	
1	0	0	1	
1	0	1	0	A_4x
$A_1^{T} p$	$A_2^{T} p$	$A_3^{T}p$		

Α

packing	covering	(coupled)	
$1.x \leftarrow 0$	1. <i>y</i> ← 0		
2. while $\max_i A_i x \leq \ln(mn)/\varepsilon$ do:	2. while min _i $A_i^{T} y \leq \ln(nm)/2$	ε do:	
3. Let vector $p = \nabla \operatorname{smax}(Ax)$.	3. Let vector $q = \nabla smin(A^{T}y)$.		
4. Choose j minimizing $A_j^{T} p$ randomly from distribution $q/ q $.	4. Choose <i>i</i> maximizing <i>A</i> _{<i>i</i>} randomly from distribut	q. ion <u>p/ p</u> .	
5. Increase x_j by ε .	5. Increase y_i by ε .		
Packing without coupling: note: $p_i \propto p_i$	e ^A ix A		

Packing without coupling: note: $p_i \propto e^{A_i \times}$.

x_j increases

 $\implies p_i$ increases for *i* with $A_{ij} > 0$ $\implies A_{i'}^{\mathsf{T}} p$ increases for many *j*'.

Update takes time $\Theta(N)$ (=#non-zeros).

Packing with coupling: Maintain only p. Update takes time O(m) (=#constraints).

		<i>x</i> 3		
0	1	1	0	A_1x
0	1	0	1	
1	0	0	1	
1	0	1	0	A_4x
$A_1^{\mathrm{T}}p$	$A_2^{\scriptscriptstyle T} p$	$A_3^{\scriptscriptstyle T} p$		

Bounding the iterations ...

- 1. $x \leftarrow 0$
- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector p by $p_i = e^{A_i x}$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$
- 5. Increase x_j by ε .

packing

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bounding the iterations using non-uniform increments

1. $x \leftarrow 0$

packing (general A)

- 2. while $\max_i A_i x \leq \ln(m)/\varepsilon$ do:
- 3. Let vector p by $p_i = e^{A_i x}$.
- 4. Choose *j* minimizing $A_i^{\mathsf{T}} p$
- 5. Increase x_j by ε .

by δ_j such that max. increase in any $A_i x$ is ε .

Bounding the iterations using non-uniform increments

1. $x \leftarrow 0$ packing (general A)2. while $\max_i A_i x \le \ln(m)/\varepsilon$ do:3. Let vector p by $p_i = e^{A_i x}$.4. Choose j minimizing $A_j^{\mathsf{T}} p$ 5. Increase x_j by ε .by δ_i such that max. increase in any $A_i x$ is ε .

Theorem (Garg-Konemann, 1998) Alg. returns $(1 + O(\varepsilon))$ -approximate packing solution in at most $m \ln(m)/\varepsilon^2$ iterations. (m =# packing constraints)

Bounding the iterations using non-uniform increments

1. $x \leftarrow 0$ packing (general A)2. while $\max_i A_i x \le \ln(m)/\varepsilon$ do:3. Let vector p by $p_i = e^{A_i x}$.4. Choose j minimizing $A_j^{\mathsf{T}} p$ 5. Increase $x_j \quad by \in \varepsilon$.by δ_i such that max. increase in any $A_i x$ is ε .

Theorem (Garg-Konemann, 1998) Alg. returns $(1 + O(\varepsilon))$ -approximate packing solution in at most $m \ln(m)/\varepsilon^2$ iterations. (m =# packing constraints)

Proof of iteration bound.

Charge each iteration to an increase in some $A_i x$.

Covering algorithm with non-uniform increments

- 1. $y \leftarrow 0$ covering (general A) 2. while $\min_j A_j^{\mathsf{T}} y \leq \ln(n)/\varepsilon$ do:
- 3. Let vector q by $q_j = e^{-A_j^T y}$.
- 4. Choose *i* maximizing $A_i q$.
- 5. Increase y_i by δ_i such that max. increase in any $A_i^{\mathsf{T}} y$ is ε .
- 6. Delete all covering constraints such that $A_i^{\mathsf{T}} y \geq \ln(n)/\varepsilon$.

Theorem (Konemann (?), 1998) Alg. returns $(1 - O(\varepsilon))$ -approximate covering solution in at most $n \ln(n)/\varepsilon^2$ iterations. (n = # covering constraints)

Proof (of iteration bound).

Charge each iteration to an increase in some non-deleted $A_i^{\mathsf{T}} y$.

(日) (同) (三) (三) (三) (○) (○)

Coupled algorithm ...

coupled

 $1. x \leftarrow 0, y \leftarrow 0$

2. while $\max_i A_i x \leq \ln(mn)/\varepsilon$ or $\min_j A_j^{\mathsf{T}} y \leq \ln(mn)/\varepsilon$ do:

- 3. Let vectors $p = \nabla \operatorname{smax}(Ax)$ and $q = \nabla \operatorname{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* and *j* from distributions p/|p| and q/|q|, resp.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5. Increase x_j and y_i by ε .

Coupled algorithm ... with non-uniform increments

coupled

 $1. x \leftarrow 0, y \leftarrow 0$

2. while $\max_i A_i x \leq \ln(mn)/\varepsilon$ or $\min_j A_j^{\mathsf{T}} y \leq \ln(mn)/\varepsilon$ do:

- 3. Let vectors $p = \nabla \operatorname{smax}(Ax)$ and $q = \nabla \operatorname{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* and *j* from distributions p/|p| and q/|q|, resp.
- Increase x_j and y_i by ε. by δ_{ij}, so max increase in any A_ix or A^T_jy is ε.
 Delete all covering constraints such that A^T_jy ≥ ln(mn)/ε.

Coupled algorithm ... with non-uniform increments

coupled

 $1. x \leftarrow 0, y \leftarrow 0$

2. while $\max_i A_i x \leq \ln(mn)/\varepsilon$ or $\min_j A_j^{\mathsf{T}} y \leq \ln(mn)/\varepsilon$ do:

- 3. Let vectors $p = \nabla \operatorname{smax}(Ax)$ and $q = \nabla \operatorname{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* and *j* from distributions p/|p| and q/|q|, resp. joint distribution $\propto p_i q_j / \delta_{ij}$

Coupled algorithm ... with non-uniform increments

coupled

1. $x \leftarrow 0, y \leftarrow 0$

2. while $\max_i A_i x \leq \ln(mn)/\varepsilon$ or $\min_j A_j^{\mathsf{T}} y \leq \ln(mn)/\varepsilon$ do:

- 3. Let vectors $p = \nabla \operatorname{smax}(Ax)$ and $q = \nabla \operatorname{smin}(A^{\mathsf{T}}y)$.
- 4. Choose *i* and *j* from distributions p/|p| and q/|q|, resp. joint distribution $\propto p_i q_j / \delta_{ij}$
- 5. Increase x_j and y_i by ε . by δ_{ij} , so max increase in any $A_i x$ or $A_j^T y$ is ε .
- 6. Delete all covering constraints such that $A_j^{\mathsf{T}} y \geq \ln(mn)/\varepsilon$.

Theorem (KY, 2007) W.h.p., alg. returns $(1 + O(\varepsilon))$ -approximate primal-dual pair (x, y)in time $O(N + (m + n) \log(mn) / \varepsilon^2)$.

(Iterations: $(m + n) \log(mn) / \varepsilon^2$.)

Summary

Grigoriadis and Khachiyan's sublinear-time algorithm for games

- + Garg/Konemann's non-uniform increments
- + a random-sampling trick

```
Theorem (KY, 2007)
For fractional packing and covering,
solutions with relative error \varepsilon
can be computed in time proportional to
```

$$\# non-zeros + \frac{(\# rows + cols) \log(\# non-zeros)}{\varepsilon^2}$$

"Hours instead of days, days instead of years." $(\textit{w}/~\varepsilon=0.01~\textit{and 1GHz CPU})$

Possible directions

- positive LPs with both packing and covering constraints?
- improve Luby/Nisan's parallel algorithm (1993) to $1/\varepsilon^3$?
- extend to implicitly defined problems, e.g. multicommodity flow?

Comments? Questions?