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packing and covering

packing

given: matrix A, vectors b, c

find vector x ≥ 0 maximizing linear function cTx
subject to linear constraints Ax ≤ b.

covering

given: matrix A, vectors b, c

find vector x ≥ 0 minimizing linear function cTx
subject to linear constraints Ax ≥ b.

For this talk, assume A ∈ {0, 1}n×n, bj = ci = 1.

(Results extend to arbitrary nonnegative A, b, c .)



working example — packing

given: collection of sets

variables: xi for each element i (call vector x a packing)

objective: maximize total weight
∑

i xi

constraints: fill(s) ≤ 1 for each set s,
where fill(s) =

∑
i∈s xi
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greedy algorithm?

1. x ← 0 —maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in maxs fill(s) is minimized.

4. return x/ maxs fill(s) — note: scaling ensures fill ≤ 1
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what about: (1) number of sets xi occurs in?
(2) non-max-fill sets?
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Lagrangian relaxation
Replace hard constraints by smooth penalties — like in life.

for “vector of concerns” y , define:

lmax(y) = ln
∑n

i=1 eyi

1. lmax approximates max:

lmax(y) ≈ maxi yi + ln n

2. but lmax is smooth (1st-order approximation is good):

lmax(y + d) ≈ lmax(y) + d · ∇ lmax(y)

– provided maxi di ≤ ε



relaxed algorithm uses lmax instead of max

1. x ← 0 — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

i.e., choose i to minimize
∑

s3i e
fill(s)

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)
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relaxed algorithm

1. x ← 0 — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

i.e., choose i to minimize
∑

s3i e
fill(s)

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)

Theorem (Garg and Könemann 1998)

Returns (1− O(ε))-approximate solution.



running time O(n3 log(n)/ε2)

1. x ← 0 —maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:

3. increase single xi by ε,
choosing i so increase in lmaxs fill(s) is minimized.

4. stop when maxs fill(s) ≈ ln(n)/ε

5. return x/ maxs fill(s)

Theorem
Can maintain fill(s) for all sets s in O(n log(n)/ε2) total time.

+ε

+ε+ε fill(s)

xi

Each update to fill(s) takes O(1) work; increases fill(s) by ε.
At most ln(n)/ε2 updates to fill(s) before fill(s) = ln(n)/ε.



duality

dual of packing is covering:

given: collection of sets

variables: ys for each set s (call vector y a cover)

objective: minimize total weight
∑

s ys

constraints: cov(i) ≥ 1 for each element i ,
where cov(i) =

∑
s3i ys

strong duality:

For optimal packing x and cover y ,
∑

i xi =
∑

s ys .



algorithm for covering
...just like algorithm for packing...

1. y ← 0 — minimize
P

s ys : mini cov(i) ≥ 1

2. repeat:

3. increase single ys by ε,
choosing s so increase in lmini cov(i) is maximized.

4. delete elements i such that cov(i) ≥ ln(n)/ε

5. stop when all elements deleted

6. return y/ mini cov(i)

Theorem (Garg and Könemann 1998)

Returns (1 + O(ε))-approximate solution.



coupling
from Grigoriadis and Khachiyan, 1995

vector x , function f (x)

f (x + ∆x)− f (x) ≈ ∆x · ∇f (x)

≈ ∇g(y) · ∇f (x)

vector y , function g(y)

g(y + ∆y)− g(y) ≈ ∆y · ∇g(y)

≈ ∇f (x) · ∇g(y)

Take ∆y = ∇f (x) and ∆x = ∇g(y)...
then increase in f equals increase in g .
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coupled algorithm

1. x ← 0 packing — maximize
P

i xi : maxs fill(s) ≤ 1

2. repeat:
3. increase single xi by ε to minimize increase in lmaxs fill(s)

3. x ← x + ε∇ lmini cov(i)

4. stop when maxs fill(s) ≈ ln(n)/ε
5. return x/ maxs fill(s)

1. y ← 0 covering — minimize
P

s ys : mini cov(i) ≥ 1

2. repeat:
3. increase single ys by ε to maximize increase in lmini cov(i)

3. y ← y + ε∇ lmaxs fill(s)

4. delete elements i such that cov(i) ≥ ln(n)/ε
5. stop when all elements deleted
6. return y/ mini cov(i)
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coupled algorithm

1. x ← 0; y ← 0

2. repeat:

3. x ← x + ε∇ lmini cov(i); y ← y + ε∇ lmaxs fill(s)

4. delete elements i such that cov(i) ≥ ln(n)/ε

5. stop when all elts deleted or maxs fill(s) ≈ ln(n)/ε

6. return x/ maxs fill(s) and y/ mini cov(i)

Theorem
Algorithm returns (1± ε)-approximate solutions.

Proof.
Each iteration, both

∑
i xi and

∑
s ys increase by ε.

By coupling both lmaxs fill(s) and lmini cov(i) increase ≈ equally.
So at end, ∑

i xi

maxs fill(s)
≈

∑
s ys

mini cov(i)
.



randomized algorithm

1. xi ← ys ← 0 for each element i and set s
2. repeat:
3. For one random i from distribution ∇ lmini cov(i)

∝ e− cov(i)

4. and one random s from distribution ∇ lmaxs fill(s):

∝ efill(s)

5. xi ← xi + ε; ys ← ys + ε.
6. Delete elements i such that cov(i) ≥ ln(n)/ε.
6. Stop when all elts deleted or maxs fill(s) ≈ ln(n)/ε.
7. return x/ maxs fill(s) and y/ mini cov(i)

Theorem (Koufogiannakis, Young 2007)
Algorithm returns (1± ε)-approximate solutions (in expectation).

Proof.
lmaxs fill(s) and lmini cov(i) increase equally in expectation...

Theorem
Randomized algorithm takes O(n2 + n log(n)/ε2) time.

Note: probability of choosing i is proportional to exp(− cov(i));

probability of choosing s is proportional to exp(fill(s)).
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simplex algorithm for linear programming
the competition

I Simplex invented by George Dantzig in 1947.

I Exponential time in worst case but “works well in practice”.

I Takes typically at least 5n3 (n pivots, 5n2 each)
basic operations, even for ε = .05.

I Worse on “ill-conditioned” matrices.

In comparison, our algorithm (first draft) finds 1± ε-approximate
solutions guaranteed in about 5n2 + 75n ln n/ε2 basic operations.

Time for our algorithm / time for simplex is at most

1

n
+

ln n

(nε/4)2
.

E.g. when ε = .01,
1

n
+

ln n

(n/400)2
.
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