Beating Simplex for Packing and Covering

Christos Koufogiannakis and Neal E. Young

May 13, 2007

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

introduction

packing and covering

greedy algorithm?

Lagrangian relaxation

duality

algorithm for covering

coupling

coupled algorithm

randomized algorithm

simplex

▲□▶ ▲圖▶ ★国▶ ★国▶ 三臣 - のへで

packing and covering

packing

```
given: matrix A, vectors b, c
find vector x \ge 0 maximizing linear function c^{\mathsf{T}}x
subject to linear constraints Ax \le b.
```

covering

```
given: matrix A, vectors b, c
find vector x \ge 0 minimizing linear function c^{\mathsf{T}}x
subject to linear constraints Ax \ge b.
```

For this talk, assume $A \in \{0,1\}^{n \times n}$, $b_j = c_i = 1$. (Results extend to arbitrary nonnegative A, b, c.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

working example — packing

given: collection of sets variables: x_i for each element i (call vector x a *packing*) objective: maximize total weight $\sum_i x_i$ constraints: fill(s) ≤ 1 for each set s, where fill(s) = $\sum_{i \in s} x_i$

greedy algorithm?

1. $x \leftarrow \mathbf{0}$

—maximize $\sum_{i} x_i : \max_{s} fill(s) \le 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. repeat:
- increase single x_i by ε, choosing i so increase in max_s fill(s) is minimized.
- 4. return $x/\max_s fill(s)$ note: scaling ensures fill ≤ 1

greedy algorithm?

1. *x* ← **0**

—maximize $\sum_{i} x_{i} : \max_{s} \operatorname{fill}(s) \leq 1$

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

- 2. repeat:
- increase single x_i by ε, choosing i so increase in max_s fill(s) is minimized.
- 4. return $x / \max_s fill(s)$ note: scaling ensures fill ≤ 1

greedy algorithm?

1. *x* ← **0**

—maximize $\sum_{i} x_{i} : \max_{s} \operatorname{fill}(s) \leq 1$

- 2. repeat:
- increase single x_i by ε, choosing i so increase in max_s fill(s) is minimized.
- 4. return $x / \max_s fill(s)$ note: scaling ensures fill ≤ 1

what about: (1) number of sets x_i occurs in? (2) non-max-fill sets?

Lagrangian relaxation

Replace hard constraints by smooth penalties — like in life.

for "vector of concerns" y, define:

 $lmax(y) = ln \sum_{i=1}^{n} e^{y_i}$

1. Imax approximates max:

$$\operatorname{Imax}(y) \approx \max_i y_i + \ln n$$

2. but Imax is smooth (1st-order approximation is good):

 $lmax(y+d) \approx lmax(y) + d \cdot \nabla lmax(y)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- provided $\max_i d_i \leq \varepsilon$

relaxed algorithm uses Imax instead of max

1. *x* ← **0**

— maximize
$$\sum_{i} x_i : \max_s fill(s) \le 1$$

- 2. repeat:
- increase single x_i by ε, choosing i so increase in Imax_s fill(s) is minimized.
- 4. stop when $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$
- 5. return $x / \max_{s} fill(s)$

relaxed algorithm uses Imax instead of max

1. *x* ← **0**

— maximize
$$\sum_{i} x_i : \max_s fill(s) \le 1$$

- 2. repeat:
- 3. increase single x_i by ε , choosing *i* so increase in $\text{Imax}_s \text{ fill}(s)$ is minimized. *i.e., choose i to minimize* $\sum_{s \ni i} e^{\text{fill}(s)}$
- 4. stop when $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$
- 5. return $x / \max_{s} fill(s)$

relaxed algorithm uses Imax instead of max

1. *x* ← **0**

— maximize
$$\sum_{i} x_i : \max_{s} fill(s) \le 1$$

- 2. repeat:
- increase single x_i by ε, choosing i so increase in Imax_s fill(s) is minimized.
 i.e., choose i to minimize ∑_{s≥i} e^{fill(s)}
- 4. stop when $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$
- 5. return $x / \max_s fill(s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

relaxed algorithm

1. *x* ← **0**

— maximize $\sum_{i} x_i : \max_{s} fill(s) \leq 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. repeat:
- 3. increase single x_i by ε , choosing i so increase in $\text{Imax}_s \text{ fill}(s)$ is minimized. *i.e., choose i to minimize* $\sum_{s \ni i} e^{\text{fill}(s)}$
- 4. stop when $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$
- 5. return $x / \max_{s} fill(s)$

Theorem (Garg and Könemann 1998) Returns $(1 - O(\varepsilon))$ -approximate solution.

running time $O(n^3 \log(n) / \varepsilon^2)$

 1. $x \leftarrow 0$ $-maximize \sum_i x_i : \max_s fill(s) \le 1$

 2. repeat:
 3. increase single x_i by ε , choosing i so increase in $lmax_s$ fill(s) is minimized.

 4. stop when $\max_s fill(s) \approx \ln(n)/\varepsilon$ 5. return $x/\max_s fill(s)$

Theorem

Can maintain fill(s) for all sets s in $O(n \log(n)/\varepsilon^2)$ total time.

Each update to fill(s) takes O(1) work; increases fill(s) by ε . At most $\ln(n)/\varepsilon^2$ updates to fill(s) before fill(s) = $\ln(n)/\varepsilon$.

・ロト・西ト・西ト・日・ 日・ シック

duality

dual of packing is covering:

given: collection of sets variables: y_s for each set s (call vector y a *cover*) objective: minimize total weight $\sum_s y_s$ constraints: $cov(i) \ge 1$ for each element i, where $cov(i) = \sum_{s \ni i} y_s$

strong duality:

For optimal packing x and cover y, $\sum_i x_i = \sum_s y_s$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

algorithm for covering ... just like algorithm for packing...

1. *y* ← **0**

- minimize
$$\sum_{s} y_{s} : \min_{i} \operatorname{cov}(i) \ge 1$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- 2. repeat:
- 3. increase single y_s by ε , choosing s so increase in $\text{Imin}_i \text{cov}(i)$ is maximized.
- 4. delete elements *i* such that $cov(i) \ge ln(n)/\varepsilon$
- 5. stop when all elements deleted
- 6. return $y / \min_i \operatorname{cov}(i)$

Theorem (Garg and Könemann 1998) Returns $(1 + O(\varepsilon))$ -approximate solution. coupling from Grigoriadis and Khachiyan, 1995

vector x, function f(x)

$$f(x + \Delta x) - f(x) \approx \Delta x \cdot \nabla f(x)$$

vector y, function g(y)

$$g(y + \Delta y) - g(y) \, pprox \, \Delta y \cdot
abla g(y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

coupling from Grigoriadis and Khachiyan, 1995

vector x, function f(x)

$$f(x + \Delta x) - f(x) \approx \Delta x \cdot \nabla f(x)$$

vector y, function g(y)

$$g(y + \Delta y) - g(y) \, pprox \, \Delta y \cdot
abla g(y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Take $\Delta y = \nabla f(x)$ and $\Delta x = \nabla g(y)$...

coupling from Grigoriadis and Khachiyan, 1995

vector x, function f(x)

$$f(x + \Delta x) - f(x) \approx \Delta x \cdot \nabla f(x) \approx \nabla g(y) \cdot \nabla f(x)$$

vector y, function g(y)

$$g(y + \Delta y) - g(y) \approx \Delta y \cdot \nabla g(y) \approx \nabla f(x) \cdot \nabla g(y)$$

Take $\Delta y = \nabla f(x)$ and $\Delta x = \nabla g(y)...$ then increase in f equals increase in g.

coupled algorithm

1. *x* ← **0**

packing — maximize $\sum_{i} x_i : \max_{s} fill(s) \le 1$

- 2. repeat:
- 3. increase single x_i by ε to minimize increase in $\max_s fill(s)$
- 4. stop when $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$
- 5. return $x / \max_s fill(s)$
- 1. $y \leftarrow \mathbf{0}$

covering — minimize $\sum_{s} y_{s} : \min_{i} \operatorname{cov}(i) \ge 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. repeat:
- 3. increase single y_s by ε to maximize increase in $\text{Imin}_i \operatorname{cov}(i)$
- 4. delete elements *i* such that $cov(i) \ge ln(n)/\varepsilon$
- 5. stop when all elements deleted
- 6. return $y / \min_i \operatorname{cov}(i)$

coupled algorithm

1. *x* ← **0**

packing — maximize $\sum_{i} x_i : \max_{s} fill(s) \le 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. repeat:
- 3. increase single x_i by ε to minimize increase in $\text{Imax}_s \text{ fill}(s)$
- 3. $x \leftarrow x + \varepsilon \nabla \operatorname{Imin}_i \operatorname{cov}(i)$
- 4. stop when $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$
- 5. return $x / \max_{s} fill(s)$

1. $y \leftarrow \mathbf{0}$ covering — minimize $\sum_{s} y_s : \min_i \operatorname{cov}(i) \ge 1$

- 2. repeat:
- 3. increase single y_s by ε to maximize increase in $\text{Imin}_i \operatorname{cov}(i)$
- 3. $y \leftarrow y + \varepsilon \nabla \operatorname{Imax}_{s} \operatorname{fill}(s)$
- 4. delete elements *i* such that $cov(i) \ge ln(n)/\varepsilon$
- 5. stop when all elements deleted
- 6. return $y / \min_i \operatorname{cov}(i)$

coupled algorithm

1. $x \leftarrow \mathbf{0}; y \leftarrow \mathbf{0}$

2. repeat:

3.
$$x \leftarrow x + \varepsilon \nabla \operatorname{Imin}_i \operatorname{cov}(i); y \leftarrow y + \varepsilon \nabla \operatorname{Imax}_s \operatorname{fill}(s)$$

- 4. delete elements *i* such that $cov(i) \ge ln(n)/\varepsilon$
- 5. stop when all elts deleted or $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$
- 6. return $x / \max_s fill(s)$ and $y / \min_i cov(i)$

Theorem

Algorithm returns (1 $\pm \varepsilon$)-approximate solutions.

Proof.

Each iteration, both $\sum_{i} x_i$ and $\sum_{s} y_s$ increase by ε . By coupling both $\text{Imax}_s \text{fill}(s)$ and $\text{Imin}_i \text{cov}(i)$ increase \approx equally. So at end,

$$\frac{\sum_{i} x_{i}}{\max_{s} \operatorname{fill}(s)} \approx \frac{\sum_{s} y_{s}}{\min_{i} \operatorname{cov}(i)}$$

(ロ)、(型)、(E)、(E)、(E) のQ()

randomized algorithm

1. $x_i \leftarrow y_s \leftarrow 0$ for each element *i* and set *s*

2. repeat:

- 3. For one random *i* from distribution $\nabla \operatorname{Imin}_i \operatorname{cov}(i)$
- 4. and one random s from distribution $\nabla \max_s \operatorname{fill}(s)$:

5.
$$x_i \leftarrow x_i + \varepsilon; \ y_s \leftarrow y_s + \varepsilon.$$

- 6. Delete elements *i* such that $\operatorname{cov}(i) \ge \ln(n)/\varepsilon$.
- 6. Stop when all elts deleted or $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$.
- 7. return $x / \max_s fill(s)$ and $y / \min_i cov(i)$

Theorem (Koufogiannakis, Young 2007)

Algorithm returns $(1 \pm \varepsilon)$ -approximate solutions (in expectation).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof.

 $Imax_s fill(s)$ and $Imin_i cov(i)$ increase equally in expectation...

randomized algorithm

1. $x_i \leftarrow y_s \leftarrow 0$ for each element *i* and set *s*

2. repeat:

- 3. For one random *i* from distribution $\nabla \operatorname{Imin}_i \operatorname{cov}(i) \propto e^{-\operatorname{cov}(i)}$
- 4. and one random s from distribution $\nabla \operatorname{Imax}_{s} \operatorname{fill}(s)$: $\propto e^{\operatorname{fill}(s)}$

5.
$$x_i \leftarrow x_i + \varepsilon; \ y_s \leftarrow y_s + \varepsilon.$$

- 6. Delete elements *i* such that $\operatorname{cov}(i) \ge \ln(n)/\varepsilon$.
- 6. Stop when all elts deleted or $\max_s \operatorname{fill}(s) \approx \ln(n)/\varepsilon$.
- 7. return $x / \max_s \text{fill}(s)$ and $y / \min_i \text{cov}(i)$

Theorem (Koufogiannakis, Young 2007)

Algorithm returns $(1 \pm \varepsilon)$ -approximate solutions (in expectation).

Proof.

 $Imax_s fill(s)$ and $Imin_i cov(i)$ increase equally in expectation...

Theorem

Randomized algorithm takes $O(n^2 + n \log(n)/\epsilon^2)$ time. Note: probability of choosing *i* is proportional to $\exp(-\operatorname{cov}(i))$; probability of choosing *s* is proportional to $\exp(\operatorname{fill}(s))$.

simplex algorithm for linear programming the competition

- Simplex invented by George Dantzig in 1947.
- Exponential time in worst case but "works well in practice".

- Takes typically at least 5n³ (n pivots, 5n² each) basic operations, even for ε = .05.
- ▶ Worse on "ill-conditioned" matrices.

simplex algorithm for linear programming the competition

- Simplex invented by George Dantzig in 1947.
- Exponential time in worst case but "works well in practice".
- Takes typically at least 5n³ (n pivots, 5n² each) basic operations, even for ε = .05.
- Worse on "ill-conditioned" matrices.

In comparison, our algorithm (first draft) finds $1 \pm \varepsilon$ -approximate solutions guaranteed in about $5n^2 + 75n \ln n/\varepsilon^2$ basic operations.

Time for our algorithm / time for simplex is at most

$$\frac{1}{n} + \frac{\ln n}{(n\varepsilon/4)^2}$$

E.g. when
$$\varepsilon = .01$$
, $\frac{1}{n} + \frac{\ln n}{(n/400)^2}$.

introduction

packing and covering

greedy algorithm?

Lagrangian relaxation

duality

algorithm for covering

coupling

coupled algorithm

randomized algorithm

simplex

▲□▶ ▲圖▶ ★国▶ ★国▶ 三臣 - のへで