
Beating Simplex for Packing and Covering

Christos Koufogiannakis and Neal E. Young

May 13, 2007



introduction

packing and covering

greedy algorithm?

Lagrangian relaxation

duality

algorithm for covering

coupling

coupled algorithm

randomized algorithm

simplex



packing and covering

packing

given: matrix A, vectors b, c

find vector x ≥ 0 maximizing linear function cTx
subject to linear constraints Ax ≤ b.

covering

given: matrix A, vectors b, c

find vector x ≥ 0 minimizing linear function cTx
subject to linear constraints Ax ≥ b.

For this talk, assume A ∈ {0, 1}n×n, bj = ci = 1.

(Results extend to arbitrary nonnegative A, b, c .)



working example — packing

given: collection of sets

variables: xi for each element i (call vector x a packing)

objective: maximize total weight
∑

i xi

constraints: fill(s) ≤ 1 for each set s,
where fill(s) =

∑
i∈s xi

3,42,31,2,41,31,2

4321

.3.7.3.3

11.91.6

sets s

elements i

fill(s)

xi



greedy algorithm?

1. x ← 0 —maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in maxs fill(s) is minimized.

4. return x/ maxs fill(s) — note: scaling ensures fill ≤ 1

00.10

0.1.10.1

3,42,31,2,41,31,2

4321

sets s

elements i

fill(s)

xi

what about: (1) number of sets xi occurs in?
(2) non-max-fill sets?



greedy algorithm?

1. x ← 0 —maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in maxs fill(s) is minimized.

4. return x/ maxs fill(s) — note: scaling ensures fill ≤ 1

00.10

0.1.10.1

3,42,31,2,41,31,2

4321

sets s

elements i

fill(s)

xi

what about: (1) number of sets xi occurs in?
(2) non-max-fill sets?



greedy algorithm?

1. x ← 0 —maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in maxs fill(s) is minimized.

4. return x/ maxs fill(s) — note: scaling ensures fill ≤ 1

00.10

0.1.10.1

3,42,31,2,41,31,2

4321

sets s

elements i

fill(s)

xi

what about: (1) number of sets xi occurs in?
(2) non-max-fill sets?



Lagrangian relaxation
Replace hard constraints by smooth penalties — like in life.

for “vector of concerns” y , define:

lmax(y) = ln
∑n

i=1 eyi

1. lmax approximates max:

lmax(y) ≈ maxi yi + ln n

2. but lmax is smooth (1st-order approximation is good):

lmax(y + d) ≈ lmax(y) + d · ∇ lmax(y)

– provided maxi di ≤ ε



relaxed algorithm uses lmax instead of max

1. x ← 0 — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

i.e., choose i to minimize
∑

s3i e
fill(s)

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)

0.42000

0.4200.4200

efill(s)1.5211.5211

sets s

elements i

fill(s)

xi



relaxed algorithm uses lmax instead of max

1. x ← 0 — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

i.e., choose i to minimize
∑

s3i e
fill(s)

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)

0.42000

0.4200.4200

efill(s)1.5211.5211

sets s

elements i

fill(s)

xi



relaxed algorithm uses lmax instead of max

1. x ← 0 — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

i.e., choose i to minimize
∑

s3i e
fill(s)

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)

0.42000

0.4200.4200

efill(s)1.5211.5211

sets s

elements i

fill(s)

xi



relaxed algorithm

1. x ← 0 — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

i.e., choose i to minimize
∑

s3i e
fill(s)

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)

Theorem (Garg and Könemann 1998)

Returns (1− O(ε))-approximate solution.



running time O(n3 log(n)/ε2)

1. x ← 0 —maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)

Theorem
Can maintain fill(s) for all sets s in O(n log(n)/ε2) total time.

+ε

+ε+ε fill(s)

xi

Each update to fill(s) takes O(1) work; increases fill(s) by ε.
At most ln(n)/ε2 updates to fill(s) before fill(s) = ln(n)/ε.



duality

dual of packing is covering:

given: collection of sets

variables: ys for each set s (call vector y a cover)

objective: minimize total weight
∑

s ys

constraints: cov(i) ≥ 1 for each element i ,
where cov(i) =

∑
s3i ys

strong duality:

For optimal packing x and cover y ,
∑

i xi =
∑

s ys .



algorithm for covering
...just like algorithm for packing...

1. y ← 0 — minimize
P

s ys : mini cov(i) ≥ 1

2. repeat:

3. increase single ys by ε,
choosing s so increase in lmini cov(i) is maximized.

4. delete elements i such that cov(i) ≥ ln(n)/ε

5. stop when all elements deleted

6. return y/ mini cov(i)

Theorem (Garg and Könemann 1998)

Returns (1 + O(ε))-approximate solution.



coupling
from Grigoriadis and Khachiyan, 1995

vector x , function f (x)

f (x + ∆x)− f (x) ≈ ∆x · ∇f (x)

≈ ∇g(y) · ∇f (x)

vector y , function g(y)

g(y + ∆y)− g(y) ≈ ∆y · ∇g(y)

≈ ∇f (x) · ∇g(y)

Take ∆y = ∇f (x) and ∆x = ∇g(y)...
then increase in f equals increase in g .



coupling
from Grigoriadis and Khachiyan, 1995

vector x , function f (x)

f (x + ∆x)− f (x) ≈ ∆x · ∇f (x)

≈ ∇g(y) · ∇f (x)

vector y , function g(y)

g(y + ∆y)− g(y) ≈ ∆y · ∇g(y)

≈ ∇f (x) · ∇g(y)

Take ∆y = ∇f (x) and ∆x = ∇g(y)...

then increase in f equals increase in g .



coupling
from Grigoriadis and Khachiyan, 1995

vector x , function f (x)

f (x + ∆x)− f (x) ≈ ∆x · ∇f (x) ≈ ∇g(y) · ∇f (x)

vector y , function g(y)

g(y + ∆y)− g(y) ≈ ∆y · ∇g(y) ≈ ∇f (x) · ∇g(y)

Take ∆y = ∇f (x) and ∆x = ∇g(y)...
then increase in f equals increase in g .



coupled algorithm

1. x ← 0 packing — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:
3. increase single xi by ε to minimize increase in lmaxs fill(s)

3. x ← x + ε∇ lmini cov(i)

4. stop when maxs fill(s) ≈ ln(n)/ε
5. return x/ maxs fill(s)

1. y ← 0 covering — minimize
P

s ys : mini cov(i) ≥ 1

2. repeat:
3. increase single ys by ε to maximize increase in lmini cov(i)

3. y ← y + ε∇ lmaxs fill(s)

4. delete elements i such that cov(i) ≥ ln(n)/ε
5. stop when all elements deleted
6. return y/ mini cov(i)



coupled algorithm

1. x ← 0 packing — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:
3. increase single xi by ε to minimize increase in lmaxs fill(s)

3. x ← x + ε∇ lmini cov(i)

4. stop when maxs fill(s) ≈ ln(n)/ε
5. return x/ maxs fill(s)

1. y ← 0 covering — minimize
P

s ys : mini cov(i) ≥ 1

2. repeat:
3. increase single ys by ε to maximize increase in lmini cov(i)

3. y ← y + ε∇ lmaxs fill(s)
4. delete elements i such that cov(i) ≥ ln(n)/ε
5. stop when all elements deleted
6. return y/ mini cov(i)



coupled algorithm

1. x ← 0; y ← 0

2. repeat:

3. x ← x + ε∇ lmini cov(i); y ← y + ε∇ lmaxs fill(s)

4. delete elements i such that cov(i) ≥ ln(n)/ε

5. stop when all elts deleted or maxs fill(s) ≈ ln(n)/ε

6. return x/ maxs fill(s) and y/ mini cov(i)

Theorem
Algorithm returns (1± ε)-approximate solutions.

Proof.
Each iteration, both

∑
i xi and

∑
s ys increase by ε.

By coupling both lmaxs fill(s) and lmini cov(i) increase ≈ equally.
So at end, ∑

i xi

maxs fill(s)
≈

∑
s ys

mini cov(i)
.



randomized algorithm

1. xi ← ys ← 0 for each element i and set s
2. repeat:
3. For one random i from distribution ∇ lmini cov(i)

∝ e− cov(i)

4. and one random s from distribution ∇ lmaxs fill(s):

∝ efill(s)

5. xi ← xi + ε; ys ← ys + ε.
6. Delete elements i such that cov(i) ≥ ln(n)/ε.
6. Stop when all elts deleted or maxs fill(s) ≈ ln(n)/ε.
7. return x/ maxs fill(s) and y/ mini cov(i)

Theorem (Koufogiannakis, Young 2007)
Algorithm returns (1± ε)-approximate solutions (in expectation).

Proof.
lmaxs fill(s) and lmini cov(i) increase equally in expectation...

Theorem
Randomized algorithm takes O(n2 + n log(n)/ε2) time.

Note: probability of choosing i is proportional to exp(− cov(i));

probability of choosing s is proportional to exp(fill(s)).



randomized algorithm

1. xi ← ys ← 0 for each element i and set s
2. repeat:
3. For one random i from distribution ∇ lmini cov(i) ∝ e− cov(i)

4. and one random s from distribution ∇ lmaxs fill(s): ∝ efill(s)

5. xi ← xi + ε; ys ← ys + ε.
6. Delete elements i such that cov(i) ≥ ln(n)/ε.
6. Stop when all elts deleted or maxs fill(s) ≈ ln(n)/ε.
7. return x/ maxs fill(s) and y/ mini cov(i)

Theorem (Koufogiannakis, Young 2007)
Algorithm returns (1± ε)-approximate solutions (in expectation).

Proof.
lmaxs fill(s) and lmini cov(i) increase equally in expectation...

Theorem
Randomized algorithm takes O(n2 + n log(n)/ε2) time.

Note: probability of choosing i is proportional to exp(− cov(i));

probability of choosing s is proportional to exp(fill(s)).



simplex algorithm for linear programming
the competition

I Simplex invented by George Dantzig in 1947.

I Exponential time in worst case but “works well in practice”.

I Takes typically at least 5n3 (n pivots, 5n2 each)
basic operations, even for ε = .05.

I Worse on “ill-conditioned” matrices.

In comparison, our algorithm (first draft) finds 1± ε-approximate
solutions guaranteed in about 5n2 + 75n ln n/ε2 basic operations.

Time for our algorithm / time for simplex is at most

1

n
+

ln n

(nε/4)2
.

E.g. when ε = .01,
1

n
+

ln n

(n/400)2
.



simplex algorithm for linear programming
the competition

I Simplex invented by George Dantzig in 1947.

I Exponential time in worst case but “works well in practice”.

I Takes typically at least 5n3 (n pivots, 5n2 each)
basic operations, even for ε = .05.

I Worse on “ill-conditioned” matrices.

In comparison, our algorithm (first draft) finds 1± ε-approximate
solutions guaranteed in about 5n2 + 75n ln n/ε2 basic operations.

Time for our algorithm / time for simplex is at most

1

n
+

ln n

(nε/4)2
.

E.g. when ε = .01,
1

n
+

ln n

(n/400)2
.



introduction

packing and covering

greedy algorithm?

Lagrangian relaxation

duality

algorithm for covering

coupling

coupled algorithm

randomized algorithm

simplex


	introduction
	packing and covering
	greedy algorithm?
	Lagrangian relaxation
	duality
	algorithm for covering
	coupling
	coupled algorithm
	randomized algorithm
	simplex
	outline

