
CS 202
Advanced Operating

Systems

Spring 21

Finishing Scheduling, starting Concurrency
and Synchronization

Administrivia

! How is Lab going?

! Office hours
u after class for quick items, or email me.
u If there is a lot of interest, I can set up weekly time

! Academic honesty
u Please follow rules
u Please do not mispresent someone else’s work as yours
u Work hard, have fun, don’t worry too much about grades

2

Parallel/distributed scheduling
! Parallel processing started early

u Many hands make light work
u I did my PhD in this area – frustrating to work in it

» Competition with Moore’s law
» Programming is hard

u Scheduling when the machine is shared
» E.g., Gang scheduling

! COW/NOW projects (~early 1990s)
u Opportunistically use resources when they are available
u Scheduling is important subsystem
u Heterogeneous schedulers such as Condor, Hence, …

3

Parallel/distributed
processing

! Late 1990s:
u Grid computing
u Clusters
u Public resource computing
u Other: example, peer to peer networks focused on content

sharing

! 2000s:
u Cloud computing
u Data centers

! Scheduling nowadays: lets listen to the Hawk talk

4

INTRODUCTION TO
CONCURRENCY AND
SYNCHRONIZATION

5

6

Concurrency and
synchronization

! Threads share the same address space and resources
! Threads cooperate on concurrent activities
! We are under the mercy of the scheduler; generally,

the scheduler is unaware of the application
! What can go wrong?

u Race conditions
u Incorrect ordering of activities

! So, we need tools to synchronize
u They should enable us to control concurrency effectively
u We need to perform well
u We need to handle some resulting issues: deadlocks, lock

contention, convoying, scheduler interactions

7

Threads: Cooperation
! Threads voluntarily give up the CPU with thread_yield

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread

8

Synchronization
! For correctness, we need to control this cooperation

u Threads interleave executions arbitrarily and at different rates
u Scheduling is not under program control

! We control cooperation using synchronization
u Synchronization enables us to restrict the possible inter-

leavings of thread executions

! Problem occurs around shared resources
u Variables, etc…

9

A First Example
! Suppose we have to implement a function to handle

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

! Now suppose that you and your father share a bank
account with a balance of $1000

! Then you each go to separate ATM machines and
simultaneously withdraw $100 from the account

10

Example Continued
! We’ll represent the situation by creating a separate

thread for each person to do the withdrawals
! These threads run on the same bank machine:

! What’s the problem with this implementation?
u Think about potential schedules of these two threads

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

11

Interleaved Schedules
! The problem is that the execution of the two threads

can be interleaved:

! What is the balance of the account now?

balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution
sequence

seen by CPU Context switch

12

Shared Resources
! Problem: two threads accessed a shared resource

u Known as a race condition (remember this buzzword!)

! Need mechanisms to control this access
u So we can reason about how the program will operate

! Our example was updating a shared bank account

! Also necessary for synchronizing access to any
shared data structure
u Buffers, queues, lists, hash tables, etc.

13

When Are Resources
Shared?

! Local variables?
u Not shared: refer to data on the stack
u Each thread has its own stack
u Never pass/share/store a pointer to a local variable on the

stack for thread T1 to another thread T2

! Global variables and static objects?
u Shared: in static data segment, accessible by all threads

! Dynamic objects and other heap objects?
u Shared: Allocated from heap with malloc/free or new/delete

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1

14

How Interleaved Can It Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

How contorted can the interleavings be?
! We'll assume that the only atomic operations are reads

and writes of individual memory locations
u Some architectures don't even give you that!

! We'll assume that a context
switch can occur at any time

! We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

What do we do about it?
! Does this problem matter in practice?

! Are there other concurrency problems?

! And, if so, how do we solve it?
u Really difficult because behavior can be different every time

! How do we handle concurrency in real life?

15

16

Mutual Exclusion
! Mutual exclusion to synchronize access to shared

resources
u This allows us to have larger atomic blocks
u What does atomic mean?

! Code that uses mutual called a critical section
u Only one thread at a time can execute in the critical section
u All other threads are forced to wait on entry
u When a thread leaves a critical section, another can enter
u Example: sharing an ATM with others

! What requirements would you place on a critical
section?

17

Critical Section Requirements
Critical sections have the following requirements:
1) Mutual exclusion (mutex)

u If one thread is in the critical section, then no other is
2) Progress

u A thread in the critical section will eventually leave the critical section
u If some thread T is not in the critical section, then T cannot prevent

some other thread S from entering the critical section
3) Bounded waiting (no starvation)

u If some thread T is waiting on the critical section, then T will
eventually enter the critical section

4) Performance
u The overhead of entering and exiting the critical section is small with

respect to the work being done within it

18

Mechanisms For Building
Critical Sections

! Locks
u Primitive, minimal semantics, used to build others

! Semaphores
u Basic, easy to get the hang of, but hard to program with

! Monitors
u High-level, requires language support, operations implicit

! Architecture help
u Atomic read/write

» Can it be done?

How do we implement a lock?
First try

! Does this work?
Assume reads/writes
are atomic

! The lock itself is a
critical region!
u Chicken and egg

! Computer scientist
struggled with how to
create software locks

19

pthread_trylock(mutex) {
if (mutex==0) {
mutex= 1;
return 1;
} else return 0;

}

Thread 0, 1, …

…//time to access critical region
while(!pthread_trylock(mutex); // wait
<critical region>
pthread_unlock(mutex)

Dekker’s Algorithm

24

flag[0] = 1;
while (flag[1] != 0) {

if(turn == 2) {
flag[0] = 0;
while (turn == 2);

flag[0] = 1;
} //if

}//while
critical section
flag[0]=0;
turn=2;
outside of critical section

flag[1] = 1;
while (flag[0] != 0) {

if(turn == 1) {
flag[1] = 0;
while (turn == 1);

flag[1] = 1;
} //if

}//while
critical section
flag[1]=0;
turn=1;
outside of critical section

Bool flag[2]l
Int turn = 1;

Some observations
! This stuff (software locks) is hard

u Hard to get right
u Hard to prove right

! It also is inefficient
u A spin lock – waiting by checking the condition repeatedly

! Even better, software locks don’t really work
u Compiler and hardware reorder memory references from

different threads
! Something called memory consistency model
! Well beyond the scope of this class J

! So, we need to find a different way
u Hardware help

28

