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ABSTRACT
Hardware Malware Detectors (HMDs) have recently been proposed
as a defense against the proliferation of malware. These detectors
use low-level features, that can be collected by the hardware per-
formance monitoring units on modern CPUs to detect malware as
a computational anomaly. Several aspects of the detector construc-
tion have been explored, leading to detectors with high accuracy. In
this paper, we explore the question of how well evasive malware
can avoid detection by HMDs. We show that existing HMDs can
be effectively reverse-engineered and subsequently evaded, allow-
ing malware to hide from detection without substantially slowing
it down (which is important for certain types of malware). This
result demonstrates that the current generation of HMDs can be
easily defeated by evasive malware. Next, we explore how well a
detector can evolve if it is exposed to this evasive malware during
training. We show that simple detectors, such as logistic regression,
cannot detect the evasive malware even with retraining. More so-
phisticated detectors can be retrained to detect evasive malware, but
the retrained detectors can be reverse-engineered and evaded again.
To address these limitations, we propose a new type of Resilient
HMDs (RHMDs) that stochastically switch between different detec-
tors. These detectors can be shown to be provably more difficult to
reverse engineer based on resent results in probably approximately
correct (PAC) learnability theory. We show that indeed such detec-
tors are resilient to both reverse engineering and evasion, and that the
resilience increases with the number and diversity of the individual
detectors. Our results demonstrate that these HMDs offer effective
defense against evasive malware at low additional complexity.
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1 INTRODUCTION
Malicious attackers compromise systems to install malware [33, 48].
Preventing the compromise of systems is practically impossible:
attackers obtain privileged access to systems in a variety of ways,
such as drive-by-downloads with websites exploiting browser vul-
nerabilities [2] as well as network-accessible vulnerabilities [46].
Similarly, social engineering attacks including Phishing attacks, and
malicious email attachments allow user-authorized installation of
malicious programs [1].

While preventing compromise is difficult, detecting malware is
also becoming increasingly more complicated. Indeed, modern mal-
ware is increasing in sophistication, challenging the abilities of
software detectors. Typical techniques for malware detection such
as VM introspection [17], dynamic binary instrumentation [13], in-
formation flow tracking [57], and software anomaly detection [19]
have both coverage limitations and introduce substantial overhead
(e.g., 10x slowdown for information flow tracking is typical in soft-
ware [56]). These difficulties typically limit malware detection to
static signature-based virus scanning tools [15] which have known
limitations [35], allowing the attackers to bypass them and remain
undetected.

In response to these trends, Hardware Malware Detectors (HMDs)
have recently been proposed to make systems more malware-resistant.
Several studies have shown that malware can be classified based
on low-level hardware features such as instruction mixes, memory
reference patterns, branch distributions, and architectural state infor-
mation such as cache miss rates and branch prediction rates [12, 25,
27, 39, 50]. Demme et al. showed that features collected from the
ARM performance counters can be used to classify malware from
normal programs after the fact [12]. Tang et al. showed that unsuper-
vised learning approaches could also successfully classify malware.
Ozsoy et al. built a hardware accelerator that allows continuous
real-time monitoring of malware [39]. Khasawneh et al. improved
the design to apply ensemble learning techniques [27]. Kazdagli et
al. proposed an environment to systematically evaluate HMDs [26].
The SnapDragon processor from Qualcomm appears to be using
HMDs for online malware detection, although the technical details
are not published [43]. At a time when malware developers appear
to have the upper hand over defenders, hardware supported malware
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detection can offer a substantial advantage to defenders because it is
always on and has little impact on performance or power [39, 40].

In this paper, we first explore whether attackers can adapt malware
to continue to operate while avoiding detection by HMDs. Should
HMDs become widely deployed, it is natural to expect that attackers
will attempt to evade detection. Intuitively, it should be possible for
the attacker to evade detection if there are no restrictions placed
on them, by running a mostly normal program and advancing the
attack very slowly. However, we assume that the attacker would like
to minimize the impact on the malware execution time since some
attacks are time sensitive (e.g., covert and side-channels [10, 16,
21, 23, 37, 42]) or computationally intensive (e.g., Spam or Click
Fraud [14, 54]). We describe the threat model and limitations in
Section 2.

We approach the question of whether malware can evade HMD,
and whether HMDs can be made resilient to evasion, in the following
steps:

(1) Can HMDs be reverse-engineered? Recent results in adver-
sarial classification [52] imply that arbitrarily complex but
deterministic classifiers can be reverse-engineered. We con-
firm that this is the case for HMDs by reverse-engineering a
number of detectors under realistic assumptions. We describe
our dataset and methodology in Section 3, and present and
analyze the reverse-engineered detectors in Section 4.

(2) Having a model of the detector, can malware developers mod-
ify malware to avoid detection? Evading the detection by
changing the behavior of the malware is known as mimicry
attacks [8, 53]. We show (in Section 5) that existing HMDs
can be rendered ineffective using simple modifications to the
malware binary.

(3) Can the malware evade detection even if the detector is re-
trained with some samples of the evasive malware? We show
in Section 6 that for simple evasion strategies that can fool a
given detector, retraining a logistic regression (LR) detector
does not result in effective classification of evasive malware,
unless the detection performance on normal malware is sacri-
ficed. On the other hand, more sophisticated detectors such as
Neural Networks (NN) can be successfully retrained, but the
attacker is still able to reverse-engineer the retrained detector
and evade it again.

(4) After showing that the current generation of HMDs is vul-
nerable to evasion, we explore whether new HMDs can be
constructed that are robust to evasion. In particular, we pro-
pose in Section 7 a new resilient HMD (RHMD) organization
that uses multiple diverse detectors and switches between
them unpredictably. We show that RHMDs that use even sim-
ple base detectors are resilient to both reverse-engineering
and evasion. Furthermore, this resilience increases with the
number and diversity of the base detectors.

(5) Finally, we explore whether RHMDs fundamentally increase
the difficulty of evasion or simply present another hurdle that
can be bypassed by attackers. To this end, in Section 8 we
overview recent results in Probably Approximately Correct
(PAC) learnability theory that proves that RHMDs provide a

measurable advantage in increasing the difficulty of reverse-
engineering and complicate evasion. By making HMDs re-
silient to evasion, we bring them closer to practical deploy-
ment.

The problem of evasive malware detection has been considered
in the context of software malware detectors [8, 49, 53]. Moreover,
some existing HMD proposals discuss the possibility of malware
evasion [12, 25]. However, ours is the first study that explores this
important question regarding HMDs in detail and develops solu-
tions to it. We note that while our experiments target HMDs, the
underlying evasion problem exists in the context of any adversarial
classification problem [52]. Our work advances the state of the art
in general, not just for HMDs: we show systematically that reverse-
engineering is possible, we develop techniques that use the result of
reverse-engineered detectors to efficiently evade detection, and we
introduce evade-retrain games and study their resilience to evasion.

In summary, the contributions of the paper are:

• We show that it is possible to accurately reverse engineer
HMDs, regardless of their complexity.

• We show that once an HMD has been reverse engineered,
malware can effectively evade it using low overhead evasion
strategies. This result brings into question the effectiveness
of existing HMDs.

• We show that simple linear HMDs such as LR cannot be re-
trained to adapt to evasive malware. More complex classifiers
such as NN can adapt better, but may break down after several
generations of evasion and retrain. Moreover, new malware
can still reverse-engineer and evade even such classifiers.

• We develop a new class of evasion-resilient HMDs (RHMDs)
that operates by randomizing detection responsibility across
different diverse detectors. RHMDs cannot effectively be
reverse-engineered to enable evasion, which we support both
experimentally and using recent results from PAC learnability
theory. The number and diversity of the individual classifiers
used increases the resilience to reverse-engineering and eva-
sion. In addition, we study implementation complexity of
such classifiers in hardware.

2 THREAT MODEL AND LIMITATIONS
We assume an adversarial attack model which starts with the adver-
sary attempting to reverse engineer the classifier. We assume that
the attacker has access to a machine with a similar detector as the
victim machine. This allows the attacker to observe the behavior
of the classifier for given programs (whether malware or normal
programs). With a model of the detector, the attacker can attempt to
generate evading malware that hide themselves by changing some
of their characteristics (feature values). Such evading mechanism
is known as mimicry attacks [8, 53], which can be in the form of
no-op insertion, code obfuscation by the attackers, or calling benign
functions in the middle of the malicious payload [24].

We assume that the attacker that undertakes malware rewriting
as part of a mimicry attack is interested in maintaining reasonable
performance of the malware. If this assumption is not true, an at-
tacker can simply run a normal program with embedded malware,
that advances the malware program arbitrarily slow (e.g., 1 malware
instruction every N normal instructions where N is arbitrarily large),
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making detection impossible. Note that this is a limitation of all
anomaly detectors, and not only HMDs. This assumption is also
reasonable for important segments of malware such as: malware
that is time sensitive (e.g., that performs covert or side-channel at-
tacks [16, 23, 37, 42]) and malware that is computationally intensive
such as that executing on botnets being monetized under a pay-per-
install model [9] (e.g., Spam bots or Click fraud). Such malware have
a utility to the malware writer proportional to their performance.

3 DATA AND METHODOLOGY
We collected samples of malware (from the MalwareDB malware
set [31]) and normal programs to use in our study. The downloaded
malware data set consisted of 3000 malware programs. For regular
program samples, we used Windows programs since the malware
programs that we use are Windows-based. The regular program set
contains a variety of applications including browsers, text editing
tools, system programs, SPEC 2006 benchmarks [20], and other pop-
ular applications such as Acrobat Reader, Notepad++, and Winrar.
In total, the non-malware data set contains 554 programs. Both mal-
ware and regular programs data sets were divided into 60% victim
training, 20% attacker training for the reverse engineered detector,
and 20% attacker testing of the detector. To ensure that there is no
bias in the distribution of malware programs across the sets, each set
includes a randomly selected subset of malware samples from each
type of malware in the overall data set.

The data was collected by running both malware and regular pro-
grams on a virtual machine with a Windows 7 operating system. To
allow malware programs to carry out their intended functionality, the
Windows security services and firewall were disabled. Furthermore,
the dynamic trace of executed programs was collected using Pin
instrumentation tool [30]. Unlike mobile malware where many mal-
ware samples require user interaction and necessitate special efforts
to ensure correct behavior [26], we observed that the vast majority
of our windows/desktop malware operated correctly (through man-
ual inspection and examination malware behavior during run-time);
several malware samples tripped the intrusion detection monitoring
systems on our network as they attempted to discover and attack
other machines, until we separated the environment into an indepen-
dent subnet.

The collected trace duration for each executed program was 5000
system calls or 15 million of committed instructions, starting after a
warm-up period, whichever is reached first. While ideally, we would
have liked to run each program longer, we are limited by the compu-
tational overhead; since we are collecting run-time behavior of the
programs using dynamic profiling information through Pin within a
virtual machine, collection requires several weeks of execution on a
small cluster and produces several terabytes of compressed profiling
traces. Training and testing are also extremely computationally in-
tensive. We believe that this data set is sufficiently large to establish
the feasibility and provide trustworthy experimental results.

We collected different feature vectors, specifically:

• Executed instruction mixes (called Instructions in the rest of
the paper): this feature tracks the frequency of instructions
that show the most different frequency (delta) between normal
programs and malware in the training set;

• Memory address patterns (called Memory in the rest of the pa-
per): this feature tracks the distribution of memory references
organized in bins based on the address difference between
consecutive memory accesses; and

• Architectural events (called Architectural in the rest of the
paper): tracks the numbers of different architectural events
occurring in an execution period such as unaligned memory
accesses, and taken branches.

These features are modeled after those used in prior HMD stud-
ies [12, 39].

4 REVERSE-ENGINEERING HMDS
In this section, we demonstrate that we can successfully reverse-
engineer HMDs based on supervised learning (e.g., similar to those
presented by Demme et al. [12], Ozsoy et al. [39], and some of
the detectors used by Kazdagli et al. [26]). Reverse-engineering the
malware detector allows the adversary to construct a model of the
HMD. The model is necessary to be able to methodically develop
evasive malware. We assume that the adversary has the ability to
query the targeted detector; if they do not, the problem becomes
NP-Hard [52].

(a) Reverse-engineering
of victim

(b) Evaluating reverse-engineered
detector

Figure 1: Overview of the reverse-engineering process

Figure 1a shows the steps in reverse-engineering a detector. First,
the adversary prepares a training data set that is composed of both
regular and malware programs: this is a separate data set from the
one used to train the classifier, which is unknown to the attacker.
Next, the adversary uses this data set to query the victim detector
and records the victim’s detection decisions. The decisions are used
as the label for the data as we construct the reverse-engineered
detector. Finally, the adversary may use different machine learning
classification algorithms trained with the labeled data to build the
new reverse-engineered detector.

Figure 1b shows the evaluation of the reverse-engineered detector.
The adversary first prepares an attacker testing data set as described
above. Next, both the original detector and reverse-engineered de-
tector are queried using the attacker testing data set. Finally, the
percentage of equivalent decisions made by the two detectors is
calculated. Note that from the adversary point of view, it does not
matter if the detector is classifying malware and regular programs
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correctly; rather, the attacker desires to mimic the classification of
the victim detector and it evaluates success on that basis.

For most of our studies, we evaluate baseline detectors that use
logistic regression (LR) and neural networks (NN); the methodology
naturally generalizes to other classification algorithms. We imple-
mented the NN classifier as a multi-layer perceptron (MLP) with a
single hidden layer that has a number of neurons equal to the number
of features in the feature vector. We use the tanh function as the
activation function. The rationale for selecting these two algorithms
is that prior studies showed that LR performs well and has low
complexity, facilitating hardware implementations [39]. NN features
more complex classification ability, capable of producing a non-
linear classification boundary. These detectors allow us to contrast
the impact of the detector complexity on both reverse-engineering
process and mimicry attacks. For some studies, we use other classi-
fiers to illustrate some generalizations of our conclusions.

The victim data set is used to train different detector instances
using each of the two algorithms for each of the three different
features, resulting in six detectors. The detectors take a feature
vector as an input in order to produce a 0 or 1 decision indicating
whether the program is a regular or malware program respectively.
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Accuracy (LR)

AUC (NN)
Accuracy (NN)

Figure 2: Performance of individual detectors

Figure 2 shows the performance of the detectors in classifying
malware and regular programs using area under the curve (AUC) and
the accuracy of the classification metrics for each of the detectors.
Note that this figure shows the performance of the baseline HMD
which we will be attempting to reverse-engineer. AUC is the area
under the Receiver Operating Characteristics (ROC) curve which
plots the sensitivity of the detector against the percentage of false
positives; the larger the AUC, the better the classification. Accuracy
refers to the point on the ROC which maximizes the accuracy (per-
centage of decisions that are made correctly). It is a more direct
measure of performance since the HMD classification threshold will
be typically set to perform at or near this optimal point.

We assume that the attacker does not know the details of how the
target victim detector was trained. Thus, they do not know important
configuration parameters of the detector including: (1) the size of the
instruction window that is used to collect the features; the detector
collects the feature over a collection window, typically measured in

thousands of instructions, and then uses these features for classifica-
tion; (2) the specific feature used for the classification. However, we
assume that the attacker has a set of candidate features that includes
the feature used by the target detector; and (3) the classification algo-
rithm used by the target detector. Importantly, the attacker has access
to a machine with a similar detector so they can test hypotheses and
evaluate the success of the mimicry attacks. Next, we show how the
attacker can reverse-engineer the detection period and the features
used in training the target detector.

4.1 Target Detector Classification Period
The classification period refers to the size of the instruction window
used to collect the classification features. Prior work [12] has shown
that a classification period of about 10K instructions works well
for supervised learning classifiers, but a detector may be trained
with a different classification period. For this experiment, we used a
classifier built using the Instruction mix feature which we assume the
attacker knows (later we relax this assumption). The target detector
collection period is 10K. We prepare multiple pairs of attacker testing
and training datasets, using different collection periods. Next, we
train a reverse-engineered detector using different data sets and
evaluate its accuracy. For each of the attacker data sets, we construct
three reverse engineered detectors using three different machine
learning algorithms, which are: LR, decision tree (DT), and support
vector machine (SVM). The results of this experiments are shown
in Figure 3a. The results show that the highest accuracy for reverse-
engineering for each of the machine learning algorithms used is
when the collection period is the same as the victim’s collection
period (10K). Thus, by using an experiment such as this one, the
attacker can infer the victim’s collection period.
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Figure 3: Reverse-engineer configurations

4.2 Target Detector Feature
Malware detectors can be built using different features. In this sub-
section, we explore the possibility of reverse-engineering the feature
vector used by the victim detector only by querying the victim de-
tector. We use a detector based on the Instruction mix feature with
a classification window of 10K instructions. We prepared multiple
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pairs of attacker testing and training data sets using the same col-
lection period (10K), but using different feature vectors. Next, we
construct reverse-engineered detectors using the attacker training
data sets labeled with the output from the victim detector as malware
or regular program. For each of the attacker data sets, we constructed
three detectors using different machine learning algorithms, which
are: LR, Decision Tree (DT), and Support Vector Machine (SVM).
The results of this experiment are shown in Figure 3b. The results
show that the highest accuracy is achieved when the feature vec-
tor is the same as the victim’s feature vector (Instructions). We
conclude that the victim HMD features can be successfully reverse-
engineered.

Note that at the correct value of the feature and period, it is
possible to obtain 0-error reverse-engineering in our experiments.
This is consistent with results from PAC learning theory which
we overview in Section 8. Although we showed how to separately
reverse-engineer the classification period (assuming that the classifi-
cation feature is known) and the classification feature (assuming the
classification period is known), we can also jointly reverse-engineer
them both. The process involves constructing detectors with differ-
ent classification features and periods, and finding the detector that
maximizes the reverse-engineering accuracy.

4.3 Performance of Reverse-engineered HMD
In the next set of experiments, we evaluate the performance of the
reverse-engineered detectors. We reverse-engineer LR and NN detec-
tors, but the reverse-engineered detector is constructed using three
different machine learning algorithms, which are LR, Decision Trees
(DT), and NN. The results for reverse-engineering of the LR and
NN detectors are shown in Figure 4a and Figure 4b respectively. The
results show that NN can reverse-engineer both types of detectors
with high accuracy (e.g., less than 1% error for all features for LR).
The performance is somewhat lower for NN since the separation
criteria used in the classification is more complex and therefore
more difficult to reverse-engineer accurately.As can be expected, the
simpler linear detector (LR) cannot effectively capture the non-linear
behavior of NN, consistent with PAC learning theory as we discuss
in Section 8.
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Figure 4: Reverse-engineering efficiency

5 DEVELOPING EVASIVE MALWARE
After reverse-engineering the victim detectors, the next step that
attackers are likely to take is to develop systematic transformations
of their malware that can evade detection by these detectors. The
malware developers may modify their malware in any way, to at-
tempt to produce behavior in the feature space of the detector that
causes them to be classified as normal. Possible strategies to ac-
complish this goal include using polymorphism to produce different
binaries [58], or adding instructions that do not affect the malware
state.

Figure 5: Methodology for generating evasive malware

Since we are working with actual malware binaries, we do not
have the source available to apply general transformations. Moreover,
most of the malware is obfuscated making decompilation difficult
and challenge binary rewriting tools. To address these challenges,
we developed a methodology to dynamically insert instructions
into the malware execution in a controllable way (Figure 5). In
particular, we construct the Dynamic Control Flow Graph (DCFG)
of the malware by instrumenting it through the PIN tool [30]. Next,
we add instructions into the control flow graph in a way that does
not affect the execution state of the program.

The injected instructions must change feature vector in a con-
trolled way based on the reversed-engineered classifier to attempt
to move the malware across the classification decision boundary
to be classified as normal. For the Instruction feature, injection of
opcodes increases the weight of the corresponding feature directly.
For the memory feature, insertion of load and store instructions with
controlled distances changes the histogram of memory reference
frequencies. For architectural features, the effects may not be di-
rectly controllable. For example, increasing the cache hit rate or
the branch predictor success rate requires inserting code segments
that will generate cache misses or predictable branches respectively.
Without loss of generality, all of our experiments use the instruction
feature. When attempting to change multiple features, the evasion
code must combine these strategies (for example, alternating their
use at different injection points).

We explored two approaches for inserting the instructions: (1)
Block level: insert instructions before every control flow altering
instruction. Note that the instructions inserted at that point in the
program are executed every time that control flow instruction is
reached (i.e., we do not change the instructions that are injected at
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a particular point in the program, once they are injected); and (2)
Function level: we insert instructions before every return instruction.
Random instruction injection: Although we do not expect this
strategy to succeed, we first check if injecting randomly chosen
instructions in the malware programs is sufficient to evade detection
to establish that the injection must be specific to the detector. Each
malware program data set is divided into two sets based on whether
the victim detector successfully detected them without modification.
Each of the data sets is modified using our framework to inject the
additional instructions and retested; the results are shown in Figure 6.
Clearly, injecting random instructions at the basic block level or at
the function call level does not help in evading detection.
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Figure 6: Detection with random instruction injection

Reverse-engineering driven instruction injection: The next set of
strategies we use is to exploit the information in the structure of the
reverse-engineered detector to attempt to avoid detection. Ideally,
we would like to make the malware appear close to regular programs
in terms of behavior so that the detector cannot successfully identify
it. Based on the parameters of the reverse-engineered detector (from
Section 4), we form a strategy for which instructions we can inject
to make the detection difficult.

To understand the rationale behind the instruction selection, we
must explain some details about the operation of LR. LR is defined
by a vector θ that identifies the linear separation between the points
being classified. The weights of the elements of the vector determine
the relative importance of these elements. Since we are only adding
instructions, we pick the instructions whose weights are negative to
move the malware towards the other side of the separation line. In
this first strategy, we inject only the instruction with the least weight
in the vector.

Figure 8a, shows the percentage of malware detected by both
the original and reverse-engineered detectors, after injecting the
malware using the information for the reverse engineered detector at
the basic block and at the function call levels. We observe that the
modified malware evades detection by both detectors.

We conduct a similar experiment for the NN detectors, where the
classifier is not clearly defined by a single vector and the separation
plane is not linear. We develop a heuristic approach to identify
candidate instructions for insertion. Figure 7 shows a NN with one
hidden layer. Each circle in the Figure represents a neuron in the
network; input, hidden, and output neurons. To compute the overall
weight contributed by a single input we multiple out its contributions

Figure 7: Neural network with one hidden layer overview

to the eventual output of the network and sum out these products.
For the example in Figure 7, the weight of input I1 can be estimated
as:

w1 = w1
11 ×wout

1 +w1
12 ×wout

2 +w1
13 ×wout

3

More generally, for input j, the weight is:

w j = Σn
i=1w ji ×wout

i

With multiple hidden layers, we must add all the factors on all the
paths to which a given input contributes.

The procedure above allows us to collapse the description of the
NN into a single vector that summarizes the contributions of each
feature. This allows us to use the same strategies for instruction
selection that we used in LR; for example, we can select the instruc-
tion with the most negative weight for insertion. However, for NN
this is an approximate strategy; for LR, if we inject more of the
negative weight instructions we are guaranteed to monotonically
decrease as the dot product of θ and the collected feature from the
malware execution becomes increasingly more negative. However,
since the separation surface of NN is non-linear, the same cannot be
guaranteed.

Figure 8b shows the percentage of modified malware detected by
the NN victim and reverse-engineered detectors. While the evasive
strategy also works in this case, it is slightly less effective; with 2
injected instructions per basic block, we can evade detection 80% of
the time.

As we explained in our threat model (Section 2), we assume
that the attacker is interested in maintaining the performance of the
malware, and does not want to arbitrarily slow it down to evade de-
tection. Figure 9, shows the static and dynamic overhead of injecting
instructions both at the basic block level and the function call level.
Inserting a single instruction at the basic block level was effective in
evading detection for most malware for LR; both the static overhead
(increase in the text segment of the executable) and the dynamic
overhead (increase in execution time) are about 10%.

We also consider selecting the instruction for injection among
all the instructions with a negative weight, with a probability pro-
portional to the weight; we call this strategy the weighted injection
strategy. Figure 10, shows the percentage of malware detected by the
victim, after weighted injection of the malware using the information
for both the reverse-engineered detector and the victim detector at
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Figure 8: Detection with least weight injection
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Figure 9: Injection static and dynamic overhead

the basic block and at the function call levels. The evasion success
using the reverse-engineered detector is almost equal to the success
when using the actual victim detector. The advantage of this strategy
is that it makes it more difficult to detect the evasion if the detector
is retrained as explained in the next section.
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Figure 10: Detection with weighted injection (LR)

6 RETRAINING VICTIM DETECTORS
The results of the previous section demonstrate that existing HMDs
that use supervised learning [12, 39] can be fairly easily evaded.
The next question we consider is: if a detector is retrained with the
addition of sample evasive malware, would it be able to classify
them correctly? If the answer is yes, then perhaps the weights can be
updated regularly to allow the detector to adapt to emerging malware.
However, there is still a possibility that the retrained detector could
itself be reverse-engineered and evaded again. Moreover, as attackers
continue to evolve, it is not clear if the detector will eventually
become ineffective due to the number of classes it is attempting
to separate, or if it will converge to a classification setting that is
impossible to evade.

Figure 11a, shows the effect of increasing the percentage of eva-
sive malware programs in the training data that we use to retrain
the simple LR detector. For example, the point with 10% indicates
that 10% of the malware part of the training set consists of evasive
malware modified with one of our evasion strategies. We see that in
general, increasing the percentage of evasive malware leads to more
accurate detection. Unfortunately, this comes at the price of loss of
accuracy (sensitivity) for non-evasive malware, making simple re-
training an ineffective strategy. It’s interesting to note that the correct
classification of normal programs (specificity) does not suffer.

Figure 12a illustrates why linear detectors such as LR have to
sacrifice accuracy when retrained. Figure on the left shows that there
is a linear separation between the malware and regular programs.
Figure in the middle demonstrates that in order to evade detection,
the evasive malware have to cross the separation boundary. Figure
on the right shows that with retrained detector it may be impossible
to find a linear separation between malware (including evasive mal-
ware) and regular programs. In contrast, non-linear classifiers such
as NN (Figure 11b) are able to detect this new form of malware with
high accuracy even with a low percentage of evasive malware in the
retraining set. This can be achieved without affecting the detection
accuracy of non-evasive malware or regular programs. Figure 12b il-
lustrates why non-linear detectors are more effective when retrained.
Even when evasive malware crosses the separation boundary of the
original classification, a new non-linear boundary can be found that
separates the two malware classes from normal programs. Thus,
HMDs must be non-linear if we want to allow them to be retrained
in response to evasive malware.
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Figure 11: Effectiveness of retraining
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Figure 12: Illustration of effect of retraining a linear and non-
linear classifiers with data that includes evasive malware

Figure 13 shows the detection of several generations of NN de-
tectors. In each generation, we repeat retraining of the detector by
adding malware from the previous generations to the training set.

The original detector in generation 1 is first evaded successfully as
we see low detection for evasive malware. After we retrain, we see
that evasive malware developed to evade detector 1 is now detected
successfully (rightmost bar for detector 2). However, if we reverse-
engineer the detector and evade it again, we can do so successfully
as evidenced by the low detection of the evasive malware in the
third bar for detector 2. As the retrain-evade process is continued,
we expected one of two outcomes: (1) the detector will no longer
be able to classify; or (2) the decision boundary will tighten and
malware will no longer be able to evade. The second outcome oc-
curred: after 7 generations, the detector can no longer be trained
successfully as malware and normal programs became inseparable
using our NN. There are two possible explanations: (1) the feature is
not sufficiently discriminative, and its possible to turn malware to be
similar to normal programs with respect to this feature. Note that in
each successive generation, the overhead is increased, and this level
of overhead may not be acceptable to the attacker; or (2) NN could
no longer represent the complex decision boundary between the
different classes of evasive malware and normal programs, similar
to how LR failed after one generation.
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Figure 13: Performance of NN detector for each retraining on
evasive malware generation

7 EVASION-RESILIENT HMDS
Although retraining the detectors can allow the updated detectors to
detect evasive malware that has representatives in the training set,
we showed retraining may eventually fail as attackers continue to
evade. Moreover, retraining cannot detect novel evasive malware:
even after retraining they can be reverse-engineered and evaded.

In this section, we introduce a new class of evasion-resilient
HMDs (RHMDs). RHMDs leverage randomization to make de-
tectors resistant to reverse-engineering and therefore evasion. In
particular, this is a strong advantage in the sense that randomization
introduces an error to the reverse engineering that is bounded by a
function of how often the detectors disagree; we show a proof for
this claim in Section 8 based on PAC learnability theory.

We randomize two settings of the detectors: i) The feature vectors
used for detection; and ii) The collection periods used in the detec-
tion. In particular, we construct detectors with these heterogeneous
features and switch between them stochastically in a way that cannot
be predicted by the attacker.



RHMD: Evasion-Resilient Hardware Malware Detectors MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Our first study examines the effect of randomizing the feature vec-
tors used for detection. We start with two detectors using the same de-
tection period. The results of this experiment are shown in Figure 14a.
We reverse-engineer the detector using two of the original feature
vectors as well as a combination of them. In particular, the point in
the figure marked "combined" represents reverse-engineering with a
combined detector using the union of the two feature vectors. Using
an RHMD with two detectors, reverse-engineering the detector be-
comes substantially more difficult because the model now includes
two diverse detectors which are selected randomly. The diversity can
be further expanded by using a pool of three detectors — the results
of this approach are shown in Figure 14b. Again, the combined point
on the figure refers to a reverse-engineering attempt using the union
of the three feature vectors of the three individual detectors. As seen
from the results, reverse-engineering becomes harder with increased
diversity.

To further increase detector diversity, we construct detectors with
two different collection periods (10K cycles period and 5K cycles pe-
riod), resulting in a pool of six detectors, which are randomly chosen
by the detection logic. The results are presented in Figure 15. Con-
sistent with the previous trend, additional diversity makes reverse-
engineering even more difficult. Note that having detectors operating
on the same features with different period does not substantially in-
crease the hardware complexity; the different weight for the two
detectors must be kept separately, but the collection logic and the
detector evaluation logic is shared.
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Figure 14: RHMD reverse engineering (features)

Having reverse-engineered the detector, we use our evasion frame-
work to inject instructions to evade it. Given that the reverse-engineering
becomes inaccurate in RHMDs and given the random switch be-
tween the individual detectors, the constructed evasive malware can
no longer hide from detection (Figure 16). It is interesting to note
that the higher the diversity of the detector, the more resilient it is
to evasion, consistent with PAC learnability theory discussed in the
next section. These results demonstrate that this approach to con-
structing HMDs provides resilience to evasive malware. The average
detection accuracy of the RHMD without evasion (Figure 16 with
0 injected instructions) is equal to the average accuracy of its base
detectors since the randomization selects between the detectors with
equal probability. Thus, the average loss of detection due to ran-
domization is the difference of accuracy between the most accurate
detector and the average of all base detectors.
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Figure 15: RHMD reverse engineering (features and periods)
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Figure 16: RHMD evasion resilience

To evaluate the overhead of implementing the detectors for online
detection [39], the proposed resilient detectors were implemented
using Verilog, as an extension of an open source x86-compatible
core (AO486) [38] to estimate the overhead. The detectors collect
information from the commit stage of the pipeline and apply the
detection logic at the detection period. After synthesizing the new
core implementation on an FPGA board for a configuration with
three detectors corresponding to the three features with the same
period, we observed that the area and power increase is modest:
1.72% and 0.78% respectively. Note that the resilient detectors can
also be used to make offline detection [12] resilient to evasion.

8 THEORETICAL BASIS FOR RHMD
This section provides theoretical support for the resilience of RHMD
for evasion based on probably approximately correct (PAC) learnabil-
ity theory [34]. In particular, we show that randomized classification
is inherently more difficult to be reverse-engineered than a determin-
istic classifier (even one with arbitrarily high complexity).

8.1 Learnability of Deterministic Classification
Consider a learning system (a defender) that uses a single classifier
to detect malware from normal programs. Consider also another
reverse engineering learning system (an attacker) that uses data of
past classification collected, for example, by repeatedly querying the
defender classifier, to determine with high accuracy the nature of the
defender classifier.
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Formally, let H be the class of possible classifiers (also called
hypothesis class) a learning system considers. Let P be the proba-
bility distribution over instances (x,y), where x is an input feature
vector, and y is a label in {0,1}. We assume below that y = h̄(x), i.e.,
a deterministic function that gives the true label of x. For any h ∈ H,
let e(h) = Prx∈P[h(x) , h̄(x)] be the expected error of h w.r.t. P. We
define eH = infh∈H e(h) as the optimal (smallest) error achievable
by any function h ∈ H. Let D = {(x1,y1), ..., (xm,ym)} be a training
data set of size m generated according to P and D be the set of all
possible D. A learning algorithm is a function L : D → H which
produces a classifier ĥ ∈ H given a training set D.

DEFINITION 1. A hypothesis class H is learnable if there is
a learning algorithm L for H with the property that for any ε,δ ∈
(0,1/2) and distribution P there exists a training sample size m0 (ε,δ ),
such that for all m ≥ m0 (ε,δ ), PrD∈D [e(L(D)) ≤ eH + ε] ≥ 1− δ ,
i.e., L will with probability at least (1 − δ ) output a hypothesis
ĥ ∈ H, whose error on P is almost (eH + ε ). H is efficiently learn-
able if m0 (ε,δ ) is polynomial in 1/ε and 1/δ , and L runs in time
polynomial in m, 1/ε and 1/δ . 1

The definition of PAC learnability above says that a hypothe-
sis class H is efficiently learnable (i.e., learning is easy) if we can
compute with high probability an approximately optimal candidate
from this class given a polynomial number of samples. The error
bound (eH + ε ) for an approximately correct classifier ĥ ∈ H con-
sists of two components. ε becomes arbitrarily small and hence
e(ĥ) approaches eH when the number of training samples increases
polynomially w.r.t. 1/ε . The other component eH depends on the
learning bias [34] about H. That is the set of assumptions that the
learner makes (e.g., the type of classifiers and the underlying fea-
tures). With a good choice of H, eH can be arbitrary small; eH is
zero if H contains the true classifier h̄. We observed the implications
of this result in Section 4 when the correct feature and detection
period lead to the highest accuracy reverse engineered classifier.

The concept of PAC learnability applies to the learning tasks by
both the defender and the attacker, with one caveat: for the defender,
the goal is to correctly predict the true label of an instance (i.e., y =
h̄(x)); while for the attacker, the goal is to correctly predict the label
of an instance assigned by the defender’s classifier (i.e., y = ĥ(x)).
As shown in [52], efficient learning for h̄ by the defender implies
efficient learning for ĥ (called efficient reverse-engineering) by the
attacker. Suppose that the defender has learned ĥ from an efficiently
learnable H. Provided the attacker identifies the type and features
of the classifiers in H, then ĥ is contained in the hypothesis class
used by the attacker, and eH = 0, i.e., the distribution P over (x, h̄(x)
can be efficiently reverse-engineered with arbitrary precision [52].
Without prior knowledge of H, the attacker can tune its hypothesis
class based on the error rate on the training data collected over
repeated queries.

These results support the reverse-engineering experiments in Sec-
tion 4. In particular, the analysis shows that reverse-engineering a
deterministic classifier is “easy” in practice regardless of the com-
plexity of the defender’s classifier. Increasing the complexity of the
defender’s classifier can make it more costly to reverse-engineer

1This definition is taken, in a slightly extended form, from [34].

it, but will not change the outcome of the arms race between the
defender and attacker with respect to the difficulty of evasion.

8.2 Learnability of Randomized Classification
We now consider a defender that uses randomized classification such
as the model used in RHMD. As before, consider a distribution P
over instances (x,y), with y = h̄(x) as the ground truth. Suppose that
we have n hypothesis classes Hi, all efficiently learnable. Let ĥi ∈ Hi
be the classifier learned from these classes, respectively, with the
corresponding error rate e(ĥi). Additionally, let △i, j = Prx∈P[ĥi (x) ,
ĥ j (x)] for all i, j: that is, △i, j measures the difference between two
classifiers ĥi (x) and ĥ j (x) over the data distribution. Consider a space
of policies parametrized by pi ∈ [0,1] with ∑i pi = 1, where we
choose ĥi ∈ Hi with probability pi. Let p⃗ denote the corresponding
probability vector. Then, a policy p⃗ induces a distribution Q p⃗ over
(x,z), where z = ĥi (x) with probability pi. The defender will incur
a baseline error rate of ep⃗ (h) = Prx∈Q p⃗ [ĥi (x) , h̄(x)] = ∑i pie(ĥi) if
there is no reverse-engineering effort.

Suppose the attacker observes a sequence of data points from
Q p⃗, and tries to efficiently learn the hypothesis class H = ∪iHi. For
any h ∈ H, let ep⃗ (h) = Prx∈Qp⃗ [h(x) , ĥi (x)] =∑i pie(h), the expected
error of h w.r.t. Q p⃗, and we define ep⃗,H = infh∈H ep⃗ (h) as the optimal
(smallest) error achievable by any function h ∈ H under a policy p⃗.
Definition 1 naturally extends to the randomized setting: in particular,
the distribution P becomes Q p⃗ and the error bound (eH +ε ) becomes
(ep⃗,H + ε ).

THEOREM 1. Suppose that each Hi is efficiently learnable, and
ĥi ∈ Hi be the classifier learned from these classes by a defender,
respectively, with the corresponding error rate e(ĥi). Then, any
distribution Q p⃗ over (x,z) can be efficiently reverse engineered, with
ep⃗,H bounded by mini ∑ j,i pi△i, j ≤ ep⃗,H ≤ 2(maxi e(ĥi)). 2

This theorem shows that on the one hand, even with randomiza-
tion, reverse-engineering is easy as long as all classifiers among
which the defender randomizes accurately predict the target - that is
maxi e(ĥi), the maximal error among the n classifiers, is arbitrarily
small. On the other hand, the attacker’s error depends directly on
the difference among the classifiers, which can be significant if at
least some of the classifiers are not very accurate, allowing them to
disagree more often. According to the error bound (ep⃗,H + ε ), even
though ε becomes arbitrarily small as the number of queried samples
increases, the defender will inevitably suffer from an error caused
by ep⃗,H . This error can be high; for example, when randomizing two
classifiers of error 0.2 and 0.1 with p1 = p2 = 0.5, ep⃗,H is in [0.15,
0.4]. In contrast, in the deterministic setting, eH can be 0. For our
experiments with the pool of six detectors we measured the error to
be around 25% on our testing dataset.

The above theorem also suggests a trade-off between the accuracy
of the defender under no reverse-engineering vs. the susceptibility
to being reverse-engineered: using low-accuracy but high-diversity
classifiers allow the defender to induce a higher error rate on the
attacker, but will also degrade the baseline performance against the
target. To combat reverse engineering effort, we propose to random-
ize among a set of low-complexity, low-accuracy classifiers (e.g.,
2This theorem is formed by combining Theorem 2.2 and Corollary 2.3 (with detailed
proofs) from [52].



RHMD: Evasion-Resilient Hardware Malware Detectors MICRO-50, October 14–18, 2017, Cambridge, MA, USA

logistic regression), rather than deploying a single high-complexity,
high-accuracy classifier (e.g., deep neural network or random forest).
The former is also more suitable for a hardware implementation than
the latter. Although this low accuracy applies to the classification of
each individual period, we raise the overall accuracy of the detector
by averaging the decisions across multiple intervals.

8.3 Evasion Without Reverse Engineering

Figure 17: Impact of Randomization on Evasion

Our threat model assumes that an attacker needs to reverse engi-
neer a detector before evading it. The theoretical resilience claims
on RHMDs rely on the difficulty of this reverse engineering. In this
section, we consider whether it is possible to evade the detector
without reverse engineering. To provide intuition, we start with Fig-
ure 17, which shows the decision boundaries of two diverse base
detectors learned from hypothesis classes H1 and H2. The two de-
cision boundaries are not mutually exclusive (H1 malware regions
are 2, 3 and H2 malware regions are 3, 4). To fool both detectors,
the malware has to move to region 1 which both detectors treat as
normal. Note that these decision boundaries represent hyperplanes
in an n-dimensional feature space for LR, and complex surfaces
in the same space for NN. Therefore, as we increase diversity the
target area for evasion gets smaller. Thus, provided that detectors are
diverse, making random insertion guesses is unlikely to succeed and
expensive to validate. Note that evasion must succeed continuously
across consecutive detection windows, which complicates attempts
to incrementally evade the detector.

This example also provides intuition on why randomization com-
plicates reverse engineering (as shown by Theorem 1). The attacker
has to suffer a significantly increased error (ep⃗,H ) if she tries to learn
a decision boundary from the same hypothesis classes adopted by
the defender. Otherwise, she has to learn a decision boundary of a
higher complexity class which requires exponentially larger number
of samples.

If the attacker knows precisely the configuration of the base de-
tectors of an RHMD, we verified that it is possible to evade it, for
example, by iteratively evading each. This approach incurs a high
overhead since instructions need to be injected to evade each of the
detectors. We do not consider this case as part of our threat model.
Resilience in this case may be achieved if we make the decision
boundary of the RHMD non-stationary. This can be accomplished
by having a large set of candidate features and periods, of which a
random subset is used for the RHMD at any given time. This is an
interesting area for future research.

9 RELATED WORK
In this section, we discuss related work organized into two main
parts. First, we review related work in malware anomaly detection.
In the second part, we discuss adversarial classification and some
important recent results in that domain. We show that these results
are consistent with our results both in terms of reverse engineering
and the use of randomization as a defense.

9.1 Malware Detection
In general, malware detection techniques are either static (focusing
on the structure of a program or system) or dynamic (analyzing the
behavior during execution) [22]. Static approaches can be easily
evaded using program obfuscation or simple code transformations
that preserve the function of the malware but make it not match
the patterns known to the scanner [35, 36]. On the other hand, the
advantage of dynamic malware detection is that it is resilient to
metamorphic and polymorphic malware [32, 35]; it can even detect
previously unknown malware. However, disadvantages include a
typically high false positive rate, and a high monitoring cost during
run-time.

A number of works have looked at using low-level architecture
features for malware detection such as frequency of opcodes use in
malware [7], evaluation of opcode sequence signatures [45, 56] and
opcode sequence similarity graphs [44], which consider offline anal-
ysis. Further, Demme et al. [12] proposed collecting performance
counter statistics for programs and malware under execution and
used them to show that offline detection of malware is effective.
Then, a real-time hardware malware detector was built by Ozsoy
et al. [39]. Tang et al. [50] used unsupervised learning to detect
malware exploits, which will make the regular program deviate from
the baseline execution model. Kazdagli et al [25] identified some
pitfalls in training and evaluating HMDs for mobile malware, and
proposed several improvements to them.

Khasawneh et al. used ensemble learning to improve the accu-
racy of HMDs [27]. Superficially, ensemble learning is similar to
RHMD since it combines the output of multiple diverse detectors
through a combiner function such as majority voting to improve the
overall detection performance. However, since ensemble classifiers
are deterministic, they can be reverse engineered and evaded. In
contrast, the stochastic switching between individual detectors in
RHMD makes both reverse-engineering and evasion difficult with a
difficulty that increases with the number and diversity of the individ-
ual detectors. Smutz et al. also studied the use of an ensemble for
PDF malware detection [49]; when the baseline detectors disagree,
they consider this a possible indicator of evasive malware.

Although hardware-supported malware detection offers many
advantages as it can be always on and has a low overhead on both
power and performance, malware developers will try to come up with
evasive techniques to cross this line of defense (HMDs). In this paper,
we show that without hardening HMDs, it is possible to reverse
engineer and evade them, bringing into question the effectiveness
of HMDs. Our work also explores whether retraining can be used
to continue to track malware evasion, as well as the construction of
resilient hardware malware detectors. With these results we believe
evasion resilient HMDs become practical, bringing such solutions
closer to practical deployment.
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9.2 Adversarial Classification
Several other studies have looked at attacking machine learning
models. Attacks can be classified into two types: poisoning and
evasion attacks [3]. In poisoning attacks, the adversary focuses on
injecting malicious samples in the training data as an attempt to
influence the accuracy of the model [6, 28]. For evasion attacks,
similar to our own, the adversary crafts input samples that aim to be
misclassified by the model [4, 18, 29, 41, 55]. Several evasion attacks
were studied in the image classification field. An adversary can make
changes to the pixels of an image to cause miss-classification of the
image but will not change the visibility of the image to the human
eye [4, 18, 41]. Since images have high entropy they can be easily
manipulated without changing the appearance of the image. On the
other hand, in the malware detection domain, manipulating malware
programs have different challenges since the functionality of the
malware needs to be preserved. Evasion attacks in contexts outside
image classification have also been considered. Such attacks are
called mimicry attacks [8, 53]. Although recent studies [5, 11, 52]
have provided theoretical grounds for randomization as a possible
solution in adversarial classification, practical algorithms have yet
to be developed for this problem.

Related to our evasion attack on malware detectors, researchers
recently proposed evasive attacks on PDF malware detectors [29, 55].
These works consider static classifiers using structural features
present in the PDF image. In contrast, our contribution targets detec-
tors for a wide range of malware and we consider run-time anomaly
detection using microarchitectural features. Besides the different
nature of the application, our work makes a number of contributions
relative to these recent papers including showing how to reverse
engineer the classifiers, reverse-engineering driven instruction injec-
tion to evade detection (they use random modifications), exploring
the impact of retraining, and providing theoretical insights based
on PAC theory into the structure of the problem. Moreover, these
studies do not explore resilient classification.
Similar to the reverse engineering component of our work, Tramèr
et al. [51] were able to reverse-engineer machine learning models
against production Machine Learning-as-a-service (MLaaS) providers.
However, they assumed that they know the features used by the
target classifier. In addition, Shokri et al. [47] were able to use
reverse-engineered models to perform a membership inference at-
tack (given a data record and black-box access to a model, determine
if the record was in the model’s training dataset) against MLaaS
providers. In both works, they attempt reverse engineering using
random noise [47, 51]. We believe that this approach does not work
in our threat model where we do not have access to the classifier
confidence, and where classification is a continuous process, which
make it difficult to assess incremental changes.

10 CONCLUDING REMARKS
Recently proposed Hardware Malware Detectors have demonstrated
remarkable accuracy in classifying malware using low-level features.
In one model, when implemented in hardware, they can help monitor
all programs as they run to detect malware with high accuracy, and
at a cost orders of magnitude lower than software monitoring. There
is evidence that these detectors will be incorporated in commercial
processors [43].

If HMDs are widely deployed, we must expect that attackers will
attempt to evade detection as is the case in any adversarial setting.
We believe that this is the first paper that considers this issue in
detail for HMDs. In particular, we showed that the attacker can accu-
rately reverse-engineer earlier proposed detectors. Moreover, once
the detector is reverse-engineered, we demonstrated simple evasive
techniques that can successfully hide malware from detection. Al-
though existing HMDs admit that these detectors may be vulnerable
to evasion, these results conclusively confirm that malware can evade
such detectors, rendering them ineffective.

We considered that detectors can be retrained to capture evasive
malware once samples become known (similar to the current prac-
tice of updating virus signatures). For LR, such retraining was not
effective: considering evasive malware compromised the classifi-
cation performance on normal malware; due to linear separation,
it is not possible to produce LR detectors that successfully catch
both. In contrast, NN could easily be retrained to detect the evasive
malware. Thus, non-linear classifiers need to allow the detectors to
be retrained to capture emerging malware. However, after several
rounds of evade-retrain game, the NN classifier could also no longer
be effectively retrained.

We proposed resilient HMDs that switch randomly between a di-
versity of detectors. We showed that such detectors can resist reverse-
engineering and complicate evasion. We showed both empirically,
and from PAC learnability theory, that their resilience increases with
the number and diversity of the individual detectors available to
select from. With this class of resilient HMDs, hardware malware
detection becomes a promising direction in malware detection.
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