
Rendered Insecure: GPU Side Channel Attacks are Practical
Hoda Naghibijouybari

University of California, Riverside
hnagh001@ucr.edu

Ajaya Neupane
University of California, Riverside

ajaya@ucr.edu

Zhiyun Qian
University of California, Riverside

zhiyunq@cs.ucr.edu

Nael Abu-Ghazaleh
University of California, Riverside

nael@cs.ucr.edu

ABSTRACT
Graphics Processing Units (GPUs) are commonly integrated with
computing devices to enhance the performance and capabilities
of graphical workloads. In addition, they are increasingly being
integrated in data centers and clouds such that they can be used
to accelerate data intensive workloads. Under a number of scenar-
ios the GPU can be shared between multiple applications at a fine
granularity allowing a spy application to monitor side channels and
attempt to infer the behavior of the victim. For example, OpenGL
and WebGL send workloads to the GPU at the granularity of a
frame, allowing an attacker to interleave the use of the GPU to
measure the side-effects of the victim computation through perfor-
mance counters or other resource tracking APIs. We demonstrate
the vulnerability using two applications. First, we show that an
OpenGL based spy can fingerprint websites accurately, track user
activities within the website, and even infer the keystroke timings
for a password text box with high accuracy. The second application
demonstrates how a CUDA spy application can derive the internal
parameters of a neural network model being used by another CUDA
application, illustrating these threats on the cloud. To counter these
attacks, the paper suggests mitigations based on limiting the rate
of the calls, or limiting the granularity of the returned information.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures;

KEYWORDS
GPU, side channel, website fingerprinting, keystroke timing attack

ACM Reference Format:
HodaNaghibijouybari, AjayaNeupane, ZhiyunQian, andNael Abu-Ghazaleh.
2018. Rendered Insecure: GPU Side Channel Attacks are Practical. In 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS
’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3243734.3243831

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10.
https://doi.org/10.1145/3243734.3243831

1 INTRODUCTION
Graphics Processing Units (GPUs) are integral components to most
modern computing devices, used to optimize the performance of
today’s graphics and multi-media heavy workloads. They are also
increasingly integrated on computing servers to accelerate a range
of applications from domains including security, computer vision,
computational finance, bio-informatics and many others [52]. Both
these classes of applications can operate on sensitive data [25, 31,
57] which can be compromised by security vulnerabilities in the
GPU stack.

Although the security of GPUs is only starting to be explored,
several vulnerabilities have already been demonstrated [46, 49, 55,
58, 63, 71, 74]. Most related to this paper, Luo et al. demonstrated a
timing channel from the CPU side timing a GPU operation. In par-
ticular, they assume that the GPU is running an encryption library,
and time encryption of chosen text blocks. The encryption run-
time varies depending on the encryption key: the memory access
patterns are key-dependent causing timing differences due to GPU
memory coalescing effects enabling a timing side channel attack on
the key [40]. In [40], the attacker needs to launch the encryption
kernel on GPU and measure the whole kernel execution time on its
own process (on CPU side), totally different than our threat model
that investigates side channel between two concurrent apps on
the GPU. More recently, Naghibijouybari et al. showed that covert
channels between colluding concurrently running CUDA applica-
tions (CUDA is Nvidia’s programming language for general purpose
workloads on the GPU [4]) on a GPU may be constructed [54, 55].
Neither of these papers demonstrates a general side channel attack,
which is the focus of this paper.

This paper explores whether side channel attacks on GPUs are
practical. GPUs often process sensitive data both with respect to
graphics workloads (which render the screen and can expose user
information and activity) and computational workloads (which may
include applications with sensitive data or algorithms). If indeed
possible, such attacks represent a novel and dangerous threat vector.
There are a number of unique aspects of side channel attacks on
the GPU due to the different computational model, high degree of
parallelism, unique co-location and sharing properties, as well as
attacker-measurable channels present in the GPU stack. We show
that indeed side channels are present and exploitable, and demon-
strate attacks on a range of Nvidia GPUs and for both graphics and
computational software stacks and applications.

A pre-requisite of architectural side channel attack is the co-
location of the attacker and the victim in the resource space such
that the attacker can create and measure contention. We system-
atically characterize the situations where a spy can co-locate and

https://doi.org/10.1145/3243734.3243831
https://doi.org/10.1145/3243734.3243831

measure side channel behavior of a victim in both the graphics
and the computational stacks of the Nvidia family of GPUs. In the
case of OpenGL workloads, we discover that kernels (shader pro-
grams) can be concurrently scheduled provided there are sufficient
resources to support them. We also verify that the same is true for
competing CUDA workloads. Finally, when workloads originate
from both CUDA and OpenGL, they interleave the use of the GPU at
a lower concurrency granularity (interleaving at the computational
kernel granularity). We discuss co-location possibilities for each
type of the attack.

Armed with the co-location knowledge, we demonstrate a family
of attacks where the spy can interleave execution with the victim
to extract side channel information. We explore using (1) Memory
allocation APIs; (2) GPU performance counters; and (3) Time mea-
surement as possible sources of leakage. We show that all three
sources leak side channel information regarding the behavior of
the victim. We successfully build three practical and dangerous
end-to-end attacks on several generations of Nvidia GPUs.

To illustrate attacks on graphics applications we implement a
web-fingerprinting attack that identifies user browsing websites
with high accuracy. We show an extension to this attack that tracks
user activity on a website, and captures keystroke timing. We also
illustrate attacks on computational workloads showing that a spy
can reconstruct the internal structure of a neural network with
high accuracy by collecting side channel information through the
performance counters on the GPU.

We explore possible mitigation to this type of attack. Preventing
or containing contention on GPUs by allocating them exclusively or
changing their design could limit the leakage, but is likely imprac-
tical. Thus, we focus on limiting the attacker’s ability to measure
the leakage. We show that solutions that interfere with the mea-
surement accuracy can substantially limit the leakage and interfere
with the attacker’s ability to extract sensitive information.

In summary, the contributions of this paper are:

• We investigate the feasibility of GPU side channel attacks
due to resource contention within the GPU.

• We reverse engineer a range of Nvidia GPU models and
extract internal scheduling parameters and measurement
APIs that can be used to carry out GPU side channel attacks.

• We demonstrate practical attacks on both graphics and com-
putational GPUworkloads, as well as across them.We believe
these are the first reported general side channel attacks on
GPUs.

• We discuss and evaluate possible mitigations based on limit-
ing the rate or precision of the calls to the vulnerable APIs.

Disclosure: We have reported all of our findings to Nvidia. We
understand that they intend to publish a patch that offers system
administrators the option to disable access to performance counters
from user processes. We also shared a draft of the paper with the
AMD and Intel security teams to enable them to evaluate their
GPUs with respect to such vulnerabilities.

2 GPU PROGRAMMING INTERFACES AND
ARCHITECTURE

This section first overviews GPU programming interfaces and GPU
architecture to provide an idea about how they are programmed,
and how contention arises within them.

2.1 GPU Programming Interfaces
GPUs were originally designed to accelerate graphics and mul-
timedia workloads. They are usually programmed using applica-
tion programming interfaces such as OpenGL for 2D/3D graph-
ics [17], or WebGL [20] which is usable within browsers. We call
OpenGL/WebGL and similar interfaces the graphics stack of the
GPU. OpenGL is accessible by any application on a desktop with
user level privileges making all attacks practical on a desktop. In
theory, a JavaScript application may launch the attack using We-
bGL, but we found that current versions of WebGL do not expose
measurement APIs that allow leakage.

In the past few years, GPU manufacturers have also enabled
general purpose programmability for GPUs, allowing them to be
used to accelerate data intensive applications using programming
interfaces such as CUDA [4], Vulkan [19] and OpenCL [13]. We
call this alternative interface/software stack for accessing the GPU
the computational stack. Computational GPU programs are used
widely on computational clusters, and cloud computing systems to
accelerate data intensive applications [6]. These systems typically
do not process graphics workloads at all since the machines are
used as computational servers without direct graphical output.
Nowadays, most non-cloud systems also support general purpose
computing on GPUs [3] and are increasingly moving towards GPU
concurrent multiprogramming.

We did not evaluate attacks on Android devices that incorporate
Nvidia GPUs (few phones use the Nvidia Tegra GPU), but plan
to do so in our future research. On Android devices, a modified
version of OpenGL is available called OpenGL-ES. It offers access to
performance counters (which are used in some of our attacks) but
not to the memory API. Additional leakage is available on Android
through detailed profiling of rendering behavior, but requires the
application to obtain a developer permission.

On desktops or mobile devices, general purpose programmabil-
ity of GPUs requires installation the CUDA software libraries and
GPU driver. Nvidia estimates that over 500 Million installed devices
support CUDA [4], and there are already thousands of applications
available for it on desktops, and mobile devices. With its perfor-
mance and power advantages for a range of useful applications,
even though it is not available by default, it is likely that many desk-
tops and mobile devices will install CUDA (or OpenCL) enabling
attacks that originate from CUDA on graphics workloads.

2.2 GPU Architecture Overview
We briefly review the GPU architecture to provide some insight into
its execution model and how contention arises. The architecture
also illustrates that due to the high parallelism and small shared
caches, conventional CPU attacks such as prime-probe cache attacks
are virtually impossible; it is difficult to correlate accesses to the
potential thousands of concurrently executing threads that may
have generated them.

M
em

or
y

C
on

tro
lle

r
M

em
or

y
C

on
tro

lle
r M

em
ory C

ontroller
M

em
ory C

ontroller

L2 Cache

GPC GPC

GPC GPC

SM

Raster Engine Raster Engine

Raster EngineRaster Engine

GigaThread Engine

SMSMSMSMSMSMSM

SMSMSMSMSMSMSMSM

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch UnitDispatch Unit

Register File

Core

Core

Core

Core

LD/ST

LD/ST

SFU

SFU

Shared Memory/L1 Cache

Texture Cache

Tex Tex Tex Tex

...

Polymorph Engine

GPU
SM

(a)

CUDA Application

Kernel 1 Kernel 2 . . .

...

...

...

...

...

......

...

...Thread
Blocks

...
...

... ... Warps

32

...

32

Host (CPU)

Device (GPU)

(b)

Figure 1: GPU overview (a) Architecture; (b) Application

Figure 2: Graphics processing pipeline

Figure 1a presents an architecture overview of a typical GPU.
There are a number of resources that are shared between threads
based on where they are mapped within the GPU. The GPU consists
of a number of Graphical Processing Clusters (GPCs) which include
some graphics units like raster engine and a number of Streaming
Multiprocessor (SM) cores. Each SM has several L1 caches (for the
instructions, global data, constant data and texture data). They are
all shared among the computational threads mapped to it. There is
a globally shared L2 cache to provide faster access to memory. As a
typical example, the Nvidia Tesla K40, includes 15 SMs [11]. The
size of the global memory, L2 cache, constant memory and shared
memory are 12 GB, 1.5 MB, 64 KB and 48 KB respectively.

To illustrate the operation of the architecture, we describe how
a general purpose function, written in CUDA or OpenCL, is run on
the GPU. A CUDA application is launched using a CUDA runtime
and driver. The driver provides the interface to the GPU. As demon-
strated in Figure 1b, a CUDA application consists of some parallel
computation kernels representing the computations to be executed
on the GPU. For example, a CUDA application may implement
parallel matrix multiplication in a computation kernel. Each kernel
is decomposed into blocks of threads that are assigned to different
SMs. Internally, the threads are grouped into warps of typically 32
threads that are scheduled together using the Single Instruction
Multiple Thread (SIMT) processing model to process the portion

of the data assigned to this warp. The warps are assigned to one
of (typically a few) warp schedulers on the SM. In each cycle, each
warp scheduler can issue one or more instructions to the available
execution cores. Depending on the architecture, each SM has a fixed
number of various types of cores such as single precision cores,
double precision cores, load/store cores and special functional units.
Depending on the number of available cores an instruction takes
one or more cycles to issue, but the cores are heavily pipelined
making it possible to continue to issue new instructions to them in
different cycles. Warps assigned to the same SM compete for access
to the processing cores.

The GPUmemory is shared across all the SMs and is connected to
the chip using several high speed channels (see memory controllers
in Figure 1a), resulting in bandwidths of several hundred gigabytes
per second, but with a high latency. The impact of the latency
is hidden partially using caches, but more importantly, the large
number of warps/threads ensures the availability of ready warps
to take up the available processing bandwidth when other warps
are stalled waiting for memory. This results in fine granularity and
frequent interleaving of executing groups of threads, making it
difficult to correlate fine-grained side channel leakage (e.g., cache
miss on a cache set) to a particular computation source.
Graphics Pipeline: With respect to graphics workloads, the ap-
plication sends the GPU a sequence of vertices that are grouped

into geometric primitives: points, lines, triangles, and polygons.
The shader programs include vertex shaders, geometry shaders and
fragment shaders: the programmable parts of graphics workloads
that execute on SMs on the GPU. The GPU hardware creates a
new independent thread to execute a vertex, geometry, or fragment
shader program for every vertex, every primitive, and every pixel
fragment, respectively, allowing the graphics workloads to benefit
from the massive parallelism available on the GPU.

Figure 2 demonstrates the logical graphics pipeline. The vertex
shader program executes per-vertex processing, including trans-
forming the vertex 3D position into a screen position. The geometry
shader program executes per-primitive processing and can add or
drop primitives. The setup and rasterization unit translates vector
representations of the image (from the geometric primitives used by
the geometry shader) to a pixel representation of the same shapes.
The fragment (pixel) shader program performs per-pixel processing,
including texturing, and coloring. The output of graphics work-
loads consists of the pixel colors of the final image and is computed
in fragment shader. The fragment shader makes extensive use of
sampled and filtered lookups into large 1D, 2D, or 3D arrays called
textures, which are stored in the GPU global memory. The con-
tention among the different threads carrying out operations on the
image is dependent on the image. When measuring performance
counters or memory usage, these values leak information about the
graphics workload being rendered by the GPU.

3 ATTACK SCENARIOS AND LEAKAGE
SOURCES

In this section, we first define three attack scenarios based on the
placement of the spy and the victim. We then describe the available
leakage vectors in each scenario.

3.1 Attack Scenarios
We consider three primary attack vectors. In all three cases, a mali-
cious program with normal user level permissions whose goal is to
spy on a victim program.

• Graphics spy on a Graphics victim: attacks from a graphics
spy on a graphics workload (Figure 3, left). Since Desktop or
laptop machines by default come with the graphics libraries
and drivers installed, the attack can be implemented easily
using graphics APIs such as OpenGL measuring leakage of
a co-located graphics application such as a web browser to
infer sensitive information.

• CUDA spy on a CUDA victim: attacks from a CUDA spy on
a CUDA workload typically on the cloud (Figure 3, middle)
where CUDA libraries and drivers are installed; and

• CUDA spy and graphics victim (Cross-Stack): on user sys-
tems where CUDA is installed, attacks from CUDA to graph-
ics applications are possible (Figure 3, right).

In the first attack, we assume that the attacker exploits the graphics
stack using APIs such as OpenGL or WebGL. In attacks 2 and 3,
we assume that a GPU is accessible to the attacker using CUDA or
OpenCL. We reverse engineer the co-location properties for each
attack vector and identify the leakage sources available in each
scenario.

3.2 Available Leakage Vectors on GPUs
Prior work has shown that two concurrently executing GPU ker-
nels can construct covert channels using CUDA by creating and
measuring contention on a number of resources including caches,
functional units, and atomic memory units [55]. However, such
fine-grained leakage is more difficult to exploit for a side channel
attack for a number of reasons:

• The large number of active threads, and the relatively small
cache structures make it difficult to carry out high-precision
prime-probe or similar attacks on data caches [42, 43, 48, 62].

• The SIMT computational model limits leakage due to data
dependent control flow (e.g., if statements). In particular,
on a GPU both the if and else clauses of an if-then-else
statement are executed if at least one thread is interested
in each clause equalizing the side channel signal. This type
of side channel is often the target of timing/power analysis,
branch prediction based attacks [33, 34] or instruction cache
attacks on CPUs [23], but is unavailable on GPUs.

• True colocation with applications running on the GPU con-
currently is not possible in all scenarios (e.g., OpenGL and
CUDA kernels do not concurrently execute).

Thus, instead of targeting fine-grained contention behavior, most
of our attacks focus on aggregate measures of contention through
available resource trackingAPIs. There are a number ofmechanisms
available to the attacker to measure the victim’s performance. These
include: (1) the memory allocation API, which exposes the amount
of available physical memory on the GPU; (2) the GPU hardware
performance counters; and (3) Timing operations while executing
concurrently with the victim. We verified that the memory channel
is available on both Nvidia [15] and AMD GPUs [14] and on any
Operating System supporting OpenGL (including Linux, Windows,
and MacOS). Nvidia GPUs currently support performance counters
on Linux, Windows and MacOS for computing applications [10]
and on Linux and Android [8, 18] for graphics applications, while
AMD supports Linux and Windows [7]. WebGL does not appear to
offer extensions to measure any of the three channels and therefore
cannot be used to implement a spy for our attacks. Although web
browsers and websites which use WebGL (as a JavaScript API to
use GPU for rendering) can be targeted as victims in our attacks
from an OpenGL spy.
Measuring GPU Memory Allocation: When the GPU is used
for rendering, a content-related pattern (depending on the size and
shape of the object) of memory allocations is performed on the
GPU. We can probe the available physical GPU memory using an
Nvidia provided API through either a CUDA or an OpenGL context.
Repeatedly querying this API we can track the times when the
available memory space changes and even the amount of memory
allocated or deallocated.

On an OpenGL application we can use the "NVX_gpu_memory_
info " extension [15] to do the attack from a graphics spy. This ex-
tension provides information about hardware memory utilization
on the GPU. We can query "GPU_MEMORY_INFO_CURRENT_
AVAILABLE_VIDMEM_NVX " as the value parameter to glGetInte-
gerv. Similarly, on a CUDA application, the provided memory API
by Nvidia is "cudaMemGetInfo". Note that AMD also provides the
similar APIs to query the available GPU memory on both OpenCL

Graphics - Graphics
(Desktop)

CUDA - CUDA
(Cloud)

Spy
Spy

Victim

Spy and Victim
Concurrency on GPU

Time

CUDA
AppOpenGL

App

Graphics - CUDA
(Desktop)

Victim

Computation

...
CUDA App

Screen
Rendering

Spy

CUDA
App

Victim

Screen
Rendering

performance
counters

memory utilization
(size and time) memory utilization &

performance counters

CUDA
Kernel

Graphics
Frame

Figure 3: Threat Scenarios

Table 1: GPU performance counters

Category Event/Metric
Memory Device memory read/write throughput/transactions

Global/local/shared memory load/store throughput/transactions
L2 read/write transactions, Device memory utilization

Instruction Control flow, integer, floating point (single/double) instructions
Instruction executed/issued, Issued/executed IPC
Issued load/store instructions
Issue stall reasons (data request, execution dependency, texture, ...)

Multiprocessor Single/Double-precision function unit utilization
Special function unit utilization
Texture function unit utilization, Control-flow function unit utilization

Cache L2 hit rate (texture read/write)
L2 throughput/transaction (Reads/writes, Texture read/writes)

Texture Unified cache hit rate/throughput/utilization

andOpenGL applications through "cl_amd_device_attribute_query"
[12] and "ATI_meminfo" [14] extensions respectively, making our
attacks possible on AMD GPUs as well.
Measuring Performance Counters:We use the Nvidia profiling
tools [10] to monitor the GPU performance counters from a CUDA
spy [8]. Table 1 summarizes some of the important events/metrics
tracked by the GPU categorized into five general groups: memory,
instruction, multiprocessor, cache and texture. Although the GPU
allows an application to only observe the counters related to its
own computational kernel, these are affected by the execution of a
victim kernel: for example, if the victim kernel accesses the cache, it
may replace the spy’s data allowing the spy to observe a cache miss
(through cache-related counters). We note that OpenGL also offers
an interface to query the performance counters enabling them to
be sampled by a graphics-based spy.
Measuring Timing: It is also possible to measure the time of
individual operation in scenarios where the spy and the victim
are concurrently running to detect contention. In scenarios where
the victim and spy interleave, measuring timing also discloses the
execution time of the victim computation kernel.

Experimental Setup:We verified the existence of all the reported
vulnerabilities in this paper on three Nvidia GPUs from three differ-
ent microarchitecture generations: a Tesla K40 (Kepler), a Geforce
GTX 745 (Maxwell) and a Titan V (Volta) Nvidia GPUs. We report
the result only on the Geforce GTX 745 GPU in this paper. The
experiments were conducted on an Ubuntu 16.04 distribution, but
we verified that the attack mechanisms are accessible on both Win-
dows and MacOS systems as well. The graphics driver version is
384.11 and the Chrome browser version is 63.0.3239.84.

4 THREAT SCENARIO 1: GRAPHICS SPY AND
GRAPHICS VICTIM

We consider the first threat scenario where an application uses a
graphics API such as OpenGL to spy on another application that
uses the GPU graphics pipeline (Figure 3, left). First, we have to
reverse engineer how concurrent graphics workloads from two
applications share the use of the GPU (we call this co-location).
Reverse Engineering Co-location: To understand how two con-
current applications share the GPU, we carry out a number of
experiments and use their results to see if the two workloads can

run concurrently and to track how they co-locate. The general ap-
proach is to issue the concurrent workloads and measure both the
time they execute using the GPU timer register, and SM-ID they
execute on (which is also available through the OpenGL API). If
the times overlap, then the two applications colocate at the same
time. If both the time and the SM-IDs overlap, then the applications
can share at the individual SM level, which provides additional
contention spaces on the private resources for each SM.

We launch two long running graphics applications rendering
an object on the screen repeatedly. Each thread is responsible
for assigning color to each pixel in fragment shader. We need
to know about SM-ID and timing information of each thread on
each OpenGL workload to evaluate contention. OpenGL developers
(Khronos group) provide two extensions: "NV_shader_thread_group "
[16] which enable programmers to query the ThreadID, theWarpID
and the SM-ID inOpenGL shader codes and "ARB_shader_clock " [2]
which exposes local timing information within a single shader invo-
cation. We used these two extensions during the reverse engineer-
ing phase in the fragment shader code to obtain this information.
Since OpenGL does not provide facilities to directly query exe-
cution state, we encode this information in the colors (R, G, B
values) of the output pixels of the shader program (since the color
of pixels is the only output of shader program). On the application
side, we read the color of each pixel from the framebuffer using
the glReadPixels() method and decode the colors to obtain the
encoded ThreadID, SM-ID and timing information of each pixel
(representing a thread).

We observed that two graphics applications whose workloads
do not exceed the GPU hardware resources can colocate concur-
rently. Only if a single kernel can exhaust the resources of an entire
GPU (extremely unlikely), the second kernel would have to wait.
Typically, a GPU thread is allocated to each pixel, and therefore, the
amount of resources reserved by each graphics kernel depends on
the size of the object being processed by the GPU. We observe that
a spy can co-locate with a rendering application even it renders
the full screen (Resolution 1920x1080) on our system. Because the
spy does not ask for many resources (number of threads, shared
memory, etc...), we also discover that it is able to share an SM with
the other application. In the next two subsections, we explain im-
plementation of two end to end attacks on the graphics stack of
GPU.

4.1 Attack I: Website Fingerprinting
The first attack implements website fingerprinting as a victim surfs
the Internet using a browser. We first present some background
about how web browsers render websites to understand which part
of the computation is exposed to our side channel attacks and then
describe the attack and evaluation.

Web Browser Display Processing: Current versions of web
browsers utilize the GPU to accelerate the rendering process. Chrome,
Firefox, and Internet Explorer all have hardware acceleration turned
on by default. GPUs are highly-efficient for graphics workload, free-
ing up the CPU for other tasks, and lowering the overall energy
consumption.

As an example, Chrome’s rendering processing path consists of
three interacting processes: the renderer process, the GPU process

and User Interface (UI) process. By default, Chrome does not use
the GPU to rasterize the web content (recall that rasterization is
the conversion from a geometric description of the image, to the
pixel description). In particular, the webpage content is rendered
by default in the renderer process on the CPU. Chrome uses shared
memory with the GPU process to facilitate fast exchange of data.
The GPU process reads the CPU-rasterized images of the web con-
tent and uploads it to the GPU memory. The GPU process next
issues OpenGL draw calls to draw several equal-sized quads, which
are each a rectangle containing the final bitmap image for the tile.
Finally, Chrome’s compositor composites all the images together
with the browser’s UI using the GPU.

We note that WebGL enables websites and browsers to use GPU
for whole rendering pipeline, making our attacks effective for all
websites that use WebGL [20]. Based on WebGL statistics [22] 98%
of visitors to a series of websites used WebGL enabled browsers
and [71] report that at least 53% of the top-100 sites, and 16.4% of
the top-10,000 sites use WebGL. For websites that do not use We-
bGL, Chrome does not use the GPU for rasterization by default, but
there is an option that users can set in the browser to enable GPU
rasterization.1 If hardware rasterization is enabled, all polygons are
rendered using OpenGL primitives (triangles and lines) on the GPU.
GPU accelerated drawing and rasterization can offer substantially
better performance, especially to render web pages that require
frequently updated portions of screen. GPU accelerated render-
ing allows for more seamless animations and better performance,
while freeing up the CPU. As a result, the Chromium Project’s GPU
Architecture Roadmap [5] seeks to enable GPU accelerated rasteri-
zation by default in Chrome in the near future. For our attacks we
assume that hardware rasterization is enabled but we also report
the experimental results without enabling GPU rasterization.

Launching the Attack: In this attack, a spy has to be active
while the GPU is being used as a user is browsing the Internet. In the
most likely attack scenario, a user application uses OpenGL from a
malicious user level App on a desktop, to create a spy to infer the
behavior of a browser process as it uses the GPU. However, a CUDA
(or OpenCL) spy is also possible assuming the corresponding driver
and software environment is installed on the system, enabling
Graphics-CUDA side channel attack described in Section 6.

Probing GPU Memory Allocation: The spy probes the mem-
ory API to obtain a trace of the memory allocation operations
carried out by the victim as it renders different objects on a web-
page visited by the user. For website fingerprinting, we leverage
machine learning algorithms to classify the traces to infer which
websites the victim is likely to have visited. The machine learning
classifier is trained on similar traces obtained for a set of the top
ranked websites according to Alexa [1].

We observe that every website has a unique trace in terms of
GPU memory utilization due to the different number of objects and
different sizes of objects being rendered. This signal is consistent
across loading the same website several times and is unaffected
by caching. The spy can reliably obtain all allocation events. To
illustrate the side channel signal, Figure 4 shows the GPU memory
1GPU rasterization can be enabled in chrome://flags for Chrome and in
about:config through setting the layers.acceleration.force-enabled option
in Firefox.

0 10 20 30 40 50
Memory Allocation Event

0

1000

2000

3000

4000

5000

S
iz

e
(K

B
)

Google.com

(a)

0 20 40 60 80 100 120
Memory Allocation Event

0

1000

2000

3000

4000

5000

S
iz

e
(K

B
)

Amazon.com

(b)

0 10 20 30 40 50
Memory Allocation Event

0

1000

2000

3000

4000

5000

S
iz

e
(K

B
)

Facebook.com

(c)

Figure 4: Website memory allocation on GPU (a) Google; (b) Amazon; (c) Facebook

allocation trace when Google, Amazon and Facebook websites are
being rendered. The x-axis shows the allocation events on the GPU
and the y-axis shows the size of each allocation.

We evaluate the memory API attack on the front pages of top
200 websites ranked by Alexa [1]. We collect data by running a spy
as a background process, automatically browsing each website 10
times and recording the GPU memory utilization trace for each
run.

Classification: We first experimented with using time-series
classification through dynamic time warping, but the training and
classification complexity was high. Instead, we construct features
from the full time series signal and use traditional machine learning
classification, which also achieved better accuracy. In particular, we
compute several statistical features, including minimum, maximum,
mean, standard deviation, slope, skew and kurtosis, for the series
of memory allocations collected through the side channel when
a website is loading. We selected these features because they are
easy to compute and capture the essence of the distribution of the
time series values. The skew and kurtosis capture the shape of
the distribution of the time series. Skew characterizes the degree
of asymmetry of values, while the Kurtosis measures the relative
peakness or flatness of the distribution relative to a normal distri-
bution [56]. We computed these features separately for the first
and the second half of the timeseries recorded for each website. We
further divided the data in each half into 3 equal segments, and
measured the slope and the average of each segment. We also added
the number of memory allocations for each website, referred as
“memallocated”, into the feature vector representing a website. This
process resulted in the feature set consisting of 37 features.

We then used these features to build the classification models
based on three standard machine learning algorithms, namely, K
Nearest Neighbor with 3 neighbors (KNN-3), Gaussian Naive Bayes
(NB), and Random Forest with 100 estimators (RF). We evaluate
the performance of these models to identify the best performing
classifier for our dataset. For this and all classification experiments
we validated the classification models using standard 10-fold cross-
validation method [44] (which separates the training and testing
data in every instance).

As performance measures of these classifiers, we computed the
precision (Prec), recall (Rec), and F-measure (FM) for machine learn-
ing classification models. Prec refers to the accuracy of the system
in rejecting the negative classes while the Rec is the accuracy of
the system in accepting positive classes. Low recall leads to high
rejection of positive instances (false negatives) while low precision
leads to high acceptance of negative instances (false positives). FM
represents a balance between precision and recall.

Table 2: Memory API based website fingerprinting perfor-
mance: F-measure (%), Precision (%), and Recall (%)

FM Prec Rec
µ (σ) µ (σ) µ (σ)

NB 83.1 (13.5) 86.7(20.0) 81.4 (13.5)
KNN3 84.6 (14.6) 85.7 (15.7) 84.6(14.6)
RF 89.9 (11.1) 90.4 (11.4) 90.0 (12.5)

Table 2 shows the classification results. The random forest clas-
sifier achieves around 90% accuracy for the front pages of Alexa
200 top websites. Note that if we launch our memory API attack
on browsers with default configuration (we do not enable GPU
rasterization on browser), we still obtain a precision of 59%.
Generalization across screen sizes: We considered full screen
browser window in our experiments. Given that different users may
have different size browser windows, we wanted to check if the
attack generalizes across window sizes. We discover that changing
the window size results in a similar signal with different amplitude
for most websites, and for responsive websites that have dynamic
content or do not scale with window size, there is some variance
in the memory allocation signal (e.g., some objects missing due to
smaller window). By training the ML model using full screen data
and testing with window size 1280*810 and 800*600 measurements,
we still see average accuracy of 82% and 63% respectively.We believe
performance can also be improved by training with measurements
at different window sizes.

0 100 200 300 400 500 600
Memory Allocation Event

0

2000

4000

6000

8000

10000

12000

14000

16000
S

iz
e

(K
B

)
 Signing-In

 Account Page

(a)

0 100 200 300 400 500
Memory Allocation Event

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
iz

e
(K

B
)

 Check&Saving

 Open an Account

(b)

Figure 5: User activity memory trace on Bank of America website (a) sign-in ; (b) Open account: Checking & Saving

4.2 Attack II: User Activity Tracking and
Keystroke Monitoring

We follow up on the website fingerprinting attack with a user activ-
ity tracking and keystroke monitoring attack. The first component
of the attack uses a side channel to track the user activity on the
web. We define user activity as the navigation to sub-level web-
pages after a user accesses the main page of a website. For example,
a user may sign in or sign up from the main page, or a user may
browse through the savings or checking account after logging into
the banking webpage. Figure 5 shows two examples of user activity
signatures.

We test this attack on two websites: facebook.com and banko-
famerica.com. In the facebook website, our goal is to detect whether
the user is signing in or signing up (creating account). In the banko-
famerica website, besides detecting signing in/opening an account,
we track several user activities to detect which type of account the
user intends to open, and other interactions with the website.

The intuition is that depending on the what buttons/links are
clicked on the homepage, different subsequent pages (signing in or
signing up) will be reached, creating a distinguishable time series
signal. Using the same features as the fingerprinting attack, we show
the classification performance for these two websites in Table 3.
The Random Forest classifier could identify the users’ web activities
accurately with the precision of 94.8%. The higher accuracy is to
be expected since the number of possible activities is small.

Table 3: Memory API based user activity detection perfor-
mance: F-measure (%), Precision (%), and Recall (%)

FM Prec Rec
µ (σ) µ (σ) µ (σ)

NB 93.5(7.9) 93.9 (9.9) 93.3 (7.0)
KNN3 90.8 (12.6) 92.6 (12.1) 91.1 (16.9)
RF 94.4 (8.6) 94.8 (8.8) 94.4 (10.1)

Password Textbox Identification and Keystroke Timing In-
ference: After detecting the victim’s visited website and a specific

page on the website, we can extract additional finer-grained infor-
mation on the user activity. By probing the GPU memory allocation
repeatedly, we can detect the pattern of user typing (which typically
causes re-rending of the textbox or similar structure animating the
characters). More specifically, from the same signal, it contains (1)
the size of memory allocation by the victim (with granularity of
128KB), which we use to identify whether it is a username/password
textbox (e.g., versus a bigger search textbox); (2) the inter-keystroke
time which allows us to extract the number of characters typed and
even infer the characters using timing analysis.

As an example, we describe the process to infer whether a user
is logging in by typing on the password textbox on facebook, as
well as to extract the inter-keystroke time of the password input.
Since the GPU is not used to render text in the current default
options, each time the user types a character, the character itself is
rendered by the CPU but the whole password textbox is uploaded to
GPU as a texture to be rasterized and composited. In this case, the
monitored available memory will decrease with a step of 1024KB
(the amount of GPUmemory needed to render the password textbox
on facebook), leaking the fact that a user is attempting to sign in
instead of signing up (where the sign-up textboxes are bigger and
require more GPU memory to render). Next, by monitoring the
exact time of available memory changes, we infer inter-keystroke
time. The observation is that while the sign-in box is active on the
website, waiting for user to input username and password, the box
is re-rendered at a refresh rate of around 600 ms (presumably due to
the blinking cursor). However, if a new character is typed, the box
is immediately re-rendered (resulting in a smaller interval). This
effect is shown in Figure 6, where the X-axis shows the observed nth
memory allocation events while the Y-axis shows the time interval
between the current allocation event and the previous one (most
of which are 600ms when a user is not typing). We can clearly see
six dips in the figure corresponding to the 6 user keystrokes, and
the time corresponding to these dips can be used to calculate inter-
keystroke time. For instance, as seen in Figure 6, at allocation event
8 (X-axis), there is the first keystroke, as the allocation happened
faster than the regular 600ms interval. At event 9, 600ms passes
without user input. Next, at event 10, the second keystroke occurred,

after another 200ms or so. So the inter-arrival time between the
first and second keystroke is then 600 + 200 = 800ms.

0 5 10 15 20 25
Memory Allocation Event

100

200

300

400

500

600

700

T
im

e
In

te
rv

al
s

(m
s)

Facebook sign-in

Figure 6: Timing GPUmemory allocations for a 6-character
password

-0.1 -0.05 0 0.05 0.1
Normalized error

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

P
ro

ba
bi

lit
y

de
ns

ity

Figure 7: Measurement error distribution of inter-keystroke
time

Prior work has shown that inter-arrival times of keystrokes can
leak information about the actually characters being typed by the
user [65]. To demonstrate that our attack can measure time with
sufficient precision to allow such timing analysis we compare the
measured inter-keystroke time to the ground truth by instrument-
ing the browser code to capture the true time of the key presses.
We first observe that there is a constant bias in the value corre-
sponding the overhead of measurement of around 10ms from a
separate experiment of several hundred key presses; we adjust all
the samples in the testing data by removing that constant amount.
We then compute the normalized error as the difference between
the GPU measured interval and the ground truth measured on the
CPU side. Figure 7 shows the probability density of the normal-
ized measurement error in an inter-keystroke timing measurement
with 250 key presses/timing samples. We observe that the timing is
extremely accurate, with mean of the observed error at less than

0.1% of the measurement period, with a standard deviation of 3.1%
(the standard deviation translates to about 6ms of absolute error on
average, with over 70% of the measurements having an error of less
than 4ms). Figure 8 shows the inter-keystroke timing for 25 pairs of
characters being typed on the facebook password bar (the character
a followed by each of b to z), measured through the side channel as
well as the ground truth. The side channel measurements (each of
which represents the average of 5 experiments) track the ground
truth accurately.

It is worth noting that the inter-keystroke time we extract can
be closely tied to specific textboxes and specific webpages, repre-
senting a practical and serious threat to user privacy in browsing
the web.

0 5 10 15 20 25
Sample key-pairs

100

150

200

250

300

350

400

In
te

r-
ke

ys
tr

ok
e

tim
e

(m
s)

 Ground Truth
GPU

Figure 8: Keystroke timing: Ground Truth vs. GPU

5 THREAT SCENARIO 2: CUDA SPY AND
CUDA VICTIM

To construct the side channel between two computing applications,
multiprogramming (the ability to run multiple programs at the
same time) on the GPUs needs to be supported. Modern GPUs
support multiprogramming through multiple hardware streams
with multi-kernel execution either within the same process, or
using a multi-process service (MPS) [9], which allows execution
of concurrent kernels from different processes on the GPU. MPS
is already supported on GPUs with hardware queues such as the
Hyper-Q support available on Kepler and newer microarchitecture
generations from Nvidia. Multi-process execution eliminates the
overhead of GPU context switching and improves the performance,
especially when the GPU is underutilized by a single process. The
trends in newer generations of GPUs is to expand support for multi-
programming; for example, the newest Volta architecture provides
hardware support for 32-concurrent address spaces/page tables on
the GPU [32]. In fact, all three GPUs we tested for the paper support
MPS.

We assume that the two applications are launched to the same
GPU. In most existing cloud setting, the GPU is shared among
applications on the same physical node, via I/O pass-through. Co-
location of attacker and victim VMs on the same cloud node is an
orthogonal problem investigated in prior works [24, 64]. Although

the model for sharing of GPUs for computational workloads on
cloud computing systems is still evolving, it can currently be sup-
ported by enabling the MPS control daemon which start-ups and
shut-downs the MPS server. The CUDA contexts (MPS clients) will
be connected to the MPS server by MPS control daemon and funnel
their work through the MPS server which issues the kernels concur-
rently to the GPU provided there is sufficient hardware resources
to support them.

Once colocation of the CUDA spy with the victim application is
established, similar to graphics-computing channel, a spy CUDA
application can measure contention from the victim application. For
example, it may use the GPU performance counters to extract some
information about concurrent computational workloads running
on GPU. We make sure that we have at least one thread block
on each SM to enable measurement of the performance counters
specific to each SM.We also have different threads (or warps) utilize
different hardware resources (like functional units, different caches
and global memory) in parallel to create contention in different
resource spaces.

5.1 Attack III: Neural Network Model Recovery
In this attack, our goal is to demonstrate side channels that can
be exploited between different computational applications. In this
attack scenario, a spy application, perhaps on a cloud, seeks to co-
locate on the same GPU as another application to infer its behavior.
For the victim, we choose a CUDA-implemented back-propagation
algorithm from the Rodinia application benchmark [28]; in such an
application, the internal structure of the neural network can be a
critical trade secret and the target of model extraction attacks [67].

We use prior results of reverse engineering the hardware sched-
ulers on GPUs [55] to enable a CUDA spy to co-locate with a CUDA
victim on each SM. We launch several hundred consecutive kernels
in spy to make sure we cover one whole victim kernel execution.
These numbers can be scaled up with the length of the victim. To
create contention in features tracked by hardware performance
counters, the spy accesses different sets of the cache and performs
different types of operations on functional units. When a victim
is running concurrently on the GPU and utilizing the shared re-
sources, depending on number of input layer size, the intensity and
pattern of contention on the cache, memory and functional units
is different over time, creating measurable leakage in the spy per-
formance counter measurements. Thus, the spy runs and collects
hardware performance counter values over time. We collect one
vector of performance counter values from each spy kernel.

DataCollection andClassification: We collect profiling traces
of the CUDA based spy over 100 kernel executions (at the end of
each, we measure the performance counter readings) while the
victim CUDA application performs the back-propagation algorithm
with different size of neural network input layer. We run the victim
with input layer size varying in the range between 64 and 65536
neurons collecting 10 samples for each input size.

Table 4 summarizes the most top ranked features selected in
the classification. As before, we segment the time-series signal and
create a super-feature based on the minimum, maximum, slope,
average, standard deviation, skew and kurtosis of each signal, and

train classifiers (with 10-fold cross validation to identify the best
classifiers for our data set).

Table 4: Top ranked counters for classification

GPU Performance Counter Features
Device memory write transactions skew, sd, mean, kurtosis
Fb_subp0/1_read_sector2 skew, kurtosis
Unified cache throughput(bytes/sec) skew, sd
Issue Stall skew, sd
L2_subp0/1/2/3_read/write_misses3 kurtosis

Table 5: Neural Network Detection Performance

FM % Prec % Rec %
µ (σ) µ (σ) µ (σ)

NB 80.0 (18.5) 81.0 (16.1) 80.0 (21.6)
KNN3 86.6 (6.6) 88.6 13.1) 86.3 (7.8)
RF 85.5 (9.2) 87.3 (16.3) 85.0 (5.3)

Table 5 reports the classification results for identifying the num-
ber of neurons through the side channel attack. Using KNN3, we are
able to identify the correct number of neurons with high accuracy
(precision of 88.6% and f-measure 86.6%), demonstrating that side
channel attacks on CUDA applications are possible.

6 THREAT SCENARIO III: CUDA SPY ON A
GRAPHICS VICTIM

Finally, we demonstrate threat scenario III where a spy from the
computational stack attacks a victim carrying out graphics opera-
tions. This attack is possible on a desktop or mobile device that has
CUDA or openCL installed, and requires only user privileges.

6.1 Reverse Engineering the Colocation
We conduct a number of experiments to reverse engineer the GPU
schedulers when there are both graphics and computing applica-
tions. In the first experiment, we launch a CUDA process and an
OpenGL process concurrently on the GPU. On the CUDA side, we
write an application to launch a very long CUDA kernel doing some
texture memory load operations in a loop and size the application
such that there is at least one thread block executing on each SM.
We measure the start time and stop time of the CUDA kernel, the
start and stop time of each iteration of operations for each thread,
and report the SM-ID on which the thread is executing.

On the OpenGL side, we launch a very long application and
probe the execution time and the SM-ID at each pixel (thread) as
described in Section 4. From the experiment above, we observed
that when the CUDA kernel starts execution, the graphics rendering
application is frozen until the CUDA kernel is terminated. So there
is no true concurrency between CUDA and OpenGL applications
on the GPU SMs. This behavior is different than multiple CUDA
applications (or multiple OpenGL applications) which we found to
concurrently share the GPU when the resources are sufficient.

In the next experiment, we launch many short CUDA kernels
from one application and keep the long running graphics rendering
2Number of read requests sent to sub-partition 0/1 of all the DRAM units
3Accumulated read/write misses from L2 cache for slice 0/1/2/3 for all the L2 cache
units

application. We use the previous methodology to extract the Threa-
dID, WarpID and timing information on both sides. We observe
interleaving execution (not concurrent execution) of CUDA kernels
and graphics operations on the GPU. For short CUDA kernels, we
achieve fine-grained interleaving (even at the granularity of a single
frame), enabling us to sample the performance counters or memory
API after every frame.

Although the same Graphics-Graphics attacks through the mem-
ory API can also be implemented through a CUDA spy, we demon-
strate a different attack that uses the performance counters. Our
attack strategy is that we launch a CUDA spy application includ-
ing many consecutive short CUDA kernels, in which the threads
access the texture memory addresses that are mapped to different
sets of texture caches (e.g. each SM on GTX 745 has a 12KB L1
texture cache with 4 sets and 24 ways). To make our attack fast
and to optimize the length of each CUDA kernel, we leverage the
inherent GPU parallelism to have each thread (or warp) access a
unique cache set, so all cache sets are accessed in parallel. Note that
number of launched CUDA kernels is selected such that the spy
execution time equals to the average rendering time of different
websites. The spy kernels collect GPU performance counter values.
Although the spy can only see its own performance counter events,
the victim execution affects these values due to contention; for
example, texture cache hits/misses and global memory events are
affected by contention.

6.2 Attack IV: Website fingerprinting from
CUDA Spy using performance counters

On a CUDA spy application, we launch a large number of consec-
utive CUDA kernels, each of which accesses different sets of the
texture cache using different warps simultaneously at each SM.
The intuition is to create contention for these cache sets which
are also used by the graphics rendering process. We run our spy
and collect performance counter values with each kernel using the
Nvidia profiling tools (which are user accessible) while the victim is
browsing webpages. Again, we use machine learning to identify the
fingerprint of each website using the different signatures observed
in the performance counters. We evaluate this attack on 200 top
websites on Alexa, and collect 10 samples for each website.

Classification: Among all performance counters, we started with
those related to global memory and L2 cache: through these re-
sources, a graphics application can affect the spy as textures are
fetched fromGPUmemory and composited/rasterized on the screen.
We used information gain of each feature to sort them according
to importance and selected the top 22 features to build a classifier
(shown in Table 6). We summarized the time series of each feature
as before by capturing the same statistical characteristics (min, max,
slope, average, skew and kurtosis independently on two halves of
the signal). Again, we trained three different machine learning
algorithms (NB, KNN3, and RF) and use 10-fold cross-validation.

Table7 reports the classification model based on the random
forest classifier has the highest precision among all the tested clas-
sifiers. The average precision of the model on correctly classifying
the websites is 93.0% (f-measure of 92.7%), which represents excel-
lent accuracy in website fingerprinting. We also ranked the features
based on their information gain and validated the capability of the

random forest based machine learning model and observed predic-
tion accuracy of 93.1% (with f-measure of 92.8%). This proves the
feasibility of the program counter based machine learning models
on identifying the websites running on the system. We obtained
similar classification performance both with and without the GPU
rasterization option. The classification precision on the default
browser configuration (without GPU rasterization) is about 91%.
Since still the texture should be fetched frommemory and has effect
on the texture cache and memory performance counters, while the
GPU is only used for composition.

Table 6: Top ranked performance counter features

GPU Performance Counter Features
Fb_subp0/1_read_sectors4 slope
Device memory read transactions slope, mean
L2_subp0/1/2/3_read_sector_misses5 slope, sd
L2_subp0/1/2/3_total_read_sector_queries6 slope, sd
Instruction issued skew, kurtosis

Table 7: Performance counter based website fingerprinting
performance: F-measure (%), Precision (%), and Recall (%)

FM Prec Rec
µ (σ) µ (σ) µ (σ)

NB 89.1 (10.8) 90.0 (10.8) 89.2 (11.3)
KNN3 90.6 (6.6) 91.0 (7.6) 90.6 (8.2)
RF 92.7 (5.9) 93.0 (6.1) 92.7 (8.4)

7 ATTACK MITIGATION
The attack may be mitigated completely by removing the shared re-
source APIs such as the memory API and the performance counters.
However, legitimate applications require the use of these interfaces
for uses such as tuning their performance. Thus, our goal is to
weaken the signal that the attacker gets, making it harder to infer
sensitive information.

We evaluate reducing the leakage by:
• Rate limiting: limit the rate an application can call the mem-
ory API. In the memory based attack, we can query the API
every 60 us (about 16000 times per second), leading to pre-
cise identification of memory events corresponding to every
object uploaded to the GPU. As we reduce the allowable
rate, individual allocation and deallocation events start to be
missed, reducing the information in the signal.

• Precision limiting: limit the granularity of the measurement.
For example, for the memory API, we set a granularity (e.g.,
4Mbytes) and report the memory allocation rounded up to
this granularity. Small size allocations can be missed, and
the precise size of allocations becomes unknown, weakening
the signal.

To evaluate the defenses, we collect data for the top 50 Alexa
websites and retrain the machine learning model with the defenses
in place. The classification precision decreases with rate limiting
4Number of read requests sent to sub-partition 0/1 of all the DRAM units
5Accumulated read sectors misses from L2 cache for slice 0/1/2/3 for all the L2 cache
units
6Accumulated read sector queries from L1 to L2 cache for slice 0/1/2/3 of all the L2
cache units

Baseline 1000/s 200/s 100/s 20/s 5/s 2/s

Query rate

0

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
pr

ec
is

io
n

(%
)

(a)

Baseline 512KB 1024KB 2048KB 4096KB 8192KB

Granularity

0

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
pr

ec
is

io
n

(%
)

(b)

Baseline 1000/s 200/s 100/s 20/s 5/s 2/s

Query rate

0

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
pr

ec
is

io
n

(%
)

(c)

Figure 9: Classification precision with (a) Rate limiting; (b) Granularity limiting; (c) Rate limiting at 4MB granularity

defense as shown in Figure 9a, but its success is limited (as 40%
precision can still be achieved under aggressive rate limit). We re-
peat the experiments approach as we reduce the precision of the
reported available memory. In our experiments, for full screen win-
dow size, the smallest and most memory allocations on GPU for
different websites are 128 KB. If we decrease the granularity and
bin all memory allocations to 512KB, 1024KB, 2048KB and 4096KB,
the precision of retrained model will be decreased as shown in
Figure 9b. By decreasing the granularity to 8192KB, the accuracy
will be significantly decreased to about 7%. By combining the two
mentioned approaches, using 4096KB granularity and limiting the
query rate we can further decrease the precision to almost 4%, as
demonstrated in Figure 9c. While reducing precision, we believe
these mitigations retain some information for legitimate applica-
tions to measure their performance, while preventing side channel
leakage across applications.

To further evaluate the rate limiting mitigation, we abuse the
memory API to implement a covert channel and investigate per-
formance of covert channel with and without the mitigation. To
construct the covert channel, a spy application queries the memory
API repeatedly to probe the available memory on GPU and detect
new memory allocations. On the other side, a trojan application al-
locates a constant amount of memory on GPU to send "1" and does
nothing to send "0". Without any mitigation in place, the achievable
covert channel bandwidth is as high as 4Kbps, while rate limiting
mitigation decreases the bandwidth to about 910bps, 98bps and
2bps for 1000/s, 100/s and 2/s cases respectively.

We believe similar defenses (limiting the rate, or granularity of
measurement) can mitigate performance counter side channels, but
we did not experimentally evaluate them. Although we evaluate
the defense only for the website fingerprinting attack, we believe
the effect will be similar for the other attacks, since they are also
based on the same leakage sources.

8 RELATEDWORK
We organize the discussion of related work into two different
groups: (1) Related work to our attacks; and (2) Covert and side
channel attacks on GPUs.

8.1 Related Work to Our Attacks
Different attack vectors have been proposed for website fingerprint-
ing. Panchenko et al. [60] and Hayes et al. [38] capture traffic gen-
erated via loading monitored web pages and feed the traces to ma-
chine learning based classification. Felten and Schneider [35] utilize
browser caching and construct a timing channel to infer the victim
visited websites. Jana and Shmatikov [39] use the procfs filesystem
in Linux to measure the memory footprints of the browser. Then
they detect the visited website by comparing the memory footprints
with the recorded ones. Weinberg et al. [70] presented a user inter-
action attack (victim’s action on website leaks its browsing history)
and a timing side channel attack for browser history sniffing.

Some of the principles used in our attack have also been lever-
aged by other researchers. Goethem et al. [68] and Bortz et al. [26]
propose cross-site timing attacks on web browsers to estimate the
size of cross-origin resources or provide user information leakage
from other site. [66] and [45] propose timing channels bymeasuring
the time elapsed between frames using a JavaScript API. Kotcher
et al. [45] found that after applying CSS filter to framed document,
its rendering time becomes related to its content. Similarly, Stone
et al. [66] either detect the redraw events or measure the time of
applying the SVG filter to perform history sniffing. These attacks
are difficult currently since most browsers have reduced the timer
resolution eliminating the timing signal used by the attacks. Oren
et al. [59] implement a last level cache prime+probe side channel in
JavaScript. More recently, Vila and Kopf [69] present a side channel
attack on shared event loop in which the attacker enqueues several
short tasks, and records the time these tasks are scheduled. The time
difference between two consecutive tasks reveals the existence of
the victim and duration of its task. Gulmezoglu et al. [37] proposed
a side channel on per-core/per-process CPU hardware performance
counters (which are limited in number). Zhang et al. [72] identify
several iOS APIs as attack vectors to implement cross-app informa-
tion leakage to extract private user information, detecting installed
apps, etc. All of these attack models are proposed at browser/OS
level or CPU hardware level, providing different attack vector than
our attacks which target the GPU hardware to extract sensitive
information through side channels.

Table 8 compares the classification accuracy of our memory
based and performance counter based attacks to other previously

Table 8: Classification accuracy comparison of website-fingerprinting attacks on Alexa top websites

Attack Vector Accuracy (%) # of Websites Browser
Mem-based attack side channel (GPU memory API) 90.4 200 Chrome
PC-based attack side channel (GPU performance counters) 93 200 Chrome
[60] side channel (traffic analysis) 92.52 100 Tor
[39] side channel (memory footprint via procfs) 78 100 Chrome
[59] side channel (LLC) 82.1 (88.6) 8 Safari (Tor)
[69] side channel (shared event loop) 76.7 500 Chrome
[37] side channel (CPU performance counters) 84 30 Chrome
[72] side channel (iOS APIs) 68.5 100 Safari
[46] leftover memory on GPU 95.4 100 Chrome

published website-fringerprinting attacks. All the attacks use ma-
chine learning methods to classify collected data from Alexa top
websites. All attacks, other than [46] which uses leftover mem-
ory, exploit side channel leakage. Although there are differences in
terms of the number of websites considered, and the browser that
is attacked, our attacks are among the most accurate.

Leakage through the keystroke timing pattern is also a known
effect which has been exploited as a user authentication mech-
anism [30, 53, 61]. Keystroke timing has also been used to com-
promise/weaken passwords [65] or compromise user privacy [27].
Lipp et al. [47] propose a keystroke interrupt-timing attack imple-
mented in JavaScript using a counter as a high resolution timer.
Our attack provides an accurate new leakage of keystroke timing to
unauthorized users enabling them to implement such attacks. We
demonstrated that GPU side channels threaten not only graphics
applications, but also computational workloads running on GPU.

A number of attacks have been published targeting GPUs or
their software stack on the CPU [21, 71, 74]. [46, 51, 63, 73] propose
information leakage due to left-over memory from processes that
recently terminated (not side channel). This class of vulnerability
can be closed by clearing memory before it gets reallocated to a
different application.

8.2 Side Channel Attacks on GPUs
Jiang et al. [40] conduct a timing attack on a CUDA AES imple-
mentation. The attack exploits the difference in timing between
addresses generated by different threads as they access memory: if
the addresses are coalesced such that they refer to the same mem-
ory block, they are much faster than uncoalesced accesses which
require several expensive memory operations. Thus, in a GPU im-
plemented cryptographic application, the key affects the address
pattern accessed by the threads, and therefore the observed run
time of the encryption algorithm, opening the door for a timing
attack where the encryption time is used to infer the likely key. The
same group [41] presented another timing attack on table-based
AES encryption. They found correlation between execution time of
one table lookup of a warp and a number of bank conflicts gener-
ated by threads within the warp. The attacks require the spy to be
able to trigger the launch of the victim kernel. The self-contention
exploited in the first attack [40] cannot be used for a side-channel
between two concurrent applications. Moreover, these attacks are
only used to exploit a CUDA victim. Luo et al. study a power side
channel attack on AES encryption executing on a GPU [49]. This
attack requires physical access to the GPU to measure the power.

Frigo et al. [36] use WebGL timing APIs to implement row-
hammer attack on memory. They use a timing channel to find
contiguous area of physical memory rather than extracting appli-
cation state like our attack, totally different threat model.

Naghibijouybari et al. [55] construct three types of covert chan-
nels between two colluding CUDA applications. We use their results
for reverse engineering the co-location of CUDA workloads in our
third attack on the neural network application. The fine-grained
timing information that they use in a covert channel by enforcing
regular contention patterns is too noisy to exploit for side-channel
attacks due to the large number of active threads.

This work is the first that explores side channels due to con-
tention between two GPU applications. It is also the only GPU
attack to compromise graphics applications; prior works consider
CUDA applications only. Many side channel attacks have been pro-
posed on CPUs; our memory API attack bears similarity to side
channel attacks through procfs [29, 39]. Our defense mechanism
is in the spirit of other side channel defenses that limit the leakage
by interfering with the measurement APIs [50, 72].

9 CONCLUDING REMARKS
In this paper, we explore side channel attacks among applications
concurrently using the Graphical Processing Unit (GPU). We re-
verse engineer how applications share of the GPU for different
threat scenarios and also identify different ways to measure leakage.
We demonstrate a series of end-to-end GPU side channel attacks
covering the different threat scenarios on both graphics and compu-
tational stacks, as well as across them. The first attack implements
website fingerprinting through GPU memory utilization API or
GPU performance counters. We extend this attack to track user
activities as they interact with a website or type characters on a
keyboard. We can accurately track re-rendering events on GPU
and measure the timing of keystrokes as they type characters in
a textbox (e.g., a password box), making it possible to carry out
keystroke timing analysis to infer the characters being typed by
the user.

A second attack uses a CUDA spy to infer the internal struc-
ture of a neural network application from the Rodinia benchmark,
demonstrating that these attacks are also dangerous on the cloud.
We believe that this class of attacks represents a substantial new
threat targeting sensitive GPU-accelerated computational (e.g. deep
neural networks) and graphics (e.g. web browsers) workloads.

Our attacks demonstrate that side channel vulnerabilities are
not restricted to the CPU. Any shared component within a system

can leak information as contention arises between applications that
share a resource. Given the wide-spread use of GPUs, we believe
that they are an especially important component to secure.

The paper also considered possible defenses. We proposed a
mitigation based on limiting the rate of access to the APIs that leak
the side channel information. Alternatively (or in combination),
we can reduce the precision of this information. We showed that
such defenses substantially reduce the effectiveness of the attack,
to the point where the attacks are no longer effective. Finding the
right balance between utility and side channel leakage for general
applications is an interesting tradeoff to study for this class of
mitigations.

ACKNOWLEDGEMENT
The authors would like to thank the anonymous reviewers for their
valuable comments and helpful suggestions. The work is supported
by the National Science Foundation under Grant No.:CNS-1619450.

REFERENCES
[1] 2018. Alexa Top Sites. https://www.alexa.com/topsites.
[2] 2018. ARB Extenstion, Khronos Group. https://www.khronos.org/registry/

OpenGL/extensions/ARB/ARB_shader_clock.txt.
[3] 2018. CUDA-enabled GPUs, Nvidia. https://developer.nvidia.com/cuda-gpus.
[4] 2018. CUDA, Nvidia. https://developer.nvidia.com/cuda-zone/.
[5] 2018. GPU Architecture Roadmap, The Chromium Projects.

https://www.chromium.org/developers/design-documents/
gpu-accelerated-compositing-in-chrome/gpu-architecture-roadmap.

[6] 2018. GPU Cloud Computing, Nvidia. https://www.nvidia.com/en-us/
data-center/gpu-cloud-computing/.

[7] 2018. GPUPerfAPI. https://gpuopen.com/gaming-product/gpuperfapi/.
[8] 2018. Linux Graphics Debugger, Nvidia. https://developer.nvidia.com/

linux-graphics-debugger.
[9] 2018. Multi-Process Service, Nvidia. https://docs.nvidia.com/deploy/pdf/CUDA_

Multi_Process_Service_Overview.pdf.
[10] 2018. NVIDIA Profiler User’s Guide. http://docs.nvidia.com/cuda/

profiler-users-guide/index.html.
[11] 2018. NVIDIA’s Next Generation CUDA Compute Architecture:

Kepler GK110. https://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[12] 2018. OpenCL Extenstion, Khronos Group. https://www.khronos.org/registry/
OpenCL/extensions/amd/cl_amd_device_attribute_query.txt.

[13] 2018. OpenCL Overview, Khronos Group. https://www.khronos.org/opencl/.
[14] 2018. OpenGL Extension, ATI. https://www.khronos.org/registry/OpenGL/

extensions/ATI/ATI_meminfo.txt.
[15] 2018. OpenGL Extenstion, Khronos Group. https://www.khronos.org/registry/

OpenGL/extensions/NVX/NVX_gpu_memory_info.txt.
[16] 2018. OpenGL Extenstion, Khronos Group. https://www.khronos.org/registry/

OpenGL/extensions/NV/NV_shader_thread_group.txt.
[17] 2018. OpenGL Overview, Khronos Group. https://www.khronos.org/opengl/.
[18] 2018. Tegra Graphics Debugger, Nvidia. https://developer.nvidia.com/

tegra-graphics-debugger.
[19] 2018. Vulkan Overview, Khronos Group. https://www.khronos.org/vulkan/.
[20] 2018. WebGL Overview, Khronos Group. https://www.khronos.org/webgl/.
[21] 2018. WebGL Security, Khronos Group. https://www.khronos.org/webgl/

security/.
[22] 2018. WebGL Statistics. http://webglstats.com/.
[23] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results on

Instruction Cache Attacks. In Proceedings of the 12th International Conference
on Cryptographic Hardware and Embedded Systems (CHES’10). Springer-Verlag,
Berlin, Heidelberg, 110–124. http://dl.acm.org/citation.cfm?id=1881511.1881522

[24] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V. Krishnamurthy, Thomas La
Porta, Patrick McDaniel, and Lisa Marvel. 2017. Malicious co-residency on the
cloud: Attacks and defense. In IEEE Conference on Computer Communications
(INFOCOM’17). 1–9. https://doi.org/10.1109/INFOCOM.2017.8056951

[25] Andrea Di Biagio, Alessandro Barenghi, Giovanni Agosta, and Gerardo Pelosi.
2009. Design of a Parallel AES for Graphic Hardware using the CUDA framework.
In IEEE International Symposium on Parallel & Distributed Processing (IPDPS’09).
IEEE, Rome Italy. https://doi.org/0.1109/IPDPS.2009.5161242

[26] Andrew Bortz and Dan Boneh. 2007. Exposing Private Information by Timing
Web Applications. In Proceedings of the 16th International Conference on World

Wide Web (WWW ’07). ACM, New York, NY, USA, 621–628. https://doi.org/10.
1145/1242572.1242656

[27] Prima Chairunnanda, Num Pham, and Urs Hengartner. 2011. Privacy: Gone with
the Typing! IdentifyingWeb Users by Their Typing Patterns. In IEEE International
Conference on Privacy, Security, Risk and Trust. 974–980.

[28] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC ’09). 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[29] Qi Alfred Chen, Zhiyun Qian, and ZhuoqingMorley Mao. 2014. Peeking into Your
App without Actually Seeing It: UI State Inference and Novel Android Attacks.
In USENIX Security Symposium. 1037–1052. https://dl.acm.org/citation.cfm?id=
2671291

[30] N. L. Clarke and S. M. Furnell. 2006. Authenticating mobile phone users using
keystroke analysis. International Journal on Information Security 6 (Dec. 2006).
https://dl.acm.org/citation.cfm?id=1201686

[31] Renan Correa Detomini, Renata Spolon Lobato, Roberta Spolon, and Marcos An-
tonio Cavenaghi. 2011. Using GPU to exploit parallelism on cryptography. In
6th Iberian Conference on Information Systems and Technologies (CISTI’11). IEEE,
Chaves Portugal. http://ieeexplore.ieee.org/document/5974171

[32] Luke Durant. 2017. Inside Volta. Presentation at GPU-Tech. Accessed on-
line Feb. 2018 from http://on-demand.gputechconf.com/gtc/2017/presentation/
s7798-luke-durant-inside-volta.pdf.

[33] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking Branch Predictors to Bypass ASLR. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-49). 1–13.

[34] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. In Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’18).
ACM, New York, NY, USA, 693–707. https://doi.org/10.1145/3173162.3173204

[35] EdwardW. Felten andMichael A. Schneider. 2000. Timing Attacks onWeb Privacy.
In Proceedings of the 7th ACM Conference on Computer and Communications
Security (CCS ’00). ACM, New York, NY, USA, 25–32. https://doi.org/10.1145/
352600.352606

[36] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand
Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In Proceed-
ings of IEEE Symposium on Security and Privacy. 357–372. https://doi.org/10.
1109/SP.2018.00022

[37] Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar. 2017.
PerfWeb: How to Violate Web Privacy with Hardware Performance Events. In
Computer Security – ESORICS 2017, Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes (Eds.). Springer International Publishing, Cham, 80–97.

[38] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In USENIX Security Symposium. 1187–1203.

[39] Suman Jana and Vitaly Shmatikov. 2012. Memento: Learning Secrets from Process
Footprints. In Proceedings of the 2012 IEEE Symposium on Security and Privacy
(SP ’12). IEEE Computer Society, Washington, DC, USA, 143–157. https://doi.
org/10.1109/SP.2012.19

[40] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. 2016. A complete key recovery
timing attack on a GPU. In IEEE International Symposium on High Performance
Computer Architecture (HPCA’16). IEEE, Barcelona Spain, 394–405. https://doi.
org/10.1109/HPCA.2016.7446081

[41] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. 2017. A Novel Side-Channel Timing
Attack on GPUs. In Proceedings of the on Great Lakes Symposium on VLSI (VLSI’17).
167–172. https://doi.org/10.1145/3060403.3060462

[42] Mehmet Kayaalp, Khaled N Khasawneh, Hodjat Asghari Esfeden, Jesse Elwell,
Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel. 2017. RIC: Relaxed
Inclusion Caches for Mitigating LLC Side-Channel Attacks. In Proceedings of the
54th Annual Design Automation Conference (DAC). https://dl.acm.org/citation.
cfm?id=3062313

[43] Mehmet Kayaalp, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Aamer Jaleel.
2016. A high-resolution side-channel attack on last-level cache. In 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.
1145/2897937.2897962

[44] Ron Kohavi. 1995. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. In International Joint Conference on Artificial Intelligence
(IJCAI), Vol. 14. 1137–1145. https://dl.acm.org/citation.cfm?id=1643047

[45] Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. 2013. Cross-
origin pixel stealing: timing attacks using CSS filters. In ACM Conference on
Computer and Communications Security. 1055–1062. https://doi.org/10.1145/
2508859.2516712

[46] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. 2014. Stealing Webpage
Rendered on your Browser by Exploiting GPU Vulnerabilities. In IEEE Symposium
on Security and Privacy (SPI’14). IEEE, San Jose CA USA, 19–33. https://doi.org/
10.1109/SP.2014.9

[47] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice,
and Stefan Mangard. 2017. Practical Keystroke Timing Attacks in Sandboxed

https://www.alexa.com/topsites
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_clock.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_clock.txt
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-zone/
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome/gpu-architecture-roadmap
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome/gpu-architecture-roadmap
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/
https://gpuopen.com/gaming-product/gpuperfapi/
https://developer.nvidia.com/linux-graphics-debugger
https://developer.nvidia.com/linux-graphics-debugger
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.khronos.org/registry/OpenCL/extensions/amd/cl_amd_device_attribute_query.txt
https://www.khronos.org/registry/OpenCL/extensions/amd/cl_amd_device_attribute_query.txt
https://www.khronos.org/opencl/
https://www.khronos.org/registry/OpenGL/extensions/ATI/ATI_meminfo.txt
https://www.khronos.org/registry/OpenGL/extensions/ATI/ATI_meminfo.txt
https://www.khronos.org/registry/OpenGL/extensions/NVX/NVX_gpu_memory_info.txt
https://www.khronos.org/registry/OpenGL/extensions/NVX/NVX_gpu_memory_info.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_thread_group.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_thread_group.txt
https://www.khronos.org/opengl/
https://developer.nvidia.com/tegra-graphics-debugger
https://developer.nvidia.com/tegra-graphics-debugger
https://www.khronos.org/vulkan/
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/security/
https://www.khronos.org/webgl/security/
http://webglstats.com/
http://dl.acm.org/citation.cfm?id=1881511.1881522
https://doi.org/10.1109/INFOCOM.2017.8056951
https://doi.org/0.1109/IPDPS.2009.5161242
https://doi.org/10.1145/1242572.1242656
https://doi.org/10.1145/1242572.1242656
https://doi.org/10.1109/IISWC.2009.5306797
https://dl.acm.org/citation.cfm?id=2671291
https://dl.acm.org/citation.cfm?id=2671291
https://dl.acm.org/citation.cfm?id=1201686
http://ieeexplore.ieee.org/document/5974171
http://on-demand.gputechconf.com/gtc/2017/presentation/s7798-luke-durant-inside-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7798-luke-durant-inside-volta.pdf
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1109/SP.2018.00022
https://doi.org/10.1109/SP.2018.00022
https://doi.org/10.1109/SP.2012.19
https://doi.org/10.1109/SP.2012.19
https://doi.org/10.1109/HPCA.2016.7446081
https://doi.org/10.1109/HPCA.2016.7446081
https://doi.org/10.1145/3060403.3060462
https://dl.acm.org/citation.cfm?id=3062313
https://dl.acm.org/citation.cfm?id=3062313
https://doi.org/10.1145/2897937.2897962
https://doi.org/10.1145/2897937.2897962
https://dl.acm.org/citation.cfm?id=1643047
https://doi.org/10.1145/2508859.2516712
https://doi.org/10.1145/2508859.2516712
https://doi.org/10.1109/SP.2014.9
https://doi.org/10.1109/SP.2014.9

JavaScript. InComputer Security – ESORICS 2017, SimonN. Foley, Dieter Gollmann,
and Einar Snekkenes (Eds.). Springer International Publishing, Cham, 191–209.
https://link.springer.com/chapter/10.1007/978-3-319-66399-9_11

[48] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Security and
Privacy (SP’15). IEEE, San Jose, CA, USA. https://doi.org/10.1109/SP.2015.43

[49] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli. 2015. Side-
Channel Power Analysis of a GPUAES Implementation. In 33rd IEEE International
Conference on Computer Design (ICCD’15). https://doi.org/10.1109/ICCD.2015.
7357115

[50] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In 39th Annual International Symposium on Computer Ar-
chitecture (ISCA’12). Portland, OR, USA, 118–129. https://doi.org/10.1109/ISCA.
2012.6237011

[51] Clémentine Maurice, Christoph Neumann, Olivier Heen, and AurÃľlien Fran-
cillon. 2014. Confidentiality Issues on a GPU in a Virtualized Environment. In
International Conference on Financial Cryptography and Data Security. 119–135.
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_9

[52] Wen mei Hwu. 2011. GPU Computing Gems (1st. ed.). Elsevier.
[53] Fabian Monrose and Aviel Rubin. 1997. Authentication via keystroke dynamics.

In ACM International Conference on Computer and Communication Security (CCS).
[54] Hoda Naghibijouybari and Nael Abu-Ghazaleh. 2016. Covert Channels on

GPGPUs. IEEE Computer Architecture Letters 16, 1 (2016), 22–25. https:
//ieeexplore.ieee.org/document/7509650/

[55] Hoda Naghibijouybari, Khaled Khasawneh, and Nael Abu-Ghazaleh. 2017. Con-
structing and Characterizing Covert Channels on GPUs. In Proc. International
Symposium on Microarchitecture (MICRO). 354–366.

[56] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. 2001. Feature-based
classification of time-series data. International Journal of Computer Research 10,
3 (2001), 49–61. https://dl.acm.org/citation.cfm?id=766918

[57] Naoki Nishikawa, Keisuke Iwai, and Takakazu Kurokawa. 2011. High-
performance symmetric block ciphers on CUDA. In Second International Con-
ference on Networking and Computing (ICNC’11). Osaka Japan, 221–227. https:
//doi.org/10.1109/ICNC.2011.40

[58] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. 2015. Bor-
der Control: Sandboxing Accelerators. In 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’15). Waikiki HI USA, 470–481. https:
//doi.org/10.1145/2830772.2830819

[59] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and Their Implications. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security (CCS ’15). ACM, New York, NY, USA,
1406–1418. https://doi.org/10.1145/2810103.2813708

[60] Andriy panchenko, Fabian Lanze, Andreas Zinnen,Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. 2016. Website Fingerprinting at Internet Scale.
In 23rd Internet Society (ISOC) Network and Distributed System Security Symposium
(NDSS 2016). https://doi.org/10.14722/ndss.2016.23477

[61] Alen Peacock, Xian Ke, and Matthew Wilkerson. 2004. Typing patterns: A key to
user identification. IEEE Security and Privacy 2 (2004), 40–47.

[62] Colin Percival. 2005. Cache missing for fun and profit. In BSDCan. https:
//doi.org/10.1.1.144.872

[63] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. 2016. CUDA leaks:
Information Leakage in GPU Architecture. ACM Transactions on Embedded
Computing Systems (TECS) 15, 1 (2016). https://doi.org/10.1145/2801153

[64] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proc. ACM conference on Computer and communications secu-
rity (CCS’09). Chicago, Illinois, USA, 199–212. https://doi.org/10.1145/1653662.
1653687

[65] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing analysis
of keystrokes and timing attacks on SSH. In Proc. USENIX Security Symposium.

[66] Paul Stone. 2013. Pixel Perfect Timing Attacks with
HTML5. https://www.contextis.com/resources/white-papers/
pixel-perfect-timing-attacks-with-html5.

[67] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In 25th USENIX
Security Symposium (USENIX Security). 601–618.

[68] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is Still
Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM,
New York, NY, USA, 1382–1393. https://doi.org/10.1145/2810103.2813632

[69] Pepe Vila and Boris Kopf. 2017. Loophole: Timing Attacks on Shared Event Loops
in Chrome. In 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, Vancouver, BC, 849–864. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/vila

[70] ZacharyWeinberg, Eric Y. Chen, Pavithra Ramesh Jayaraman, and Collin Jackson.
2011. I Still Know What You Visited Last Summer: Leaking Browsing History
via User Interaction and Side Channel Attacks. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy (SP ’11). IEEE Computer Society, Washington,
DC, USA, 147–161. https://doi.org/10.1109/SP.2011.23

[71] Zhihao Yao, Zongheng Ma, Ardalan Sani, and Aparna Chandramowlishwaran.
2018. Sugar: Secure GPU Acceleration in Web Browsers. In Proc. International
Conference on Architecture Support for Operating Systems and Programming Lan-
guages (ASPLOS).

[72] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yinqian Zhang, and XiaoFeng
Wang. 2018. OS-level Side Channels without Procfs: Exploring Cross-App In-
formation Leakage on iOS. In Proceedings of the Symposium on Network and
Distributed System Security.

[73] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang, and Rui Liu.
2017. Vulnerable GPU Memory Management: Towards Recovering Raw Data
from GPU. In Proceedings on Privacy Enhancing Technologies, Vol. 2017 (2). 57–73.
https://doi.org/10.1515/popets-2017-0016

[74] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett Witchel, and Mark
Silberstein. 2017. Understanding the Security of Discrete GPUs. In Proceedings of
the General Purpose GPUs (GPGPU’10). Austin TX USA, 1–11. https://doi.org/0.
1145/3038228.3038233

https://link.springer.com/chapter/10.1007/978-3-319-66399-9_11
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/ICCD.2015.7357115
https://doi.org/10.1109/ICCD.2015.7357115
https://doi.org/10.1109/ISCA.2012.6237011
https://doi.org/10.1109/ISCA.2012.6237011
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_9
https://ieeexplore.ieee.org/document/7509650/
https://ieeexplore.ieee.org/document/7509650/
https://dl.acm.org/citation.cfm?id=766918
https://doi.org/10.1109/ICNC.2011.40
https://doi.org/10.1109/ICNC.2011.40
https://doi.org/10.1145/2830772.2830819
https://doi.org/10.1145/2830772.2830819
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.14722/ndss.2016.23477
https://doi.org/10.1.1.144.872
https://doi.org/10.1.1.144.872
https://doi.org/10.1145/2801153
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
https://www.contextis.com/resources/white-papers/pixel-perfect-timing-attacks-with-html5
https://www.contextis.com/resources/white-papers/pixel-perfect-timing-attacks-with-html5
https://doi.org/10.1145/2810103.2813632
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/vila
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/vila
https://doi.org/10.1109/SP.2011.23
https://doi.org/10.1515/popets-2017-0016
https://doi.org/0.1145/3038228.3038233
https://doi.org/0.1145/3038228.3038233

	Abstract
	1 Introduction
	2 GPU Programming Interfaces and Architecture
	2.1 GPU Programming Interfaces
	2.2 GPU Architecture Overview

	3 Attack scenarios and leakage sources
	3.1 Attack Scenarios
	3.2 Available Leakage Vectors on GPUs

	4 Threat scenario 1: graphics spy and graphics victim
	4.1 Attack I: Website Fingerprinting
	4.2 Attack II: User Activity Tracking and Keystroke Monitoring

	5 Threat Scenario 2: CUDA Spy and CUDA victim
	5.1 Attack III: Neural Network Model Recovery

	6 Threat Scenario III: CUDA spy on a Graphics victim
	6.1 Reverse Engineering the Colocation
	6.2 Attack IV: Website fingerprinting from CUDA Spy using performance counters

	7 Attack Mitigation
	8 Related Work
	8.1 Related Work to Our Attacks
	8.2 Side Channel Attacks on GPUs

	9 Concluding Remarks
	References

