Beating Simplex for Packing and Covering

Christos Koufogiannakis and Neal E. Young

May 13, 2007
introduction
packing and covering
greedy algorithm?

Lagrangian relaxation
duality
algorithm for covering
coupling
coupled algorithm
randomized algorithm
simplex

packing and covering

packing

given: matrix A, vectors b, c
find vector $x \geq 0$ maximizing linear function $c^{\top} x$ subject to linear constraints $A x \leq b$.

covering

```
given: matrix \(A\), vectors \(b, c\)
```

find vector $x \geq 0$ minimizing linear function $c^{\top} x$ subject to linear constraints $A x \geq b$.

For this talk, assume $A \in\{0,1\}^{n \times n}, b_{j}=c_{i}=1$.
(Results extend to arbitrary nonnegative A, b, c.)

working example - packing

given: collection of sets
variables: x_{i} for each element i (call vector x a packing)
objective: maximize total weight $\sum_{i} x_{i}$
constraints: fill($s) \leq 1$ for each set s, where fill $(s)=\sum_{i \in s} x_{i}$

greedy algorithm?

1. $x \leftarrow 0$

$$
— \operatorname{maximize} \sum_{i} x_{i}: \max _{s} \text { fill }(s) \leq 1
$$

2. repeat:
3. increase single x_{i} by ε, choosing i so increase in $\max _{s}$ fill(s) is minimized.
4. return $x / \max _{s}$ fill(s) - note: scaling ensures fill ≤ 1

greedy algorithm?

1. $x \leftarrow 0$

$$
-\operatorname{maximize} \sum_{i} x_{i}: \max _{s} \text { fill }(s) \leq 1
$$

2. repeat:
3. increase single x_{i} by ε, choosing i so increase in max $_{s}$ fill(s) is minimized.
4. return $x / \max _{s}$ fill(s) - note: scaling ensures fill ≤ 1

greedy algorithm?

1. $x \leftarrow 0$

$$
-\operatorname{maximize} \sum_{i} x_{i}: \max _{s} \text { fill }(s) \leq 1
$$

2. repeat:
3. increase single x_{i} by ε, choosing i so increase in $\max _{s}$ fill(s) is minimized.
4. return $x / \max _{s}$ fill(s) - note: scaling ensures fill ≤ 1

what about: (1) number of sets x_{i} occurs in?
(2) non-max-fill sets?

Lagrangian relaxation

Replace hard constraints by smooth penalties - like in life.
for "vector of concerns" y, define:

$$
\operatorname{Imax}(y)=\ln \sum_{i=1}^{n} e^{y_{i}}
$$

1. Imax approximates max:

$$
\operatorname{Imax}(y) \approx \max _{i} y_{i}+\ln n
$$

2. but Imax is smooth (1st-order approximation is good):

$$
\operatorname{Imax}(y+d) \approx \operatorname{Imax}(y)+d \cdot \nabla \operatorname{Imax}(y)
$$

- provided $\max _{i} d_{i} \leq \varepsilon$

relaxed algorithm uses Imax instead of max

1. $x \leftarrow 0$
$-\operatorname{maximize} \sum_{i} x_{i}:$ max $_{s}$ fill $(s) \leq 1$
2. repeat:
3. increase single x_{i} by ε, choosing i so increase in Imax $_{s}$ fill(s) is minimized.
4. stop when $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$
5. return $x /$ max $_{s}$ fill(s)

relaxed algorithm uses Imax instead of max

1. $x \leftarrow 0$
$-\operatorname{maximize} \sum_{i} x_{i}:$ max $_{s}$ fill $(s) \leq 1$
2. repeat:
3. increase single x_{i} by ε, choosing i so increase in Imax ${ }_{s}$ fill(s) is minimized.
i.e., choose i to minimize $\sum_{s \ni i} e^{\text {fill(s) }}$
4. stop when $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$
5. return $x /$ max $_{s}$ fill(s)

relaxed algorithm uses Imax instead of max

1. $x \leftarrow 0$

- maximize $\sum_{i} x_{i}:$ max $_{s}$ fill $(s) \leq 1$

2. repeat:
3. increase single x_{i} by ε, choosing i so increase in Imax ${ }_{s}$ fill (s) is minimized.
i.e., choose i to minimize $\sum_{s \ni i} e^{\text {fill(s) }}$
4. stop when $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$
5. return $x /$ max $_{s}$ fill(s)

relaxed algorithm

1. $x \leftarrow 0$

$$
-\operatorname{maximize} \sum_{i} x_{i}: \max _{s} \text { fill }(s) \leq 1
$$

2. repeat:
3. increase single x_{i} by ε, choosing i so increase in Imax $_{s}$ fill (s) is minimized.

$$
\text { i.e., choose } i \text { to minimize } \sum_{s \ni i} i^{\text {fill(s) }}
$$

4. stop when max fill $^{\text {4 }}(s) \approx \ln (n) / \varepsilon$
5. return $x /$ max $_{s}$ fill(s)

Theorem (Garg and Könemann 1998)
Returns $(1-O(\varepsilon))$-approximate solution.

running time $O\left(n^{3} \log (n) / \varepsilon^{2}\right)$

1. $x \leftarrow 0$

$$
— \text { maximize } \sum_{i} x_{i}: \max _{s} \text { fill }(s) \leq 1
$$

2. repeat:
3. increase single x_{i} by ε, choosing i so increase in Imax_{s} fill(s) is minimized.
4. stop when $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$
5. return $x / \max _{s}$ fill(s)

Theorem

Can maintain fill(s) for all sets s in $O\left(n \log (n) / \varepsilon^{2}\right)$ total time.

Each update to fill(s) takes $O(1)$ work; increases fill(s) by ε. At most $\ln (n) / \varepsilon^{2}$ updates to fill(s) before fill $(s)=\ln (n) / \varepsilon$.

duality

dual of packing is covering:
given: collection of sets
variables: y_{s} for each set s (call vector y a cover)
objective: minimize total weight $\sum_{s} y_{s}$
constraints: $\operatorname{cov}(i) \geq 1$ for each element i, where $\operatorname{cov}(i)=\sum_{s \ni i} y_{s}$
strong duality:
For optimal packing x and cover $y, \sum_{i} x_{i}=\sum_{s} y_{s}$.
algorithm for covering
...just like algorithm for packing...

1. $y \leftarrow \mathbf{0}$
2. repeat:
3. increase single y_{s} by ε, choosing s so increase in $\operatorname{Imin}_{i} \operatorname{cov}(i)$ is maximized.
4. delete elements i such that $\operatorname{cov}(i) \geq \ln (n) / \varepsilon$
5. stop when all elements deleted
6. return $y / \min _{i} \operatorname{cov}(i)$

Theorem (Garg and Könemann 1998)
Returns $(1+O(\varepsilon))$-approximate solution.

coupling

from Grigoriadis and Khachiyan, 1995
vector x, function $f(x)$

$$
f(x+\Delta x)-f(x) \approx \Delta x \cdot \nabla f(x)
$$

vector y, function $g(y)$

$$
g(y+\Delta y)-g(y) \approx \Delta y \cdot \nabla g(y)
$$

coupling

from Grigoriadis and Khachiyan, 1995
vector x, function $f(x)$

$$
f(x+\Delta x)-f(x) \approx \Delta x \cdot \nabla f(x)
$$

vector y, function $g(y)$

$$
g(y+\Delta y)-g(y) \approx \Delta y \cdot \nabla g(y)
$$

Take $\Delta y=\nabla f(x)$ and $\Delta x=\nabla g(y) \ldots$

coupling

from Grigoriadis and Khachiyan, 1995
vector x, function $f(x)$

$$
f(x+\Delta x)-f(x) \approx \Delta x \cdot \nabla f(x) \approx \nabla g(y) \cdot \nabla f(x)
$$

vector y, function $g(y)$

$$
g(y+\Delta y)-g(y) \approx \Delta y \cdot \nabla g(y) \approx \nabla f(x) \cdot \nabla g(y)
$$

Take $\Delta y=\nabla f(x)$ and $\Delta x=\nabla g(y) \ldots$ then increase in f equals increase in g.

coupled algorithm

1. $x \leftarrow 0$
packing - maximize $\sum_{i} x_{i}: \max _{s}$ fill $(s) \leq 1$
2. repeat:
3. increase single x_{i} by ε to minimize increase in Imax_{s} fill(s)
4. stop when $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$
5. return $x /$ max $_{s}$ fill(s)
6. $y \leftarrow \mathbf{0}$

$$
\text { covering }-\operatorname{minimize} \sum_{s} y_{s}: \min _{i} \operatorname{cov}(i) \geq 1
$$

2. repeat:
3. increase single y_{s} by ε to maximize increase in $\operatorname{Imin}_{i} \operatorname{cov}(i)$
4. delete elements i such that $\operatorname{cov}(i) \geq \ln (n) / \varepsilon$
5. stop when all elements deleted
6. return $y / \min _{i} \operatorname{cov}(i)$

coupled algorithm

1. $x \leftarrow 0$
packing — maximize $\sum_{i} x_{i}: \max _{s}$ fill $(s) \leq 1$
2. repeat:

3. $x \leftarrow x+\varepsilon \nabla \operatorname{lmin}_{i} \operatorname{cov}(i)$
4. stop when $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$
5. return $x /$ max $_{s}$ fill (s)
6. $y \leftarrow \mathbf{0}$

$$
\text { covering - minimize } \sum_{s} y_{s}: \min _{i} \operatorname{cov}(i) \geq 1
$$

2. repeat:
3. increase-single y^{\prime} by c to maximize increase in Imin,cov(i)
4. $y \leftarrow y+\varepsilon \nabla \operatorname{lmax}{ }_{s}$ fill(s)
5. delete elements i such that $\operatorname{cov}(i) \geq \ln (n) / \varepsilon$
6. stop when all elements deleted
7. return $y / \min _{i} \operatorname{cov}(i)$

coupled algorithm

1. $x \leftarrow 0 ; y \leftarrow 0$
2. repeat:
3. $x \leftarrow x+\varepsilon \nabla \operatorname{lmin}_{i} \operatorname{cov}(i) ; y \leftarrow y+\varepsilon \nabla \operatorname{lmax}{ }_{s}$ fill (s)
4. delete elements i such that $\operatorname{cov}(i) \geq \ln (n) / \varepsilon$
5. stop when all elts deleted or $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$
6. return $x / \max _{s}$ fill(s) and $y / \min _{i} \operatorname{cov}(i)$

Theorem
Algorithm returns ($1 \pm \varepsilon$)-approximate solutions.
Proof.
Each iteration, both $\sum_{i} x_{i}$ and $\sum_{s} y_{s}$ increase by ε. By coupling both Imax fill (s) and $\operatorname{Imin}_{i} \operatorname{cov}(i)$ increase \approx equally. So at end,

$$
\frac{\sum_{i} x_{i}}{\max _{s} \operatorname{fill}(s)} \approx \frac{\sum_{s} y_{s}}{\min _{i} \operatorname{cov}(i)}
$$

randomized algorithm

1. $x_{i} \leftarrow y_{s} \leftarrow 0$ for each element i and set s
2. repeat:
3. For one random i from distribution $\nabla \operatorname{Imin}_{i} \operatorname{cov}(i)$
4. and one random s from distribution $\nabla \operatorname{lmax}_{s}$ fill(s):
5. $\quad x_{i} \leftarrow x_{i}+\varepsilon ; y_{s} \leftarrow y_{s}+\varepsilon$.
6. Delete elements i such that $\operatorname{cov}(i) \geq \ln (n) / \varepsilon$.
7. Stop when all elts deleted or $\max _{s} \operatorname{fill}(s) \approx \ln (n) / \varepsilon$.
8. return $x /$ max $_{s}$ fill(s) and $y / \min _{i} \operatorname{cov}(i)$

Theorem (Koufogiannakis, Young 2007)
Algorithm returns ($1 \pm \varepsilon$)-approximate solutions (in expectation).
Proof.
Imax $_{s}$ fill(s) and $\operatorname{lmin}_{i} \operatorname{cov}(i)$ increase equally in expectation...

randomized algorithm

1. $x_{i} \leftarrow y_{s} \leftarrow 0$ for each element i and set s
2. repeat:
3. For one random i from distribution $\nabla \operatorname{Imin}_{i} \operatorname{cov}(i) \propto e^{-\operatorname{cov}(i)}$
4. and one random s from distribution $\nabla \operatorname{Imax}_{s}$ fill(s): $\propto e^{\text {fill(s) }}$
5. $\quad x_{i} \leftarrow x_{i}+\varepsilon ; y_{s} \leftarrow y_{s}+\varepsilon$.
6. Delete elements i such that $\operatorname{cov}(i) \geq \ln (n) / \varepsilon$.
7. Stop when all elts deleted or $\max _{s}$ fill $(s) \approx \ln (n) / \varepsilon$.
8. return $x /$ max $_{s}$ fill(s) and $y / \min _{i} \operatorname{cov}(i)$

Theorem (Koufogiannakis, Young 2007)

Algorithm returns ($1 \pm \varepsilon$)-approximate solutions (in expectation).
Proof.
Imax ${ }_{s}$ fill(s) and $\operatorname{lmin}_{i} \operatorname{cov}(i)$ increase equally in expectation...

Theorem

Randomized algorithm takes $O\left(n^{2}+n \log (n) / \varepsilon^{2}\right)$ time.
Note: probability of choosing i is proportional to $\exp (-\operatorname{cov}(i))$; probability of choosing s is proportional to $\exp ($ fill $(s))$.

simplex algorithm for linear programming

 the competition- Simplex invented by George Dantzig in 1947.
- Exponential time in worst case but "works well in practice".
- Takes typically at least $5 n^{3}$ (n pivots, $5 n^{2}$ each) basic operations, even for $\varepsilon=.05$.
- Worse on "ill-conditioned" matrices.

simplex algorithm for linear programming

 the competition- Simplex invented by George Dantzig in 1947.
- Exponential time in worst case but "works well in practice".
- Takes typically at least $5 n^{3}$ (n pivots, $5 n^{2}$ each) basic operations, even for $\varepsilon=.05$.
- Worse on "ill-conditioned" matrices.

In comparison, our algorithm (first draft) finds $1 \pm \varepsilon$-approximate solutions guaranteed in about $5 n^{2}+75 n \ln n / \varepsilon^{2}$ basic operations.

Time for our algorithm / time for simplex is at most

$$
\frac{1}{n}+\frac{\ln n}{(n \varepsilon / 4)^{2}}
$$

E.g. when $\varepsilon=.01, \quad \frac{1}{n}+\frac{\ln n}{(n / 400)^{2}}$.
introduction
packing and covering
greedy algorithm?

Lagrangian relaxation
duality
algorithm for covering
coupling
coupled algorithm
randomized algorithm
simplex

