On the Number of Iterations for Dantzig-Wolfe Optimization and
 Packing-Covering Approximation Algorithms

Phil Klein
Brown University

Neal Young
Dartmouth College

simple multicommodity flow problem

$P=\left\{s_{i} \rightarrow t_{i}\right.$ paths $\}$.
Route at least 1 total unit of flow,
respecting capacity constraint $c(0<c<1)$.

simple multicommodity flow algorithm

$P=\left\{s_{i} \rightarrow t_{i}\right.$ paths $\}$.
Repeat for T iterations:

Route $1 / T$ units of flow on min-cost path in P, where cost of edge e is $(1+\epsilon)^{T \text { flow }(e)}$.

performance guarantee

THM: If flow of congestion c exists, then algorithm returns flow of congestion $c(1+\epsilon)$
provided $T \geq 3 \frac{\ln (m)}{c \epsilon^{2}}$.

generic packing problem

input: real matrix A, vector b, generic polytope P output: $x \in P$ such that $A x \leq b$.

generic packing problem

input: real matrix A, vector b, generic polytope P
oracle for P : given vector c returns $\arg \min _{x \in P} c \cdot x$.
ϵ-approximate solution: $x \in P$ such that $A x \leq(1+\epsilon) b$.

Lagrangian Relaxation

idea: replace constraints by costs
1950: Ford, Fulkerson
Reduced multicommod. flow to iterated min-cost flow.
1960: Dantzig, Wolfe
Generalized to generic packing problem.
1970: Held, Karp
Reduced TSP I.b. to iterated min. 1-spanning-tree.
1990: Shahrokhi, Matula
Multicommodity flow, guaranteed convergence rate.
:
1995: Plotkin, Shmoys, Tardos
Generalized to generic packing problem.
\# Iterations prop. to $\quad \rho \ln (m) / \epsilon^{2}$ $\rho=$ "width", $m=\#$ constraints.

main result: a lower bound

THM: Any ϵ-approximation algorithm for the generic packing problem requires a number of iterations prop. to $T=\rho \ln (m) / \epsilon^{2}$ for sufficiently large m.

proof idea $(\rho=2)$:

Reduce to question about two-player zero-sum matrix games.
value $(M)=\min _{x \in P} \max _{j}(M x)_{j}$, where $P=\left\{x \geq 0: \sum_{i} x_{i}=1\right\}$.
THM: Let M be a random matrix in $\{0,1\}^{m \times \sqrt{m}}$. With high probability, every $m \times T$ submatrix B of M has

$$
\text { value }(B)>(1+\epsilon) \text { value }(M)
$$

where $T=\Omega\left(\ln (m) / \epsilon^{2}\right)$.

COROLLARY: At least T oracle calls to know value(M) within $1+\epsilon$.

underlying idea:

Show $m \times T$ submatrix has high value with high probability:

Discrepancy theory.

