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Performance degradation:

14% for the make process!
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 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux 
scheduler (CFS)!

 This talk: presentation of the CFS scheduler + issues we found + discussion
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Disclaimer: this is a motivation paper!

Don’t expect a solved problem 
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Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads 

sorted by runtime

When thread done running 

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer) 

Cores: next task from runqueue

In practice: cannot work with single

runqueue because of contention!



CFS: IN PRACTICE

 One runqueue per core to avoid contention
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whole CPU just to sleep
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CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

 Since there can be many cores: hierarchical approach!
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Load 1 = Load 2 : the scheduler thinks the load is balanced!
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MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

 Can break load balancing:
whole application running on a
single node!

 Bug #3: disabling/reenabling a core breaks the hierarchy completely
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MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

 Intuition: periodic load balancing global, wakeup balancing local

 One makes mistakes the other cannot fix!
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Performance degradation: 13-24%! 

Bug: many idle cores!
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 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,
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 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

↑ Fundamental issue here... added with locality optimization for multicore architectures

CFS was simple...

then became complex/broken when needed to support new hardware/uses!
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DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses! 

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

 Performance regression

 Usually done with 1 app on a machine to avoid interactions: insufficient coverage

 Model checking, formal proofs

 Complex, parallel code: so far, nobody knows how to do it...
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DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

 Our experience: exact traces are *necessary* to understand complex scheduling problems

 Custom visual tool show all scheduling events / migrations / considered cores / load...
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DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)
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 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

 Efficient redesign of the scheduler possible?

 We envision scheduler with *isolated* modules each trying to optimize one variable...

 How do you make them all work together? Complex, open problem!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16



CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16



CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16



CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16



CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16



CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing/performance regression/proofs/...?

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16



CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful
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Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing/performance regression/proofs/...?

Your next paper 
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