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Abstract

The recent Spectre attacks exploit speculative execution,
a pervasively used feature of modern microprocessors, to
allow the exfiltration of sensitive data across protection
boundaries. In this paper, we introduce a new Spectre-
class attack that we call SpectreRSB. In particular, rather
than exploiting the branch predictor unit, SpectreRSB
exploits the return stack buffer (RSB), a common pre-
dictor structure in modern CPUs used to predict return
addresses. We show that both local attacks (within the
same process such as Spectre 1) and attacks on SGX are
possible by constructing proof of concept attacks. We
also analyze additional types of the attack on the ker-
nel or across address spaces and show that under some
practical and widely used conditions they are possible.
Importantly, none of the known defenses including Ret-
poline and Intel’s microcode patches stop all SpectreRSB
attacks. We believe that future system developers should
be aware of this vulnerability and consider it in devel-
oping defenses against speculation attacks. In particular,
on Core-i7 Skylake and newer processors (but not on In-
tel’s Xeon processor line), a patch called RSB refilling
is used to address a vulnerability when the RSB under-
fills; this defense interferes with SpectreRSB’s ability to
launch attacks that switch into the kernel. We recom-
mend that this patch should be used on all machines to
protect against SpectreRSB.

1 Introduction

Speculative execution is a microarchitectural technique
used pervasively to improve the performance of all mod-
ern CPUs. Recently, it has been shown that speculatively
executed instructions can leave measurable side-effects
in the processor caches and other shared structures even
when the speculated instructions do not commit and their
direct effects are not visible. Moreover, since these in-
structions are speculative, normal permission checks do

not take effect until the instruction is committed. The
recent Spectre attack [23, 13, 31] has shown that this
behavior can be exploited to expose information that is
otherwise inaccessible. In the two variants of Spectre at-
tacks, attackers either mistrain the branch predictor unit
or directly pollute it to force the speculative execution
of code that can enable exposure of the full memory of
other processes and hypervisor. Chen et al. demonstrated
that known Spectre variants are able to expose informa-
tion from SGX enclaves [3]. New variants of Spectre that
utilize other triggers for speculative execution have been
introduced including speculative store bypass [17].

In this paper, we introduce a new attack vector Spec-
tre like attacks that are not prevented by deployed de-
fenses. Specifically, the attacks exploit the Return Stack
Buffer (RSB) to cause speculative execution of the pay-
load gadget that reads and exposes sensitive information.
The RSB is a processor structure used to predict return
address by pushing the return address from a call instruc-
tion on an internal hardware stack (typically of size 16
entries). When the return is encountered, the processor
uses the top of the RSB to predict the return address to
support speculation with very high accuracy. We show
that the RSB can be easily manipulated by user code:
a call instruction, causes a value to be pushed to the
RSB, but the stack can subsequently be manipulated by
the user so that the return address no longer matches the
RSB. We describe the behavior of RSB in more details
in Section 3.

In Section 4, we show an RSB based attack that ac-
complishes the equivalent of Spectre variant 1 through
manipulation of the RSB instead of mistraining the
branch predictor; we use this scenario to explain the
principles of the attack, even though it may not be practi-
cal. The RSB is shared among hardware threads that exe-
cute on the same virtual processor enabling inter-process
(or even inter-vm) pollution of the RSB. Thus, in Sec-
tion 5, we develop an attack that targets a different thread
or process on the same machine. In Section 6, we present



a third type of SpectreRSB: an attack against an SGX
compartment where a malicious OS pollutes the RSB
to cause a misspeculation that exposes data outside an
SGX compartment. This attack bypasses all software
and microcode patches on our SGX machine. Sec-
tion 7 overviews another potential attack targeting an un-
matched return in the kernel code; we present this attack
for completeness because it relies on a number of ingre-
dients that are difficult to find in practice.

We show how these attacks interact with deployed de-
fenses concluding that several practical deployments are
vulnerable to SpectreRSB. Thus, we believe that Spectr-
eRSB is as a dangerous speculation attack, that in some
instances is not mitigated by the primary defenses against
Spectre. It extends our understanding of the threat sur-
face of speculation attacks, allowing future defenses to
more effectively mitigate their risks. We discuss impli-
cations of the attack in Section 8.

Section 9 overviews related work, while Section 10
presents some concluding remarks.
Disclosure: We reported these attacks to the security
team at Intel. Although we did not demonstrate attacks
on AMD and ARM processors, they also use RSBs to
predict return addresses. Therefore, we also reported our
results to AMD and ARM.

2 Speculation Attacks and Defenses

Speculative execution has been an important part of
computer architecture starting from the 1950s. The
IBM Stretch processor implemented a predict not-taken
branch predictor to avoid stalling a processor pipeline
when a branch is encountered [1]. Computer architec-
ture advanced rapidly starting in the early 1980s lead-
ing to rapid increase in the amount of speculation that
is exploited with aggressive out-of-order execution. This
speculation is supported by sophisticated branch predic-
tor designs [41, 18, 35] that are highly successful in pre-
dicting both the branch direction and its target address.
In particular, the number of pipeline stages in production
CPUs has continued to grow to the point where mod-
ern pipelines commonly have between 15 and 25 stages.
With out-of-order execution, when a branch instruction
stalls (e.g., due to a cache miss on which it depends),
instructions that follow the branch are continuously be-
ing issued. Thus, the speculation window where instruc-
tions are getting executed speculatively can be large, typ-
ically limited by the size of structures such as the reorder
buffer, which can hold a few hundred instructions.

Speculation is designed to not affect the correctness
of a program. Although branch mispredictions occur
and speculative instructions can ignore execution faults
(e.g., permission error for memory access) these se-
mantics were not considered harmful as mis-speculation

will eventually be detected and the erroneously exe-
cuted instructions will be squashed, leaving no directly
visible changes to the program state held in structures
such as registers and memory. Micro-architectural struc-
tures such as caches and Translation Look-aside Buffers
(TLB) are affected by speculative operations, but the
contents of such structures typically only affect perfor-
mance, not the correctness of a program. In fact, prior
work has shown that there are beneficial prefetching
side-effects to speculatively executed instructions even
those that are eventually squashed [33].

2.1 Speculation Attacks
Spectre attacks have recently shown that the speculation
behavior of modern processors can be exploited. In gen-
eral, these attacks exploit four properties:

• P1: branch prediction validation happens in deep in
the CPU pipeline. As a result, speculative instruc-
tions near the branch can access unprivileged mem-
ory locations.

• P2: speculative instructions leave side-effects
in micro-architectural structures such as caches,
which can be inferred using well-known timing
side channel attacks like Flush+Reload [40] and
Prime+Probe [29].

• P3: the branch predictor can be mistrained (Spec-
tre 1), or directly polluted (Spectre 2). It is shared
across all programs running on the same physical
core [13, 23, 6], allowing code running in one priv-
ilege domain to manipulate branch prediction in an-
other domain (e.g., kernel, VM, hypervisor, another
process, or SGX enclave). Our attacks replace this
step with speculation control through the RSB.

• P4: permission checks are performed deep in the
pipeline and execution fault is generated only if the
instruction is committed, enabling speculative in-
structions to access data outside its privilege do-
main;

if (offset < array1_size)

y = array2[array1[offset] * 64];

Figure 1: Spectre attack variant 1

Spectre (Variant 1) is presented in Figure 1. In this
code, a victim process reads values from array1 using
the offset provided by the attacker. Then, the resulting
value is used to perform an access into array2. As we
discussed above, accesses into the array2 can be used
by the attacker to deduce the value of the index. The



index, in its turn, is controlled by the attacker since at-
tacker controls the offset. Therefore, the attacker can
use a carefully selected value of offset to read arbitrary
memory address which then will result in cache access
observable by the attacker. However, the if statement
ensures there are no out of bounds memory accesses al-
lowed. Unfortunately, the attacker can exploit specula-
tive execution and behavior of branch predictor to force
the victim process to perform an out of bounds memory
access in the following way:

a) The attacker mistrains the branch predictor by exe-
cuting the code several times with the value of the
offset such that the if statement is true (branch
instruction not-taken).

b) Next, to make the speculative window larger, the at-
tacker evicts array1 size from the cache, so that
the CPU has to load the value from memory. Since
the speculation result will not be resolved until this
value arrives, forcing it to come from memory ex-
pands the size of the speculation window to allow
more elaborate speculative gadgets to be executed.

c) Finally, the attacker chooses the malicious offset

such that it be larger than array1 size. The trained
branch predictor unit predicts the branch not-taken,
so that the CPU executes two memory accesses
speculatively and discloses the secret value through
the cache side channel.

Prior work [6] had shown that the branch predictor is
shared among processes on the same core. So, one thread
can pollute it for another across protection boundaries
(including across VMs). Thus, the attacker can poison
the branch target predictor for the victim and force it to
speculatively execute the gadget which reveals the sensi-
tive data within the victim. This is a dangerous attack be-
cause it allows cross process/cross VM Spectre attacks.

The closely related Meltdown attack relies on the fact
that a permission check for memory access during nor-
mal out-of-order execution of an instruction can happen
late in the instruction execution due to pipelining and in-
struction reordering (P4) allowing the CPU to load the
privileged data until the permission is later checked. Un-
like Spectre variants, Meltdown does not rely on using
misspeculation. Since an exception eventually will be
raised , this attack requires the ability to tolerate and re-
cover from the raised exception.

2.2 Defenses against Meltdown/Spectre

After the disclosure of Spectre and Meltdown in January,
2018 [13, 23, 27], a number of defenses were suggested.

Intel proposed defenses: Intel released a whitepa-
per [14] suggesting three types of defenses.

• To mitigate Spectre V1 attack, Intel recommends
inserting a LFENCE instruction after the branch as
a barrier to stop speculative execution. This de-
fense mechanism has now been adopted by com-
pilers such as GCC [30] and MSVC [32]. However,
this does not prevent attacks where the attacker con-
trols the program and does not use LFENCE instruc-
tions.

• To mitigate Spectre V2 attack, Intel introduced
three new processor interfaces through microcode
updates [16]:

– Indirect Branch Restricted Speculation
(IBRS) prevents software running in higher
privileged mode from using prediction results
from software running in lower privileged
mode.

– Single Thread Indirect Branch Predictors
(STIBP) prevents code executing on one log-
ical processor from impacting the indirect
branch prediction of code executing on an-
other logical processor.

– Indirect Branch Predictor Barrier (IBPB)
stops software running before the barrier from
affecting the indirect branch prediction of
software running after the barrier.

• To mitigate Meltdown, Intel recommends unmap-
ping more privileged domain (kernel space) during
the execution of less privileged software, which has
been adopted by all popular operating systems, in-
cluding Windows, Linux, and macOS. This is the
KPTI defense described below.

Kernel Page-Table Isolation (KPTI): Gruss et. al [11]
introduced a protection technique called KAISER to pro-
tect against side channel attacks bypassing kernel level
address space randomization (KASLR) [12]. The pro-
tection is based on unmapping kernel pages while in user
mode, and remapping them on a mode switch to the ker-
nel. As a result, misspeculation from user code is not
able to access kernel memory, preventing Meltdown. It
has been reported that KPTI can introduce substantial
performance overhead [10]. KPTI cannot prevent at-
tacks within the same privilege mode (e.g., to access
memory outside a sandbox) [2, 34].
Return Trampoline (retpoline): retpoline [37] is a
software-based mitigation technique against indirect
branch target injection attack (i.e., Spectre V2). It “ex-
ploits” two properties of the branch target prediction en-
gine: (1) when executing a ret instruction, the predictor



will utilize the return stack buffer (RSB) instead of the
BTB; and (2) RSB cannot be polluted by attackers. The
retpoline technique essentially swaps indirect branches
for returns and deliberately pollutes the RSB with a use-
less gadget to control speculative execution. Retpoline
protection requires access to source code and recompila-
tion.

RSB refilling (also known as RSB stuffing) [15]: on
Intel’s Core i7 processors starting from Skylake (which
are called Skylake+), an underfill condition in the RSB
where a return occurs when the RSB is empty causes
the processor to speculate the return address through the
branch predictor. Thus, defenses deployed to protect in-
direct branches against Spectre variant 2 fail in this sit-
uations since return instructions can cause a misspecu-
lation through the branch predictor. To counter this sit-
uation, Skylake+ processors also implement RSB refill-
ing (a software patch): every time there is a switch into
the kernel, the RSB is intentionally filled with the ad-
dress of a benign delay gadget (similar to Retpoline) to
avoid the possibility of misspeculation. RSB refilling in-
terferes with SpectreRSB, although it was designed for
a completely different purpose. However, we note that
all Core i7 processors prior to Skylake are not patched
with RSB refilling and that different processor lines, im-
portantly including the Intel Xeon which are the primary
platform used on Intel-based cloud computing systems
and servers, are also unpatched, leaving them vulnerable
to SpectreRSB.

3 Attack Principles: Reverse Engineering
the Return Stack Buffer

In this section, we explain the operation of the Return
Stack Buffer (RSB), which is the microprocessor struc-
ture our attacks exploit to implement speculation attacks
that bypass all existing defenses. On modern processors,
sophisticated branch predictors are used to predict the di-
rection and target of conditional and indirect branches
and calls. Return instructions challenge such predictors
because the return address depends on the call location
from which a function invoked, which for many func-
tions that are called from different locations of a program
can lead to poor branch predictor performance. For ex-
ample, consider a function such as printf() which may
be called from many different locations of a program.
Relying on the previous history of where it returned to
can lead to very low prediction performance through the
branch predictor. We verify each of these mechanisms
on two Intel processors (a Haswell and a Skylake).

3.1 RSB Overview

To overcome this problem, the return address is predicted
using the RSB as follows. The RSB is a hardware stack
buffer where the processor pushes the return addresses
every time a call instruction is executed and uses that as
a return target prediction when the matching return is en-
countered. Figure 2a shows an example of the state of
the RSB after two function calls (F1 and F2) have been
executed. The figure also shows the state of the software
stack for the program where the stack frame information
and the return address of the function are stored. Fig-
ure 2b shows how the values on these stacks are used
when the return instruction from function F2 is executed.
At this point, the return address from the fast shadow
stack is used to speculate about the return address loca-
tion quickly. The instructions executed at this point are
considered speculative. Meanwhile, the return address is
fetched from the software stack as part of the teardown
of the function frame. The return address is potentially in
main memory (not cached) and is received several hun-
dred cycles later. Once the return address from the soft-
ware stack is resolved, the result of the speculation is
determined: if it matches the value from the RSB, the
speculated instructions can be committed. If it does not,
then a misspeculation has occurred and the speculatively
executed instructions must be squashed. This behavior
is similar to speculation through the branch predictor,
except it is triggered by return instructions. Note that
the misspeculation window could be substantially larger
since the return could be issued out of order, and other
dependencies have to be resolved before it is committed.

3.2 RSB sources of misspeculation

The RSB misspeculates when the return address value
in the RSB does not match the return address value in
the software stack, leading the program to misspeculate
to the address in the RSB. If this misspeculation can be
triggered intentionally by an attacker, spectre like attacks
become possible through the RSB. Thus, in this subsec-
tion, we explain the sources of misspeculation through
the RSB, and discuss whether they provide a vector for
attackers to trigger speculation attacks. We label these
sources as S1 to S4 to be able to refer to them in the
attack descriptions.
S1: Overfill or Underfill of the RSB due to limited
structure size: The RSB structure is typically sized to
match common nesting depths of call stacks in programs.
On low-end machines, the RSB can be as shallow as 4
entries in size. More typically, on desktops, it is in the
range of 16 entries, and for server class processors, it can
be larger (e.g., 24 entries on the AMD Ryzen [8]). As
illustrated in Figure 3, when the RSB overfills, it typi-
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Figure 2: Example of function call and return effect on software call stack and RSB
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(b) Executing the N+1 nested
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Figure 3: Example of overfill of RSB

cally overwrites the older entries in the stack. Eventu-
ally, when the stack is unrolled as the nested calls return,
we reach the function whose value has been overwritten
causing an underfill of the stack (in Figure 3, the entry
for F1 got overwritten).

In an underfill, there is no value available on the RSB
to guide speculation. Different CPUs handle this situ-
ation differently. For example, the Intel CPUs that we
checked switch over to the branch predictor if the RSB
is empty, which can be used to trigger attacks through
the branch predictor [25]. However, AMD appears not to
follow this strategy.
S2: Direct pollution of the RSB: This is the primary
vector that we use in our proof of concept attacks. Call
instructions implicitly push a return address to the RSB
and the software stack. However, an attacker can then
replace the address on the software stack (by writing di-
rectly to that location), or just remove it altogether (as
shown in Figure 4a). In this case, the value in the RSB
remains and does not match a value on the software stack
causing misspeculation when a return is executed (as
shown in Figure 4b). By controlling the call address, the

main:
call F1

ret
F1:

call F2
ret

F2:
pop F2 frame
ret

F1 return

F2 return

code

RSB
F1 frame

F2 frame

Software stack

F2 frame

(a) Removing the current return
address from the software stack

main:
call F1

ret
F1:

call F2
ret

F2:
pop F2 frame
ret

F1 return

F2 return

code

RSB
F1 frame

Software stack

miss-matched
return address

(b) Return address in the RSB
and the software stack do not
match

Figure 4: Example of direct pollution of the RSB

attacker can control the misspeculation address.
It is also possible to convert a call instruction into a

push and jmp, in which case a return value exists on the
software stack that is not matched by a value in the RSB.
A return could also be replaced by a pop and a jump,
causing a value to remain in the RSB that has been re-
moved from the software stack.
S3: Speculative pollution of the RSB: speculatively ex-
ecuted calls push a value on the stack, although the de-
tails are specific to the architecture. Once misspeculation
is discovered the call is squashed but the speculatively
pushed return address remains on the RSB. This provides
the opportunity for a malicious attacker to push a return
address that is outside the address space accessible by
the program (e.g., a kernel address) without raising an
exception or having to handle the side effects of a call. 1

1We did not use this vector, but its conceivable to use it to bypass
Supervisor Mode Execution Prevention (SMEP) [9] to jump to a ker-
nel gadget. For example, the user may attempt to jump to user code
in PhysMap implementing a ret2dir [21] rather than a ret2usr [20] at-
tack; the difficulty is that the user cannot pollute the RSB with kernel



S4: RSB use across execution contexts: on a context
switch the RSB values left over from an executing thread
are reused by the next thread. Once we switch to a new
thread, if the thread executes a return, then it will mis-
speculate to an address provided by the original thread.
The same is true with a switch over to the Operating Sys-
tem (provided RSB refilling is not implemented), or to an
SGX context.

4 SpectreRSB: Basic attack example

In this section, we illustrate the attack principles by
showing a basic speculation attack launched from a pro-
cess to part of its address space that it cannot directly ac-
cess (similar to Spectre variant 1 [13]). This attack repre-
sents the simplest instance of SpectreRSB and therefore
we use it to explain the attack in detail. It is unlikely to be
practical: it is difficult to implement the gadget to manip-
ulate the stack using high level sandboxing primitives to
allow the attack to break sandbox boundaries. On an un-
patched machine, this attack enables the attacker to read
kernel memory via the Meltdown bug. However, KPTI
prevents using it to allow user code to read kernel data.
We note that this attack does not rely on any speculation
through branches or the branch predictor. For this reason,
the attack bypasses defenses that focus only on securing
speculation through the branch predictor. Most of our
experiments were conducted on the machines shown in
Table 1; the i7-6700 machine is a Core i7 Skylake with
SGX2.

Figure 5 presents an overview of a basic SpectreRSB
attack. The attack starts at line 22 with the call to
speculative, with an argument which is the memory
address of the sensitive data to be read. speculative

calls gadget, which serves two purposes: (1) the re-
turn address is pushed to the RSB (the return address
is to line 17 where we have the payload gadget to be
executed speculatively); and (2) we jump to the (inline
assembly) function gadget which will manipulate the
software stack to create the mismatch between the RSB
and the software stack. In this case, gadget cleans up the
effects of the function call to itself, popping off the frame
including the return address.

At this point, before the return, the stack state is
consistent with a return from speculative back to main.
However, the RSB holds a return value from gadget to
speculative. Thus, in line 12 when the return exe-
cutes, the CPU speculatively executes at line 17. The
flush of the top of the stack (line 10) ensures that the true
value of the return address will be fetched from mem-
ory rather than from the caches creating a large specu-

addresses using S2 without raising an exception, but may be able to do
that using S3 (we note that PhysMap is marked as non-executable in
most recent Linux distributions.)

1. Function gadget()

2. {

3. push %rbp

4. mov %rsp, %rbp

5. pop %rdi //remove frame/return address

6. pop %rdi //from stack stopping at

7. pop %rdi //next return address

8. nop

9. pop %rbp

10. clflush (%rsp) //flush the return address

11. cpuid

12. retq //triggers speculative return to 17

13. } //committed return goes to 23

14. Function speculative(char *secret_ptr)

15. {

16. gadget(); //modify the Software stack

17. secret = *secret_ptr; //Speculative return here

18. temp &= Array[secret * 256]; //Access Array

19. }

20. Function main()

21. {

22. speculative(secret_address);

23. for (i = 1 to 256) //Actual return to here

24. {

25. t1 = rdtscp();

26. junk = Array[i * 256]; //check cache hit

27. t2 = rdtscp();

28. }

29. }

Figure 5: SpectreRSB basic attack example

lation window. Note that the speculation window based
on the return. Speculative execution at line 17 reads the
secret which can be any mapped address even if inac-
cessible to the user process during normal execution and
then communicates it out through the flush reload cache
side channel by accessing a data dependent index in the
Array (line 18). Finally, the real return value is obtained,
and the misspeculation is squashed, returning us to line
23, where we probe the cache to identify which data de-
pendent cache set was accessed to expose the value of
the secret.

5 Attacks across different
threads/processes

In this section, we investigate different vectors of Spectr-
eRSB which exploit S4 (RSB use across execution con-
text) to pollute the RSB. These attacks potentially allow
an attacker to attack another process (Similar to Spectre
V2), perhaps even across VMs, making the attack dan-
gerous on the cloud. In general, these attacks require
a machine not implementing RSB refilling (pre-Skylake,
or Xeon, for example), to make sure that a context switch
does not overwrite the polluted addresses from the RSB
(Figure 6).

The attacker establishes co-location with the victim
on the same core similar to Spectre 2. The attack pat-



Figure 6: Attack 2: Basic Attack Flow

tern proceeds as follows. (1) after a context switch to
the attacker, s/he flushes shared address entries (for flush
reload). The attacker also pollutes the RSB with the tar-
get address of a payload gadget in the victim’s address
space; (2) the attacker yields the CPU to the victim; (3)
The victim eventually executes a return, causing specula-
tive execution at the address on the RSB that was injected
by the attacker. Steps 4 and 5 switch back to the attacker
to measure the leakage.

5.1 Attack 2a: Attack across two colluding
threads

In this attack, the attacker and the victim are two collud-
ing threads following the steps in Figure 6. In the first at-
tack, we let the two threads synchronize using futex op-
erations to control their interleaving. The RSB pollution
happens in the first thread which also flushes the top of
the stack of the second thread, while the return happens
in the second. The attack succeeded, proving that Spectr-
eRSB works from one thread to another. However, since
the return is in user mode, we cannot read kernel data.
For the attack to be useful, we should either launch an
attack such that the victim colluding thread returns while
in the kernel (enabling us to read kernel data while its
memory is mapped), or work across process boundaries
such that the victim thread is a different process and we
leak its sensitive data (attack 2c).

5.2 Attack 2b: Attack with two colluding
threads with return from inside kernel

Next, we wanted to see if we can use this attack to cause
a return while the victim thread is in the kernel mode
in step 3. To ensure this, we have the colluding victim
execute a blocking system call, which typically has them
deep inside a call stack in the kernel before blocking. The
attacker after polluting the RSB, waits for the victim to
unblock, perhaps even triggering the event that unblocks
it. At this point the victim continues execution inside
the kernel, and recurses back out of its call stack, with
one or more returns, triggering the vulnerability. This

attack requires a machine without SMEP enabled. We
demonstrated the attack with SMEP disabled.

5.3 Attack 2c: Attacks across Process
boundary

The attacks above assume two colluding threads. In
principle, it can be generalized across different address
spaces, but this requires overcoming some challenges.
First, the attacker has to be able to identify gadgets exist-
ing in the victim binary instead of being able to use their
own. This may also require them to recover the ASLR
offset of the victim, but there are a number of existing at-
tacks that make that possible. However, once these gad-
gets are found, the same attack pattern can follow by first
polluting the RSB, then using eviction to remove the top
of the stack containing the return address from the cache
to extend the speculation window. Synchronization is
difficult, but can be simplified if the attacker is able to
trigger operations in the victim (e.g., if the victim is a
server accepting connections). We did not create a PoC
of this attack.

6 SpectreRSB Atack 3: Attacks on SGX

Having established attack 1 of the SpectreRSB where
the attacker pollutes the RSB for its own process to
cause misspeculation, we next investigate whether Spec-
treRSB attacks work on SGX compartments (similar to
SGXSpectre [3]).

In this attack we consider, a malicious untrusted user
code manipulates the RSB to try to cause misspecula-
tion inside the enclave. In this attack, we pollute the
RSB with the target address of a payload gadget from
untrusted user code (this can equally be done by a mali-
cious OS). Note that the gadget could be in the untrusted
user code since user code and SGX enclaves share the
same address space. The next step is to do an enclave
call to switch it the trusted execution mode. The enclave
call has to have an unmatched return to cause specula-
tion execution at the address that was injected from the
untrusted code. Finally, the untrusted code after return-
ing from the enclave call can check the cache to record
the leakage.
Triggering an unmatched return: the RSB assumes
that strictly paired call-return behavior. In attacks that
cross execution boundaries, the attacker pollutes the
RSB, but would then like to trigger a return in the vic-
tim process code (or OS/SGX code) to which they have
no access. However, if the attacker manages to catch
the victim inside of a function call, then when the victim
executes again, it will encounter an unmatched return.
This could rely on timing or a blocking call inside of a
function that will cause the scheduler to unschedule the



victim. In this Proof of Concept attack, we placed an
unmatched return directly in the enclave, but we expect
to be able to do that using the strategies above for other
enclaves.
Attack results: This attack successfully works on fully
patched machines. The attack bypasses all software and
microcode patches:it bypasses Retpoline since no indi-
rect jumps are used. It bypasses the microcode patches
since they do not appear to limit speculation through the
RSB. It bypasses RSB refilling (which is only imple-
mented on Skylake+, but not on the Xeon processors)
since no mode switches to the kernel are triggered dur-
ing the attack. Thus, SGX is vulnerable to SpectreRSB
even on fully patched machines.

7 Potential Attack 4: From user to Kernel

In this section, we briefly discuss the possibility of an-
other attack where user code pollutes the RSB and then
triggers an unmatched return in the kernel (we call this
attack 4). This attack is likely to be difficult, if not im-
possible, so we describe it only for completeness. The
main insight is that a return from the kernel to a polluted
address in the RSB will cause speculation while in ker-
nel mode. This means that the kernel address space is
still mapped, allowing us to read from kernel. This at-
tack assumes the following ingredients: (1) that the RSB
is shared between the user and the kernel: we find that
this is the case on two Intel processors; (2) We need to
be able to trigger an unmatched return in the kernel. Al-
though some programming constructs such as tail recur-
sion, continuations, setjmp/longjmp and others can break
call-return semantics, we have not attempted to find such
unmatched returns in the kernel; and (3) We need to
figure out the stack address of the kernel, and evict it
from the cache. This last step is necessary to make sure
that the speculation window is sufficiently large to exe-
cute a useful gadget speculatively (without this, we can
only execute a gadget a few instructions long specula-
tively). Luckily, the mapping between the stack kernel
address and the physical address is deterministic in Linux
on x86-64 (it uses the Physmap address directly instead
of double mapping it). This makes deriving the conflict
set straightforward once we identify the kernel stack ad-
dress.

We explore a proof of concept attack with an un-
matched return in a kernel module that we build. Later,
we discuss concrete possibilities for how to make this
happen with multiple threads. The attack is shown in
Figure 7, and works only on an unpatched machine or
a machine not implementing RSB refilling. After pol-
luting the RSB in steps 1-3, and flushing the top of the
kernel stack in step 4, before issuing a system call to
our kernel module with the unmatched return . The mis-

0x1014 nop

0x1010 call rsb_pollute

0x1011 movzx %al, %rbx
0x1012 shl &9, %rbx
0x1013 movzx (%[array], rbx, 1), %rcx

0x1020 flushing_kernel_stack

1

.

.

.

rsb_pollute:
0x2010 pop r10
0x2011 jmp 0x1014

2

0x1040 sys_call()

.

.

.
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0xff40 ret

.

.

.
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4
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7
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Figure 7: Attack 4: Basic Attack Flow

matched return triggers a misspeculation to step 7 to ex-
ecute in supervisor mode. This attack does not work
on patched Skylake+ processors due to RSB refilling but
works on the Xeon machine. We also discover that Su-
pervisor Mode Execution Prevention (SMEP) checks are
not speculatively bypassed since the speculative program
counter is known at the time of speculation. Thus, the at-
tack as shown requires SMEP to be disabled to enable
the kernel to return to user code. An alternative strategy
to bypass this limitation is to try to use the return address
of the gadget in PhysMap (as discussed under S3 in Sec-
tion 3), but most Linux distributions disable execution
of PhysMap addresses. We only demonstrated the attack
with SMEP disabled. We also assumed that we know the
address of the kernel stack pointer to flush it in step 4.

8 Discussion and Mitigations

In the first attack, a process launches an attack within
the same address space either on the kernel or on data
outside of its software containment. An attack from user
mode to the kernel is possible in the original spectre: the
BTB is poisoned, and then an indirect jump in the kernel
space triggers the misspeculation to the payload. This
attack is prevented by the Retpoline defense which only
covers BTB poisoning, and assumes that the user code is
compiled to use Retpoline. Importantly, none of the Intel
microcode patches seem to restrict speculation through
the RSB.

In attack 2 of SpectreRSB, we attempted to carry out
the attack across execution threads. Attack 2a demon-
strates a practical attack across two colluding threads in
the same process. Attack 2b, shows how two collud-
ing threads can cooperate to make an attack like attack
4 more predictably execute a return in kernel mode. Fi-
nally, Attack 2c in principle can carry out a SpectreRSB
attack across different processes, bypassing all known
defenses. Although we did not demonstrate this attack
completely yet, we believe that none of the defenses stop



Table 1: Experiment Environment

CPU Model Kernel version kernel patch Intel patch
Machine1 Intel Xeon(R)-E51620 4.15.0-22-generic Retpoline, Kpti 3

Machine2 Intel Core(TM)-i7-6700 4.4.117 Retpoline, Kpti, RSB refilling 3

Table 2: Attack senarios vs. defense mechanisms (3attack can bypass defence or 7otherwise). KPTI prevents reads
from user mode to kernel memory but not reads from user to user or from kernel to kernel.

Attack no Attack Name lfence IBRS STUBP IBPB retpoline RSB refilling SMEP/SMAP
Attack 1 Same-process 3 3 3 3 3 3 3
Attack 2a Colluding threads (user) 3 3 3 3 3 7 3
Attack 2b Colluding threads (kernel) 3 3 3 3 3 7 7
Attack 2c Cross-process 3 3 3 3 3 7 3
Attack 3 Return in SGX 3 3 3 3 3 3 3
Attack 4 Kernel from user 3 3 3 3 3 7 7

it and it should be considered a dangerous threat vector
on the cloud.

The attack on SGX bypasses all known defenses, in-
cluding RSB refilling, and should be considered a dan-
gerous open vulnerability on SGX systems. Changing
the microcode patches to protect speculation through the
RSB, or implementing RSB refilling upon entrance to
SGX enclaves can potentially mitigate this vulnerability.

In Attack 4, our intuition was that a SpectreRSB attack
that causes a return in the kernel to misspeculate would
defeat both KPTI (in kernel mode, the kernel pages are
available) and Retpoline (which only protects indirect
jumps and calls, but not returns). While this is gener-
ally true, we discovered a number of complications that
can be overcome under some conditions. RSB refill-
ing, which is implemented on Intel Skylake+ processors,
stops the attack. On other processors, SMEP prevents a
return to a gadget in user space, however, a return to a
gadget in kernel space if one can be identified is possi-
ble. Finally, we need to be able to determine the address
of the top of the kernel stack in order to be able to evict,
to increase the speculation window.

To mitigate SpectreRSB, we suggest that all proces-
sors, not just Skylake+ immediately support the RSB re-
filling patch which should interfere with all attacks that
require a context switch to the kernel (attacks 3 and
4). Adding RSB refilling on an SGX enclave entrance
should also be considered to stop attack 2. We also sug-
gest that Intel microcode patches consider extending pro-
tection to the RSB, and not just the branch predictor. We
summarize the proposed SpectreRSB attacks as well as
their ability to bypass defenses in Table 2.

9 Related Work

In addition to the defenses against Meltdown and Spec-
tre discussed in Section 2, we overview other potential
defenses, as well as newly published related attacks. We

first overview some of the defenses against side channel
attacks on CPU caches, which are the primary channel
used by the Meltdown and Spectre attacks to communi-
cate privileged data out. We show that due to the fact
that their threat model assumptions do not hold in spec-
ulation attacks, they fail to mitigate these attacks. More-
over, although making the cache secure protects the pub-
lished proof of concept attacks, other side channels exist
and it is straightforward to switch to them to communi-
cate speculative data. Thus, a principled solution against
speculation attacks should not rely on closing any partic-
ular side channel.

Software defenses against side channel attacks assume
that the programmer and/or compiler are interested in
preventing leakage from their program. In contrast, part
of our threat model is an attacker that either writes the
code to generate leakage, or identifies potential unin-
tended code gadgets to cause the leakage. Thus, we be-
lieve that software side channel attacks are unlikely to
provide beneficial defenses against speculation attacks.
Hardware assisted cache side channel defenses: Since
speculation attacks rely on a microarchitectural covert
channel in the payload gadget to communicate the data
out, defenses against side channel attacks are a poten-
tial approach to mitigate speculation attacks. One simple
technique to make caches immune to side channel attacks
is static partitioning to create isolation [5]. Domnitser et
al. propose a dynamically partitioned cache, providing
isolation to limit leakage but also allowing some con-
tention for performance [4]. We note that partitioning
does not prevent leakage from within the same process
such as the attacks under Spectre variant 1 and Melt-
down. Locking of critical data [38, 24, 28] in the cache
prevents it from being replaced by the attacker’s prime or
flush operations. The solution requires support from the
OS, programming language, and compiler to mark the
critical data, in addition to a bit for each cache line to in-
dicate whether it is locked. The notion of sensitive data



does not exist in the context of speculative attacks un-
less all out of bounds data is marked as sensitive (which
would be impossible to fit in the caches). Randomiza-
tion, exemplified by NewCache [39], randomizes the vic-
tim selection process on cache replacements, so that the
attacker cannot glean useful information from its cache
misses. The solution requires an index remapping table,
extra bits in the cache to indicate which lines are subject
to the random victim selection, and also support from the
software layers to mark such critical data [39]. Kayaalp
et al. [19] propose a defense that relaxes the inclusion
property, which is a necessary component of the LLC at-
tacks. Again, since an attack can be launched within the
same process, neither randomization nor relaxed inclu-
sion help with attacks within the same process (such as
SpectreRSB attack 1 and 3, or the Meltdown bug).
Hardware Solutions: It is almost certain that future gen-
erations of CPUs will be designed to mitigate Meltdown
and Spectre class attacks. To protect against Meltdown,
it is possible to move the permission checks earlier in
the pipeline, preventing the temporary load of the secret
data. It is likely that AMD and ARM already implement
this defense. Protecting against Spectre (including Spec-
treRSB) is substantially more difficult. To this end, Safe-
Spec [22] proposes using shadow hardware structures
where speculative data resides. If the instructions fetch-
ing the data commit, the data is moved from these struc-
tures to the permanent structures (e.g., caches or TLBs).
On the other hand, if an instruction is squashed, the data
is discarded from the shadow structures. As a result,
speculatively accessed data is never visible to committed
instructions. SafeSpec requires additional space to store
the shadow state, but results in modest improvements in
the processor performance, while completely closing this
class of vulnerabilities. PoisonIvy [26] is an architectural
solution to track speculative data and prevent it from be-
ing exposed outside of the chip. The threat model fo-
cuses on accessing data while speculating on integrity
verification. They seek to prevent the data from being
speculatively read and therefore observed by a physical
attacker that monitors the memory bus. PoisonIvy sup-
ports this capability by using information flow tracking
to track data that is generated past a speculative check
or data that is dependent on it. PoisonIvy does not pre-
vent side channel leakage from speculatively accessed
data. PoisonIvy results in approximately 20% slowdown
in CPU performance. Both of these proposals require
deep redesign of the processor architecture and therefore
cannot protect current systems.
Other attacks: Since the disclosure of the Spec-
tre/Meltdown attacks, two closely relevant attacks have
also been reported [36, 3]. Utilizing a verification tool,
Trippel et.al. [36] discovered that by leveraging the in-
validation message of cache coherence protocols, it is

possible to replace Flush+Reload with Prime+Probe to
retrieve the content fetched by speculative instructions.
In the SGXPECTRE attack, Chen et al. [3] demonstrated
that it is possible to steal secret information from an SGX
enclave using Spectre attack principles. Evtyushkin et
al. presented BranchScope, an attack that can pollute the
direction predictor (rather than the target predictor) com-
ponent of the branch predictor unit [7]. Branchscope is
likely to be less potent than attacks that poison the branch
target buffer since it only controls the binary prediction
of branch taken or not taken. It has not been demon-
strated to be useful in a speculation attack, although it
is possible that it can be. Although not a speculative at-
tack, Branch Shadowing [25] empties the RSB to force
returns inside of an SGX compartment to use the branch
predictor, leaving a side channel footprint (observable
through a side channel attack on the branch target buffer)
enabling the control flow to be tracked. Recently, a so
called variant 4 of Spectre was disclosed [17] which uses
speculative store bypass: a speculation technique where
load instructions speculatively execute without checking
the load store queue for a preceding store. This tech-
nique represents another trigger for speculation, but it is
not clear whether it can be used in practical attacks yet.

10 Concluding Remarks

In this paper, we introduced a new type of speculation at-
tacks (SpectreRSB) that is triggered by the Return Stack
Buffer (RSB), rather than the branch predictor unit. The
RSB is used to predict the address of return instructions.
We demonstrated a number of vectors that allow an at-
tacker to cause RSB misspeculation. Using these tech-
niques, we construct a number of attack vectors includ-
ing attacks within the same process, attacks on SGX en-
claves, attacks on the kernel, and attacks across differ-
ent threads and processes. SpectreRSB bypasses all pub-
lished defenses against Spectre, making it a highly dan-
gerous vulnerability.

Interestingly, there is a patch that was proposed to pro-
tect against the behavior of Intel Core i7 Skylake gener-
ation and newer processors called RSB refilling. RSB
refilling interferes with SpectreRSB attacks that experi-
ence at least one mode switch from user to kernel. We
recommend that this patch should be deployed immedi-
ately across all processor generations (and not just Sky-
lake+). In the long run, we believe that these patches
are ad hoc and that new attack vectors will continue to
emerge. Current systems are fundamentally insecure un-
less speculation is disabled. However, we believe that it
is possible to design future generations of CPUs that re-
tain speculation but also close speculative leakage chan-
nels, for example by keeping speculative data in separate
CPU structures than committed data.
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