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G&K’s sublinear-time algorithm for zero-sum games

Theorem (Grigoriadis and Khachiyan, 1995)

Given a two-player zero-sum m × n matrix game A with payoffs in
[−1, 1], near-optimal mixed strategies can be computed in time

O((m + n) log(mn)/ε2).

Each strategy gives expected payoff within additive ε of optimal.

Matrix has size m × n, so for fixed ε this is sublinear time.

The algorithm can be viewed as fictitious play,
where each player plays randomly from a distribution.
The distribution gives more weight to pure strategies
that are good responses to opponent’s historical average play.

Takes O(log(mn)/ε2) rounds, each round takes O(m + n) time.
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How do LP algorithms do in practice?

Simplex, interior-point methods, ellipsoid method

optimistic estimate of Simplex run time (# basic operations):

(# pivots)× (time per pivot) ≈ 5 min(m, n)×mn

m rows, n columns

Empirically, ratio (observed time / this estimate) is in [0.3,20]:
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How do LP algorithms do in practice?

Simplex, interior-point methods, ellipsoid method

optimistic estimate of Simplex run time (# basic operations):

(# pivots)× (time per pivot) ≈ 5 min(m, n)×mn

m rows, n columns

in terms of number of non-zeroes, N: (m + n ≤ N ≤ m n)

I if constraint matrix is dense: time Θ(N1.5)

I if constraint matrix is sparse: time Θ(N3)

This is optimistic — can be slower if numerical issues arise.
Time to find, say, .95-approximate solution is comparable.
Time for interior-point seems similar (within constant factors).



We will extend G&K to LPs with non-negative coefficients:

packing: maximize c · x such that A x ≤ b; x ≥ 0

covering: minimize b · y such that ATy ≥ c ; y ≥ 0

... solutions with relative error ε (harder to compute):

I a feasible x with cost ≥ (1− ε)OPT ,

I a feasible y with cost ≤ (1 + ε)OPT , or

I a primal-dual pair (x , y) with c · x ≥ b · y/(1 + ε).



But... isn’t LP equivalent to solving a zero-sum game?

canonical packing LP equivalent game

maximize |x |1
Ax ≤ 1

x ≥ 0
⇐⇒

minimize λ

Az ≤ λ
z ≥ 0
|z |1 = 1

solution x∗

(can be large) ⇐⇒ solution
z∗ = x∗/|x∗|
λ∗ = 1/|x∗|

relative error ε ⇐⇒ additive error ε/|x∗|

I Straight G&K algorithm (given Aij ∈ [0, 1]) requires time

|x∗|2(m + n) log(m + n)/ε2

to achieve relative error ε.



Run time it will take us to get relative error ε

Worst-case time: n = rows, m = columns, N = non-zeros

n + m ≤ N ≤ nm

O(N + (n + m) log(nm)/ε2)

I This is O(N) (linear) for fixed ε and slightly dense matrices.

I Really? In practice 1/ε2 is a “constant” that matters...

... for ε ≈ 1% down to 0.1%,

“constant” 1/ε2 is 104 to 106.



Run time it will take us to get relative error ε

Worst-case time: n = rows, m = columns, N = non-zeros

n + m ≤ N ≤ nm

O(N + (n + m) log(nm)/ε2)

Empirically: about 40N + 12(n + m) log(nm)/ε2 basic ops

Empirically, ratio of (observed time / this estimate) is in [1,2]:
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Estimated speedup versus Simplex (n × n matrix)

estimated speedup ≈ est. Simplex run time

est. algorithm run time
≈ ε2n2

12 ln n

Empirically, ratio (observed speedup/this estimate) is in [0.4,10]:
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Slower than Simplex for small n, faster than Simplex for large n.

“Hours instead of days, days instead of years.”
(with ε = 1% and 1GHz CPU)



Estimated speedup versus Simplex (n × n matrix)

estimated speedup ≈ est. Simplex run time

est. algorithm run time
≈ ε2n2

12 ln n

I Slower than Simplex for small n, faster for large n.

I Break even at about 900 rows and columns (for ε = 1%).

I For larger problems, speedup grows proportionally to n2/ ln n.

“Hours instead of days, days instead of years.”
(with ε = 1% and 1GHz CPU)



Next (sketch of algorithm):

I canonical forms for packing and covering

I some smooth penalty functions

I simple gradient-based basic packing and covering algorithms

I coupling two algorithms (Grigoriadis & Khachiyan)

I non-uniform increments (Garg & Konemann)

I combining coupling and non-uniform increments (new)

I a random-sampling trick (new) — won’t present today



packing and covering, canonical form

maximize x
|x |1

maxi Aix
= OPT = minimize y

|y |1
minj AT

j y
.

A (1 + ε)-approximate primal-dual pair: x ≥ 0, y ≥ 0 with

|x |1
maxi Aix

≥ (1− O(ε))× |y |1
minj AT

j y
.

A – constraint matrix (rows i = 1..m, columns j = 1..n)

|x | – size (1-norm),
∑

j xj

Aix – left-hand side of ith packing constraint

AT
j y – left-hand side of jth covering constraint



smooth estimates of max and min

Define smax(z1, z2, . . . , zm) = ln
∑

i ezi .

1. smax approximates max within an additive ln m:

| smax(z1, z2, . . . , zm)−max
i

zi | ≤ ln m.

2. smax is (1 + ε)-smooth within an ε-neighborhood:

If each di ≤ ε, then

smax(z + d) ≤ smax(z) + (1 + ε) d · ∇smax(z)

analogous estimate of min:

smin(z1, z2, . . . , zn) = − ln
∑

i e−zi . . . ≥ minj zj − ln n



Packing algorithm, assuming each Aij ∈ [0, 1]

1. x ← 0
2. while maxi Aix ≤ ln(m)/ε do:

3. Let vector p = ∇smax(Ax).
4. Choose j minimizing AT

j p. (=derivative of smax Ax w.r.t. xj)

5. Increase xj by ε.
6. return x (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(??), 1990’s)

Alg. returns (1 + O(ε))-approximate packing solution.

Proof.
In each iteration, since Aij ∈ [0, 1], each Aix increases by ≤ ε.
Using smoothness of smax, show invariant

smax Ax ≤ ln m + (1 + O(ε))
|x |

OPT
...



Covering algorithm, assuming each Aij ∈ [0, 1]

1. y ← 0
2. while minj AT

j y ≤ ln(n)/ε do:
3. Let vector q = ∇smin(ATy).
4. Choose i maximizing Aiq. (= derivative of smin ATy w.r.t. yi )

5. Increase yi by ε.
6. return y (appropriately scaled).

Theorem (e.g. GK,PST,Y,GK,...(??), 1990’s)

Alg. returns (1− O(ε))-approximate covering solution.

Proof.
Similar invariant:

smin ATy ≥ − ln m + (1− O(ε))
|y |

OPT
...



The two algorithms ...

packing
1. x ← 0
2. while maxi Aix ≤ ln(m)/ε do:
3. Let vector p = ∇smax(Ax).
4. Choose j minimizing AT

j p .
5. Increase xj by ε.

covering
1. y ← 0
2. while minj AT

j y ≤ ln(n)/ε do:
3. Let vector q= ∇smin(ATy).
4. Choose i maximizing Aiq.
5. Increase yi by ε.



The two algorithms ... coupled.

packing
1. x ← 0
2. while maxi Aix ≤ ln(mn)/ε do:
3. Let vector p = ∇smax(Ax).
4. Choose j minimizing AT

j p
randomly from distribution q/|q|.

5. Increase xj by ε.

covering (coupled)
1. y ← 0
2. while minj AT

j y ≤ ln(nm)/ε do:
3. Let vector q= ∇smin(ATy).
4. Choose i maximizing Aiq.

randomly from distribution p/|p|.
5. Increase yi by ε.



The two algorithms ... coupled.

packing
1. x ← 0
2. while maxi Aix ≤ ln(mn)/ε do:
3. Let vector p = ∇smax(Ax).
4. Choose j minimizing AT

j p
randomly from distribution q/|q|.

5. Increase xj by ε.

covering (coupled)
1. y ← 0
2. while minj AT

j y ≤ ln(nm)/ε do:
3. Let vector q= ∇smin(ATy).
4. Choose i maximizing Aiq.

randomly from distribution p/|p|.
5. Increase yi by ε.

Theorem (≈ Grigoriadis & Khachiyan, 1995)

W.h.p., alg. returns (1 + O(ε))-approximate primal-dual pair (x , y).

Proof.
Invariants: |x | = |y |

in expectation: smax Ax ≤ ln n + ln m + (1 + O(ε)) smin ATy



Why couple?

packing
1. x ← 0
2. while maxi Aix ≤ ln(m)/ε do:
3. Let vector p = ∇smax(Ax).
4. Choose j minimizing AT

j p .
5. Increase xj by ε.

covering
1. y ← 0
2. while minj AT

j y ≤ ln(n)/ε do:
3. Let vector q= ∇smin(ATy).
4. Choose i maximizing Aiq.
5. Increase yi by ε.

Packing without coupling:

note: pi ∝ eAix .
xj increases

=⇒ pi increases for i with Aij > 0
=⇒ AT

j′p increases for many j ′.

Update takes time Θ(N) (=#non-zeros).

A

x3

0 1 1 0

A1x

0 1 0 1
1 0 0 1
1 0 1 0

A4x
AT

1p AT
2p AT

3p
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Why couple? Consider implementing each iteration...

packing
1. x ← 0
2. while maxi Aix ≤ ln(mn)/ε do:
3. Let vector p = ∇smax(Ax).
4. Choose j minimizing AT

j p
randomly from distribution q/|q|.

5. Increase xj by ε.

covering (coupled)
1. y ← 0
2. while minj AT

j y ≤ ln(nm)/ε do:
3. Let vector q= ∇smin(ATy).
4. Choose i maximizing Aiq.

randomly from distribution p/|p|.
5. Increase yi by ε.

Packing without coupling: note: pi ∝ eAix .
xj increases

=⇒ pi increases for i with Aij > 0
=⇒ AT

j′p increases for many j ′.

Update takes time Θ(N) (=#non-zeros).

Packing with coupling:
Maintain only p.
Update takes time O(m) (=#constraints).
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Bounding the iterations ...

1. x ← 0 packing

(general A)

2. while maxi Aix ≤ ln(m)/ε do:

3. Let vector p by pi = eAix .
4. Choose j minimizing AT

j p
5. Increase xj by ε.

Theorem (Garg-Konemann, 1998)

Alg. returns (1 + O(ε))-approximate packing solution

in at most m ln(m)/ε2 iterations. (m =# packing constraints)

Proof of iteration bound.
Charge each iteration to an increase in some Aix .



Bounding the iterations using non-uniform increments

1. x ← 0 packing (general A)
2. while maxi Aix ≤ ln(m)/ε do:

3. Let vector p by pi = eAix .
4. Choose j minimizing AT

j p
5. Increase xj by ε.

by δj such that max. increase in any Aix is ε.

Theorem (Garg-Konemann, 1998)
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Proof of iteration bound.
Charge each iteration to an increase in some Aix .
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Bounding the iterations using non-uniform increments

1. x ← 0 packing (general A)
2. while maxi Aix ≤ ln(m)/ε do:

3. Let vector p by pi = eAix .
4. Choose j minimizing AT

j p
5. Increase xj by ε.

by δj such that max. increase in any Aix is ε.

Theorem (Garg-Konemann, 1998)

Alg. returns (1 + O(ε))-approximate packing solution

in at most m ln(m)/ε2 iterations. (m =# packing constraints)

Proof of iteration bound.
Charge each iteration to an increase in some Aix .



Covering algorithm with non-uniform increments

1. y ← 0 covering (general A)
2. while minj AT

j y ≤ ln(n)/ε do:

3. Let vector q by qj = e−AT
j y .

4. Choose i maximizing Aiq.
5. Increase yi by δi such that max. increase in any AT

j y is ε.

6. Delete all covering constraints such that AT
j y ≥ ln(n)/ε.

Theorem (Konemann (?), 1998)

Alg. returns (1− O(ε))-approximate covering solution

in at most n ln(n)/ε2 iterations. (n =# covering constraints)

Proof (of iteration bound).

Charge each iteration to an increase in some non-deleted AT
j y .



Coupled algorithm ...

coupled
1. x ← 0, y ← 0
2. while maxi Aix ≤ ln(mn)/ε or minj AT

j y ≤ ln(mn)/ε do:

3. Let vectors p = ∇smax(Ax) and q = ∇smin(ATy).

4. Choose i and j from distributions p/|p| and q/|q|, resp.

5. Increase xj and yi by ε.



Coupled algorithm ... with non-uniform increments

coupled
1. x ← 0, y ← 0
2. while maxi Aix ≤ ln(mn)/ε or minj AT

j y ≤ ln(mn)/ε do:

3. Let vectors p = ∇smax(Ax) and q = ∇smin(ATy).

4. Choose i and j from distributions p/|p| and q/|q|, resp.

5. Increase xj and yi by ε.
by δij , so max increase in any Aix or AT

j y is ε.

6. Delete all covering constraints such that AT
j y ≥ ln(mn)/ε.



Coupled algorithm ... with non-uniform increments

coupled
1. x ← 0, y ← 0
2. while maxi Aix ≤ ln(mn)/ε or minj AT

j y ≤ ln(mn)/ε do:

3. Let vectors p = ∇smax(Ax) and q = ∇smin(ATy).

4. Choose i and j from distributions p/|p| and q/|q|, resp.
joint distribution ∝ piqj/δij

5. Increase xj and yi by ε.
by δij , so max increase in any Aix or AT

j y is ε.

6. Delete all covering constraints such that AT
j y ≥ ln(mn)/ε.



Coupled algorithm ... with non-uniform increments

coupled
1. x ← 0, y ← 0
2. while maxi Aix ≤ ln(mn)/ε or minj AT

j y ≤ ln(mn)/ε do:

3. Let vectors p = ∇smax(Ax) and q = ∇smin(ATy).

4. Choose i and j from distributions p/|p| and q/|q|, resp.
joint distribution ∝ piqj/δij

5. Increase xj and yi by ε.
by δij , so max increase in any Aix or AT

j y is ε.

6. Delete all covering constraints such that AT
j y ≥ ln(mn)/ε.

Theorem (KY, 2007)

W.h.p., alg. returns (1 + O(ε))-approximate primal-dual pair (x , y)
in time O(N + (m + n) log(mn)/ε2).

(Iterations: (m + n) log(mn)/ε2.)



Summary

Grigoriadis and Khachiyan’s sublinear-time algorithm for games

+ Garg/Konemann’s non-uniform increments

+ a random-sampling trick

Theorem (KY, 2007)

For fractional packing and covering,
solutions with relative error ε
can be computed in time proportional to

#non-zeros +
(#rows + cols) log(#non-zeros)

ε2
.

“Hours instead of days, days instead of years.”
(w/ ε = 0.01 and 1GHz CPU)



Possible directions

I positive LPs with both packing and covering constraints?

I improve Luby/Nisan’s parallel algorithm (1993) to 1/ε3?

I extend to implicitly defined problems,
e.g. multicommodity flow?

Comments? Questions?
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