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Huffman coding

n frequencies

p1 = 4
p2 = 4
p3 = 2
p4 = 1
p5 = 1
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given: frequencies p1 ≥ p2 ≥ · · · ≥ pn

find: binary codewords w1, w2, . . . , wn

objective: minimize wtd average codeword length
∑

i pi |wi |
prefix-free: no codeword is a prefix of any other codeword



A prefix-free code of cost 27

frequency → “word”

4 → “ab”, cost 8
4 → “ba”, cost 8
2 → “aab”, cost 6
1 → “aaa”, cost 3
1 → “bb”, cost 2
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given: frequencies p1 ≥ p2 ≥ · · · ≥ pn

find: binary codewords w1, w2, . . . , wn

objective: minimize wtd average codeword length
∑

i pi |wi |
prefix-free: no codeword is a prefix of any other codeword



A monotone prefix-free code (lower cost)

4 → “ab”
4 → “ba”
2 → “bb”
1 → “aaa”
1 → “aab”
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Highest frequencies are assigned to shortest codewords.



Huffman coding with unequal letter costs

p1 = 4
p2 = 4
p3 = 2
p4 = 1
p5 = 1

each “a” costs 1
each “b” costs 2

cost 1

cost 2

cost 3

cost 4
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given: letter costs `0 ≤ `1 ... in general case can have more than two letters

frequencies p1 ≥ p2 ≥ · · · ≥ pn

find: binary codewords w1, w2, . . . , wn

objective: minimize wtd average codeword cost,
∑

i pi cost(wi )

prefix-free: no codeword is a prefix of any other codeword
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NP-hard? c-approx?



PTAS (main result)

Theorem (GMY - STOC 2002)

For Huffman coding with unequal letter costs, for any fixed ε > 0,
a (1 + ε)-approximate solution can be computed in time poly(n).

algorithm
1. Scale and round the letter costs.
2. Find a minimum-cost t-relaxed code c .
3. “Round” c to make it prefix free.



algorithm

1. Scale and round the letter costs.

2. Find a minimum-cost t-relaxed code c .
3. “Round” c to make it prefix free.

t-relaxed: words of cost ≥ t can be prefixes of other words

4 codewords cost < t:

31 codewords cost ≥ t:
t

Lemma (lower bound on opt)

cost(optimal t-relaxed code) ≤ cost(optimal prefix-free code)

will take t = Oε(1) — a constant (dependent on ε)



algorithm

1. Scale and round the letter costs.

2. Find a minimum-cost t-relaxed code c .
3. “Round” c to make it prefix free.

finding a minimum-cost t-relaxed code

choose words of cost < t
by exhaustive search

t ≈ log(1/ε)/ε −→

choose words of cost ≥ t
greedily

t

exhaustive search: ...for dealing with bigger-than binary alphabets

In each level 1, 2, .., t, only number of codewords matters.
⇒ at most nt equivalence classes of codes.
⇒ nO(t) time to search them all.



algorithm
1. Scale and round the letter costs.

2. Find a minimum-cost t-relaxed code c.

3. “Round” c to make it prefix free.

Making a t-relaxed code prefix free:

for each codeword w of cost ≥ t:

Split w as w = x y where cost(x) ≈ t.

Replace w with w ′ = x |y | y , where |y | is encoded in binary.

example: w = aabaaababaaabbaaabbaaab
→ aabaaaba1100baaabbaaabbaaab
→ aabaaababbbbaaaaabbaaabbaaabbaaab

Lemma: Cost of code increases by 1 + O(ε) factor.

Cost of w increases by 2 log2 cost(w).
Increase is at most ε cost(w) since cost(w) ≥ t ≈ log(1/ε)/ε.



algorithm
1. Scale and round the letter costs.
2. Find a minimum-cost t-relaxed code c .
3. “Round” c to make it prefix free.

Theorem
The cost of the code produced by the algorithm is at most
(1 + O(ε)) times the minimum cost of any prefix-free code.

Proof.
cost(c) is at most the minimum cost of any prefix-free code.
Making c prefix-free increases its cost by a 1 + O(ε) factor.

Run time: O(n log n) + O(f (ε) log2 n) [GMY - 2009]



Still open...

NP-hard? In P?
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