On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

Phil Klein Brown University Neal Young Dartmouth College

simple multicommodity flow problem

 $P = \{s_i \to t_i \text{ paths}\}.$

Route at least 1 total unit of flow,

respecting capacity constraint c (0 < c < 1).

simple multicommodity flow algorithm

$$P = \{s_i \to t_i \text{ paths}\}.$$

Repeat for T iterations:

Route 1/T units of flow on min-cost path in P, where cost of edge e is $(1 + \epsilon)^{T \operatorname{flow}(e)}$.

performance guarantee

THM: If flow of congestion c exists, then algorithm returns flow of congestion $c(1 + \epsilon)$

provided $T \ge 3 \frac{\ln(m)}{c \epsilon^2}$.

generic packing problem

input: real matrix A, vector b, generic polytope P

output: $x \in P$ such that $Ax \leq b$.

generic packing problem

input: real matrix A, vector b, generic polytope P

oracle for P: given vector c returns $\arg\min_{x\in P} c\cdot x$.

 ϵ -approximate solution: $x \in P$ such that $Ax \leq (1 + \epsilon)b$.

Lagrangian Relaxation

idea: replace constraints by costs

1950: Ford, Fulkerson

Reduced multicommod. flow to iterated min-cost flow.

1960: Dantzig, Wolfe

Generalized to generic packing problem.

1970: Held, Karp

Reduced TSP I.b. to iterated min. 1-spanning-tree.

1990: Shahrokhi, Matula

Multicommodity flow, guaranteed convergence rate.

1995: Plotkin, Shmoys, Tardos

Generalized to generic packing problem.

Iterations prop. to $\rho \ln(m)/\epsilon^2$ $\rho =$ "width", m = # constraints.

main result: a lower bound

THM: Any ϵ -approximation algorithm for the generic packing problem requires a number of iterations prop. to $T = \rho \ln(m)/\epsilon^2$ for sufficiently large m.

proof idea ($\rho = 2$):

Reduce to question about two-player zero-sum matrix games.

value(M) = $\min_{x \in P} \max_{j} (Mx)_j$, where $P = \{x \ge 0 : \sum_i x_i = 1\}$.

THM: Let M be a random matrix in $\{0,1\}^{m \times \sqrt{m}}$. With high probability, every $m \times T$ submatrix B of M has

 $value(B) > (1 + \epsilon)value(M)$

where $T = \Omega(\ln(m)/\epsilon^2)$.

COROLLARY: At least T oracle calls to know value(M) within $1 + \epsilon$.

underlying idea:

Show $m \times T$ submatrix has high value with high probability:

Discrepancy theory.