
THE LINUX SCHEDULER: A DECADE OF WASTED CORES 1/16

Jean-Pierre Lozi

jplozi@unice.fr

Baptiste Lepers

baptiste.lepers@epfl.ch

Fabien Gaud

me@fabiengaud.net

Alexandra Fedorova

sasha@ece.ubc.ca

Justin Funston

jfunston@ece.ubc.ca

Vivien Quéma

vivien.quema@imag.fr

THE LINUX SCHEDULER:
A DECADE OF WASTED CORES

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

 Two NUMA nodes with
many idle cores (white)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

 Two NUMA nodes with
many idle cores (white)

 Other NUMA nodes with many
overloaded cores (orange, red)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

 Two NUMA nodes with
many idle cores (white)

 Other NUMA nodes with many
overloaded cores (orange, red)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

Performance degradation:

14% for the make process!

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

 This talk: presentation of the CFS scheduler + issues we found + discussion

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

 This talk: presentation of the CFS scheduler + issues we found + discussion

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

Disclaimer: this is a motivation paper!

Don’t expect a solved problem

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer)

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer)

Cores: next task from runqueue

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer)

Cores: next task from runqueue

In practice: cannot work with single

runqueue because of contention!

CFS: IN PRACTICE

 One runqueue per core to avoid contention

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

 Since there can be many cores: hierarchical approach!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000
Balanced!

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000
Balanced!

L=2000 L=4000 L=3000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000

Balanced! Balanced!

AVG(L)=3500
L=2000

AVG(L)=2500
L=4000 L=3000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000

AVG(L)=3000
L=3000 L=3000L=3000

AVG(L)=3000
CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000L=1000

AVG(L)=3000
L=3000 L=3000L=3000

AVG(L)=3000
CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000L=1000

Balanced!

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000 L=1000

L=1000 L=1000

L=1000

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000 L=1000

L=1000 L=1000

L=1000

50% of a

core

150%

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000 L=1000

L=1000 L=1000

L=1000

50% of a

core

150%

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=250 L=250

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

L=250 L=250

L=250

L=250

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

100% of a

core

100% of a

core

L=250 L=250

L=250

L=250

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

100% of a

core

100% of a

core

L=250 L=250

L=250

L=250

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

S
e
ss

io
n
 (

tt
y

)
1

S
e
ss

io
n
 (

tt
y

)
2

S
e
ss

io
n
 (

tt
y

)
2

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced! Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500

L=250

L=250

L=250

L=250

Balanced! Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=250

L=250

L=250

L=250

Balanced! Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=250

L=250

L=250

L=250

Balanced! Balanced!

!!!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=250

L=250

L=250

L=250

Balanced! Balanced!

!!!

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

Load 1 = avg(R thread

with high load + a few

make threads with low

load)

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

Load 2 = avg(many

make threads with low

load)

Load 1 = avg(R thread

with high load + a few

make threads with low

load)

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

Load 2 = avg(many

make threads with low

load)

Load 1 = avg(R thread

with high load + a few

make threads with low

load)

Load 1 = Load 2 : the scheduler thinks the load is balanced!

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

 Can break load balancing:
whole application running on a
single node!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

 Can break load balancing:
whole application running on a
single node!

 Bug #3: disabling/reenabling a core breaks the hierarchy completely

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

 Intuition: periodic load balancing global, wakeup balancing local

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

 Intuition: periodic load balancing global, wakeup balancing local

 One makes mistakes the other cannot fix!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

 Intuition: periodic load balancing global, wakeup balancing local

 One makes mistakes the other cannot fix!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16

Performance degradation: 13-24%!

Bug: many idle cores!

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

 threads among groups of cores in a hierarchy.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

 threads among groups of cores in a hierarchy.

 In addition to this, threads balance the load by selecting core where to wake up.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

 In addition to this, threads balance the load by selecting core where to wake up.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

↑ Fundamental issue here... added with locality optimization for multicore architectures

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

↑ Fundamental issue here... added with locality optimization for multicore architectures

CFS was simple...

then became complex/broken when needed to support new hardware/uses!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

 Performance regression

 Usually done with 1 app on a machine to avoid interactions: insufficient coverage

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

 Performance regression

 Usually done with 1 app on a machine to avoid interactions: insufficient coverage

 Model checking, formal proofs

 Complex, parallel code: so far, nobody knows how to do it...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

 Our experience: exact traces are *necessary* to understand complex scheduling problems

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

 Our experience: exact traces are *necessary* to understand complex scheduling problems

 Custom visual tool show all scheduling events / migrations / considered cores / load...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

 Efficient redesign of the scheduler possible?

 We envision scheduler with *isolated* modules each trying to optimize one variable...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

 Efficient redesign of the scheduler possible?

 We envision scheduler with *isolated* modules each trying to optimize one variable...

 How do you make them all work together? Complex, open problem!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing/performance regression/proofs/...?

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing/performance regression/proofs/...?

Your next paper

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

